This invention relates to a nozzle assembly useful for injecting fluids into circulating fluid bed reactors. It relates more particularly a nozzle assembly useful for injecting heavy oils such as petroleum resids and bitumens into fluid coking reactors.
Circulating fluid bed (CFB) reactors are well known devices that can be used to carry out a variety of multiphase chemical reactions. In this type of reactor, a fluid (gas or liquid) is passed through a granular solid material at velocities high enough to suspend the solid and cause it to behave as though it were a fluid. Fluidization is maintained by means of fluidizing gas such as air, steam or reactant gas injected through a distributor (grid, spargers or other means) at the base of the reactor. CFB reactors are now used in many industrial applications, among which are catalytic cracking of petroleum heavy oils, olefin polymerization, coal gasification, and water and waste treatment. One major utility is in the field of circulating fluid bed combustors where coal or another high sulfur fuel is burned in the presence of limestone to reduce SOx emissions; emissions of nitrogen oxides is also reduced as a result of the relatively lower temperatures attained in the bed. Another application is in the fluidized bed coking processes known as fluid coking and its variant, Flexicoking™, both of which were developed by Exxon Research and Engineering Company.
Fluidized bed coking is a petroleum refining process in which heavy petroleum feeds, typically the non-distillable residue (resid) from fractionation or heavy oils are converted to lighter, more useful products by thermal decomposition (coking) at elevated reaction temperatures, typically about 480 to 590° C., (about 900 to 1100° F.) and in most cases from 500 to 550° C. (about 930 to 1020° F.). Heavy oils which may be processed by the fluid coking process include heavy atmospheric resids, aromatic extracts, asphalts, and bitumens from tar sands, tar pits and pitch lakes of Canada (Athabasca, Alta.), Trinidad, Southern California (La Brea (Los Angeles), McKittrick (Bakersfield, Calif.), Carpinteria (Santa Barbara County, Calif.), Lake Bermudez (Venezuela) and similar deposits such as those found in Texas, Peru, Iran, Russia and Poland. The process is carried out in a unit with a large reactor vessel containing hot coke particles which are maintained in the fluidized condition at the required reaction temperature with steam injected at the bottom of the vessel with the average direction of movement of the coke particles being downwards through the bed. The heavy oil feed is heated to a pumpable temperature, typically in the range of 350 to 400° C. (about 660 to 750° F.) mixed with atomizing steam, and fed through multiple feed nozzles arranged at several successive levels in the reactor. The steam is injected into a stripper section at the bottom of the reactor and passes upwards through the coke particles in the stripper as they descend from the main part of the reactor above. A part of the feed liquid coats the coke particles in the fluidized bed and subsequently decomposes into layers of solid coke and lighter products which evolve as gas or vaporized liquid. Reactor pressure is relatively low in order to favor vaporization of the hydrocarbon vapors, typically in the range of about 120 to 400 kPag (about 17 to 58 psig), and most usually from about 200 to 350 kPag (about 29 to 51 psig). The light hydrocarbon products of the coking (thermal cracking) reactions vaporize, mix with the fluidizing steam and pass upwardly through the fluidized bed into a dilute phase zone above the dense fluidized bed of coke particles. This mixture of vaporized hydrocarbon products formed in the coking reactions continues to flow upwardly through the dilute phase with the steam at superficial velocities of about 1 to 2 metres per second (about 3 to 6 feet per second), entraining some fine solid particles of coke. Most of the entrained solids are separated from the gas phase by centrifugal force in one or more cyclone separators, and are returned to the dense fluidized bed by gravity through the cyclone diplegs. The mixture of steam and hydrocarbon vapor from the reactor is subsequently discharged from the cyclone gas outlets into a scrubber section in a plenum located above the reaction section and separated from it by a partition. It is quenched in the scrubber section by contact with liquid descending over scrubber sheds in a scrubber section. A pumparound loop circulates condensed liquid to an external cooler and back to the top row of scrubber section to provide cooling for the quench and condensation of the heaviest fraction of the liquid product. This heavy fraction is typically recycled to extinction by feeding back to the fluidized bed reaction zone.
