The invention relates to a fluid-heating apparatus, such as an electric water heater, that can determine a degradation of a heating element of the apparatus, and a method of operating the fluid-heating apparatus.
When an electric-resistance heating element fails in an electric water heater, the operation of the heater is diminished until the element is replaced. This can be an inconvenience to the user of the water heater.
Failure of the electric-resistance element may not be immediate. For example, the element typically has a sheath isolated from an element wire by an insulator, such as packed magnesium oxide. If the sheath is damaged, the insulator can still insulate the wire and prevent a complete failure of the element. However, the insulator does become hydrated over time and the wire eventually shorts, resulting in failure of the element. The invention, in at least one embodiment, detects the degradation of the heating element due to a damaged sheath prior to failure of the heating element. The warning of the degradation to the element prior to failure of the element allows the user to replace the element with little downtime on his appliance.
A heating element generates heat that can be transferred to water surrounding the heating element. Water can dissipate much of the heat energy produced by the heating element. The temperature of the heating element rises rapidly initially when power is applied and then the rate of temperature rise slows until the temperature of the heating element remains relatively constant. Should power be applied to the heating element prior to the water heater being filled with water or should a malfunction occur in which the water in the water heater is not at a level high enough to surround the heating element, a potential condition known as “dry-fire” exists. Because there is no water surrounding the heating element to dissipate the heat, the heating element can heat up to a temperature that causes the heating element to fail. Failure can occur in a matter of only seconds. Therefore, it is desirable to detect a dry-fire condition quickly, before damage to the heating element occurs.
In one embodiment, the invention provides a method of controlling a fluid-heating apparatus. The fluid-heating apparatus includes a heating element for heating a fluid surrounding the heating element and a control circuit connected to the heating element and connectable to a power source. The control circuit includes a switch connected in a current path from the power source to the heating element back to the power source, and a current sensor. The method includes initiating a heating state of the fluid-heating apparatus by establishing a current in the current path, the establishing act comprising making the switch to allow current in the current path; initiating a non-heating state and ceasing the heating state of the fluid-heating apparatus by ceasing the current in the current path, the ceasing act comprising breaking the switch to not allow current in the current path; applying a voltage to the heating element during the non-heating state; sensing a leakage current of the heating element during the application of the voltage; and determining a degradation of the heating element prior to a failure of the heating element with the sensed leakage current.
In another embodiment, the invention provides a fluid-heating apparatus for heating a fluid. The fluid-heating apparatus includes a vessel, an inlet to introduce the fluid into the vessel, an outlet to remove the fluid from the vessel, a heating element at least partially surrounded by the fluid in the vessel. The heating element includes a wire, an insulating material surrounding at least a portion of the wire, and a sheath surrounding at least a portion of the insulating material. The fluid-heating apparatus further comprises a ground contact in electrical communication with the sheath, and a control circuit connectable to a power source and connected to the heating element. The control circuit includes a current path having a first leg connecting the power source to a first point of the heating element and a second leg connecting the power source to a second point of the heating element, a switch connected in circuit in the first leg, and a current sensor. In one construction, the control circuit is configured to initiate a heating state of the fluid-heating apparatus by establishing a current in the current path, the establishing act including making the switch to allow current in the first current path; initiate a non-heating state and ceasing the heating state of the fluid-heating apparatus by ceasing the current in the current path, the ceasing act including breaking the switch to not allow current in the first current path; connect the power source to the second point of the heating element during the non-heating state thereby allowing a current in the second leg during the non-heating state; sense a leakage current of the heating element during the connection of the power source to the second point of the heating element during the non-heating state; and determine a degradation of the heating element prior to a failure of the heating element with the sensed leakage current.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limited. The use of “including,” “comprising” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms “mounted,” “connected,” “supported,” and “coupled” are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings, and can include electrical connections or couplings, whether direct or indirect.