Components of the feed that are not immediately vaporized coat the coke particles in the reactor and are subsequently decompose into layers of solid coke and lighter products which evolve as gas or vaporized liquids. During the contacting of the feed with the fluidized bed, some coke particles may become unevenly or too heavily coated with feed and during collision with other coke particles may stick together. These heavier coke particles may not be efficiently fluidized by the steam injected into the bottom of stripper section so that they subsequently pass downwards from the reactor section into the stripper section where they may adhere to and build up on the sheds in the stripper section, mainly on the uppermost rows of sheds. Conventionally, the stripper section has a number of baffles, usually termed “sheds” from their shape in the form of inverted channel sections extending longitudinally in several superimposed rows or tiers across the body of the stripper. The coke passes over these sheds during its downward passage through the stripper and is exposed to the steam which enters from the spargers at the bottom of the vessel below the sheds and is redistributed as it moves up the stripper. The solid coke from the reactor, consisting mainly of carbon with lesser amounts of hydrogen, sulfur, nitrogen, and traces of vanadium, nickel, iron, and other elements derived from the feed, passes through the stripper and out of the reactor vessel to a burner where it is partly burned in a fluidized bed with air to raise its temperature from about 480 to 700° C. (about 900° to 1300° F.), after which the hot coke particles are recirculated to the fluidized bed reaction zone to provide the heat for the coking reactions and to act as nuclei for the coke formation.
The Flexicoking™ process, also developed by Exxon Research and Engineering Company, is, in fact, a fluid coking process that is operated in a unit including a reactor and burner, often referred to as a heater in this variant of the process, as described above but also including a gasifier for gasifying the coke product by reaction with an air/steam mixture to form a low heating value fuel gas. The heater, in this case, is operated with an oxygen depleted environment. The gasifier product gas, containing entrained coke particles, is returned to the heater to provide a portion of the reactor heat requirement. A return stream of coke sent from the gasifier to the heater provides the remainder of the heat requirement. Hot coke gas leaving the heater is used to generate high-pressure steam before being processed for cleanup. The coke product is continuously removed from the reactor. In view of the similarity between the Flexicoking process and the fluid coking process, the term “fluid coking” is used in this specification to refer to and comprehend both fluid coking and Flexicoking except when a differentiation is required.
The stripping section of the fluid coking unit is located in the lower portion of the reactor. Coke particles from the reactor pass into the stripper where they are contacted with stripping steam from a sparger located at the bottom of the stripping section in order to remove hydrocarbon vapor phase products from the coke which is carried out of the bottom of the unit. As a result of the well-mixed nature of the reactor, a certain amount of coke entering the stripper is still coated with crackable hydrocarbon material. For this material, the stripper acts as an additional reaction section within which cracking and drying can occur. As this material progresses through the stripper, additional cracking reactions occur. For this reason, plug flow behavior is extremely desirable in the stripper in order to minimize the amount of crackable material sent to the burner or heater as hydrocarbon carryunder, where it is effectively downgraded to coke. With basic fluid cokers, unlike Flexicokers, this phenomenon is not greatly disadvantageous as the quantities are small but in the case of Flexicokers, this material is sent to the heater, where it is exposed to a high temperature, oxygen poor environment. Unreacted material that enters the heater can crack to form a full range of vapor phase products. These products are then carried up into the heater overhead where they can condense onto surfaces resulting in capacity and/or run length limitations.
While hydrocarbon carryunder is not a major concern for fluid coking units, these units do experience a different type of concern arising from operation of the stripper. Accumulation of deposits on the stripper sheds, which typically take on a characteristic shape by which they are named “shark fins”, makes the stripper vulnerable to reduced clearances that can interrupt the coke circulation in the stripper section, restrict fluidization of the coke in the reactor section and eventually lead to unplanned capacity loss or an unplanned reactor shutdown.
The dense fluid bed behaves generally as a well mixed reactor. However cold flow dynamics model simulations and tracer studies have shown that significant amounts of wetted coke can rapidly bypass the reaction section and contact the stripper sheds where a portion of the wet film is converted to coke, binding the coke particles together. Over time, hydrocarbon species from the vapor phase condense in the interstices between the particles, creating deposits which are very hard and difficult to remove. Current practice in fluid coking units is to raise reactor temperatures to accelerate the thermal cracking reactions. This enables the coke to dry more quickly and thereby reduce the amount of wetted coke that enters the stripper. However the higher reactor temperature increases the rate of recracking of the hydrocarbon vapors and reduces the C4+ liquid yield resulting in an economic debit.
Other attempts have previously been made to overcome this problem with varying degrees of success. One approach has been to improve stripper operation, for example, by fitting the strippers with steam spargers located underneath the stripper sheds, as reported by Hsiaotao Bi et al in “Flooding of Gas-Solids Countercurrent Flow in Fluidized Beds”, In Eng. Chem. Res. 2004, 43, 5611-5619.
Another approach both to reducing reactor fouling and to increase liquid yield has been to improve the atomization of the feed as it enters the bed with the expectation that improved atomization will reduce the extent to which the oil will be carried down in liquid form into the stripper. Conventional atomization nozzles used in the fluid coking process use steam to assist in spraying the heated resid or bitumen into the fluidized bed of hot coke particles: effective contacting of resid droplets and the entrained coke particles is important in improving reactor operability and liquid product yield. The injected spray forms a jet in the bed into which fluidized coke particles are entrained. A major concern in the process is liquid-solid agglomerates tend to form in the bed with poorly performing atomization nozzles, causing high local liquid loading on the solids and the formation of large wet feed/coke agglomerates. These heavier agglomerates may tend segregate towards the lower section of the reactor and foul the internals of the reactor, particularly in the stripper section, as noted above. With enhanced feed atomization performance, the contacting between the spray jets of feed and coke solids would be improved, resulting in an overall improvement in reactor operability, with longer run-lengths due to reduced stripper fouling, and/or higher liquid product yield due to lower reactor temperature operation. Higher liquid feed rates may also be facilitated by the use of improved feed nozzles.
A steam assisted nozzle proposed for use in fluid coking units is described in U.S. Pat. No. 6,003,789 (Base) and CA 2 224 615 (Chan). In this nozzle, which is typically mounted to the side wall of the fluid coker so that it extends through the wall into the fluidized bed of coke particles, a bubbly flow stream of a heavy oil/steam mixture is produced and atomized at the nozzle orifice. The nozzle which is used has a circular flow passageway comprising in sequence: an inlet; a first contraction section of reducing diameter; a diffuser section of expanding diameter; a second contraction section of reducing diameter; and an orifice outlet. The convergent sections accelerate the flow mixture and induce droplet size reduction by elongation and shear stress flow mechanisms. The second contraction section is designed to accelerate the mixture flow more than the first contraction section and as a result, the droplets produced by the first contraction are further reduced in size in the second contraction. The diffuser section allows the mixture to decelerate and slow down before being accelerated for the second time. The objective is to reduce the average mean diameter of the droplets to a relatively fine size, typically in the order of 300 μm as it is reported that the highest probability of collision of heavy oil droplets with heated coke particles occurs when both the droplets and heated particles have similar diameters; thus a droplet size of 200 or 300 μm was considered to be desirable.
The objective behind the nozzle of U.S. Pat. No. 6,003,789 is to produce a spray of fine oil droplets which, according to the conventional view, would result in better contact between the coke particles and the oil droplets. A subsequent approach detailed in concept in “Injection of a Liquid Spray into a Fluidized Bed: Particle-Liquid Mixing and Impact on Fluid Coker Yields”, Ind. Eng. Chem. Res., 43 (18), 5663., House, P. at al, proposes that the initial contact and mixing between the liquid droplets and the hot coke particles should be enhanced, with less regard to the size of the liquid droplets in the spray. A spray nozzle using a draft tube is proposed and a nozzle of this type is also described in U.S. Pat. No. 7,025,874 (Chan). This nozzle device functions by utilizing the momentum of the liquid jet issuing from the nozzle orifice to draw solids into the draft tube mixer and induce intense mixing of the solids and liquid in the mixer and by so doing, enhance the probability of individual droplets and particles coming into contact. As a result, more coke particles were likely to be thinly coated with oil, leading to improvement in liquid yield; the production of agglomerates would be curtailed, leading to a reduction in fouling and the reactor operating temperature could be reduced while still achieving high liquid product yield by reducing the mass transfer limitation on the liquid vaporization process. The actual assembly comprises an atomizing nozzle for producing the jet which extends through the side wall of the reactor and an open-ended draft tube type mixer positioned horizontally within the reactor and aligned with the nozzle so that the atomized jet from the nozzle will move through the tube and entrain a stream of coke particles and fluidizing gas into the tube where mixing of the coke and liquid droplets takes place. The draft tube preferably has a venturi section to promote a low pressure condition within the tube to assist induction of the coke particles and fluidizing gas. This device has not, however, been commercially successful due to concerns over fouling of the assembly in the fluidized bed.