The water heater 100 also includes an electric resistance heating element 140 that is attached to the tank 105 and extends into the tank 105 to heat the water. An exemplary heating element 140 capable of being used in the water heater 100 is shown in
A partial electrical schematic, partial block diagram for one construction of a control circuit 200 used for controlling the heating element 140 is shown in
Referring again to
As just stated, the thermostat switch 210 allows a current through the heating element 140 when the switch 210 is closed. A variable leakage current can flow from the element wire 150 to the sheath 160 via the insulating material 155 when a voltage is applied to the heating element 140. The variable resistor 215 represents the leakage resistance, which allows the leakage path. The resistance between the wire and ground drops from approximately 4,000,000 ohms to approximately 40,000 ohms or less when the heating element 140 degrades due to a failure in the sheath 160. This will be discussed in more detail below.
The control circuit 210 further includes a voltage measurement circuit 220 and a current measurement circuit 225. The voltage measurement circuit 220, which can include a filter and a signal conditioner for filtering and conditioning the sensed voltage to a level suitable for the microcontroller 205, senses a voltage difference between the first and second legs 202 and 203. This voltage difference can be used to determine whether the thermostat switch 210 is open or closed. The current measurement circuit 225 senses a current to the heating element 140 with a torroidal current transformer 230. The torroidal current transformer 235 can be disposed around both legs 202 and 203 to prevent current sense signal overload during the heating state of the water heater 100, and accurately measure leakage current during the non-heating state of the water heater 100. The current measurement circuit 225 can further include a filter and signal conditioner for filtering and conditioning the sensed current value to a level suitable for the microcontroller 205.
During operation of the water heater 100, the sheath 160 may degrade resulting in a breach (referred to herein as the aperture) in the sheath 160. When the aperture exposes the insulating material 155, the material 155 may absorb water. Eventually, the insulating material 155 may saturate, resulting in the wire 150 becoming grounded. This will result in the failure of the element 140.
When the insulating material 155 absorbs water, the material 155 physically changes as it hydrates. The hydrating of the insulating material 155 decreases the resistance 215 of a leakage path from the element wire 150 to the grounded element (e.g., the heating element plug 165 and the coupled sheath 160). The control circuit 200 of the invention recognizes the changing of the resistance 215 of the leakage path, and issues an alarm when the leakage current increases to a predetermined level.
More specific to
In another construction of the water heater 100, the voltage measurement circuit 220 may not be required if the control of the current to the heating element 140 is performed by the microcontroller 205. That is, the voltage measurement circuit 220 can inform the microcontroller 205 when the water heater 100 enters a heating state. However, in some water heaters, the microcontroller 205 receives a temperature of the water in the tank 105 from a temperature sensor and controls the current to the heating element 140 via a relay (i.e., directly controls the state of the water heater 100). For this construction, the voltage measurement circuit 220 is not required since the microcontroller knows the state of the water heater 100.
In yet another construction of the water heater 100, the microcontroller 205 (or some other component) may control the current measurement circuit 225 to sense the current through the heating element 140 only during the “off” state. This construction allows the current measurement circuit 225 to be more sensitive to the leakage current during the non-heating state.
Referring to TABLE 1, the table provides the results of eight tests performed on eight different elements. Each of the elements where similar in shape to the element 140 shown in
A partial electrical schematic, partial block diagram for another construction of the control circuit 200A used for controlling the heating element 140 is shown in
Before proceeding further, it should be understood that the constructions described thus far can include additional circuitry to allow for intermittent testing. For example and as shown in
A partial electrical schematic, partial block diagram for yet another construction of the control circuit 200B used for controlling the heating element 140 is shown in
When the temperature in the water heater 100 drops below a predetermined threshold the water heater 100 attempts to heat the water to a temperature greater than the predetermined threshold plus a dead band temperature by applying power to the heating element 140. The heating element 140 generates heat that can be transferred to water surrounding the heating element 140. Much of the heat energy produced by the heating element 140 can be dissipated by the water.
Should power be applied to the water heater 100 prior to the water heater 100 being filled with water or should a malfunction occur in which the water in the water heater 100 is not at a level high enough to surround the heating element 140, applying power to the heating element 140 creates a condition known as “dry-fire.” As shown in
In some constructions, the control circuit 600 includes a relatively high-voltage power source (e.g., 120 VAC, 240 VAC, etc.) 201B, a heating element 140, a relatively low voltage power source (e.g., +12 VDC, 12 VAC, +24 VDC, etc.) 605, a current sensing circuit 610, a controller 205, a temperature sensing circuit 615, an alarm 620, a normally open switch 625, and a double-pole, double-throw relay 630
As shown in the construction of
In this construction, the controller 205 is coupled to the temperature sensor 615 and the current sensor 610, and receives indications of the temperature in the water heater 100 and the current drawn from the low-voltage power supply 605 from each sensor respectively. The controller 205 is also coupled to the alarm 620, the switch 625, and the relay 630.
In some constructions, the controller reads (block 710), from the current sensor 610, a first current being supplied by the low-voltage power supply 605 to the heating element 140. Other constructions of the dry-fire detection system 600 can read other electrical characteristics (e.g., voltage via a voltage sensor) of the circuit created by the low-voltage power supply 605 and the heating element 140.
Next, the controller 205 closes (block 715) the switch 625 and couples the high-voltage power supply 201B to the NC contacts of the relay 630. The controller 205 also removes (block 720) power from the coil 635 of the relay 630. This opens the NO contracts of the relay 630 which decouples the low-voltage power supply 605 from the heating element 140 and closes the NC contacts of the relay 630 coupling the high-voltage power supply 201B to the heating element 140. Coupling the high-voltage power supply 201B to the heating element 140 causes the heating element 140 to heat up. The controller 205 delays (block 725) for a first time period (e.g., three seconds).
Following the delay (block 725), the controller 205 applies (block 730) power to the coil 635 of the relay which opens the NC contacts of the relay 635 and decouples the high-voltage power supply 201B from the heating element 140. The first time period can be a length of time that allows the heating element 140 to heat up but can be short enough to ensure the heating element 140 does not achieve a temperature at which it can fail if a dry-fire condition were to exist. Applying power to the coil 635 of the relay 630 also enables the NO contacts of the relay 630 to close and couples the low-voltage power supply 605 to the heating element 140.
The controller 205 delays (block 735) for a second time period (e.g., ten seconds). During the delay, the heating element 140 begins to cool. The rate at which the heating element 140 cools can be faster if the heating element 140 is surrounded by water. The controller 205 reads (block 740), from the current sensor 610, a second current being supplied by the low-voltage power supply 605 to the heating element 140. The controller 205 compares (block 745) the first sensed current to the second sensed current and determines if the second sensed current is greater than the first sensed current by more than a threshold. If the second sensed current is not greater than the first sensed current by more than the threshold, the controller 205 determines that a dry-fire condition does not exist and continues (block 750) normal operation.
If the second sensed current is greater than the first sensed current by more than the threshold, the controller 205 determines that a potential dry-fire condition exists and opens (block 755) the switch 625. Opening the switch 625 ensures that the high-voltage power supply 201B is decoupled from the heating element 140 and prevents the heating element from being damaged. The controller 205 then signals (block 760) an alarm to inform an operator of the potential dry-fire condition. In alternative to block 760, the controller 205 can perform a second test for a potential dry-fire condition after a time delay to verify the accuracy of the first test (e.g., in the situation the tank was in the process of filling). If the second test results in the determination of a potential dry-fire condition, the controller may then issue the alarm.
Referring to
The control circuit 600 can execute the dry-fire detection process once, when power is first applied to the water heater 100, each time the temperature sensing circuit 615 indicates that heat is needed, or at some other interval. Other constructions of the control circuit 600 can execute the dry-fire detection process at other times where it is determined that the potential for a dry-fire condition exists (e.g., following a period of time wherein the heating element 140 has been coupled to the high power signal).
Thus, the invention provides, among other things, a new and useful water heater and method of controlling a water heater. Various features and advantages of the invention are set forth in the following claims.