The circular exit orifice on the nozzles shown, for example, in the Base and Chan patents, creates a cylindrical plume of liquid emitting from the nozzle exit; this plume has a minimum area to perimeter ratio and this creates a significant hindrance to the penetration of solid particles to the central core of the jet, possibly leading to contact between the hot coke particles and the injected oil stream which is less than optimal.
An improved mixing arrangement is described in U.S. Pat. No. 7,140,558 (McCracken); this device, referred to here as a Bilateral Flow Conditioner, brings the oil and steam into the main flow conduit leading to the nozzle through feed conduits which are disposed at an acute angle to the main flow conduit and at an angle to each other. In addition, a flow restrictor is disposed in the steam line at the point where it enters the main conduit so that the steam is accelerating as it enters the main conduit. This configuration for the mixing section of the nozzle is stated to give an improvement in flow characteristics.
It has now been found that the nozzles used in circulating fluid bed reactors such as fluid coking reactors such as those described above may not be optimal for resid/fluid coke contacting, primarily as a consequence of the effectiveness of the mixing device, the configuration of the nozzle orifice or both. We have now found that improved mixing between the heavy oil feed and the atomizing steam may be achieved by the use of a pre-mixer in the form of a radial ported throttle body steam injector in the nozzle assembly. This mixer provides improved stability to the operation of the nozzle and also enables a wider operating window extending over a broader range of conditions to be used. When used with a nozzle with an improved disperser configuration, improved contacting between the coke particles and the oil in the reactor can be achieved.
The nozzle assembly comprises a premixer which is connected by means of a flow conduit in fluid flow relationship to a nozzle body which discharges the atomized feed as a spray onto the particles circulating inside the reactor. The flow conduit between the oil and steam connections on the outside of the reactor wall and the nozzle tip inside, typically extends about 40-150 cm long in current reactors. The preferred throttle body premixer described below stabilizes the flow over longer conduits, possibly over 150 cm in length, while, at the same time, maintaining a wide operating window for steam/oil rates with a reduced possibility for jet pulsation at high relative steam rates or choking at high oil rates.
The stabilizing effect of the premixer may be enhanced by utilizing certain flow conditioners or stabilizers in the flow conduit between the premixer and the discharge nozzle. The spray pattern from the discharge nozzle may also be enhanced and the contact between the oil and the particles in the fluid bed improved by the use of an appropriate disperser at the orifice of the discharge nozzle.
According to the invention the atomizing steam is introduced into the oil stream in a throttle body pre-mixer defined by a constriction in a flow conduit. The atomizing steam is injected through radially-disposed inlet ports at a higher pressure than the oil stream. The intense mixing which takes place downstream of the throttle body constriction results in an improved stability for the spray.
The improvement in oil/coke particle contact resulting from the use of the premixer may be achieved with a plain circular orifice at the reactor end of the nozzle assembly but a further improvement may be achieved—with a resulting reduction in the film thickness of the oil on the coke particles—by the use of a multilobe disperser at the orifice of the discharge nozzle. This disperser provides a jet plume with an increased surface area in a spray pattern corresponding to the shape of the flow channels in the disperser, resulting in a significant improvement in the contacting between the feed jet and the solids in the bed and in the entrainment of the solids by the liquid jet.
In its preferred form the disperser at the orifice of the discharge nozzle comprises a body having a central flow passage leading from the rear (feed side) of the body towards the discharge end of the disperser and plurality of dispersing lobes within the body and communicating with the central flow passage. In a preferred form the multilobe disperser has a cloverleaf configuration normally comprising from three or four divergent, quasi-conical flow passages symmetrically disposed around a central axis and open to the central flow passage from the flow conduit. These dispersing lobes form a dispersed pattern of oil spray droplets with a configuration that matches that of the lobes in the disperser body. Each lobe is defined by a wall formed in the body of the disperser with the wall of each lobe defining a segment of a hollow cone; the axes of the hollow cones intersect symmetrically with the central flow passage so that each hollow cone is open along its length to the flow passage to define an increasing multilobe exit passage whose cross-sectional area increases from the rear towards the front of the disperser body. In this form, the disperser is of a cloverleaf configuration, either trilobe or quadrulobe, with three or four lobes formed in the body.
The disperser is normally fabricated as an extension from the circular nozzle body at the end of the flow passage which expands to a wider, non-circular, multilobar opening which increases the perimeter-to-area ratio of the nozzle orifice. With the disperser, the liquid jet issuing from the nozzle orifice will also be a corresponding non-circular form, greatly enhancing not only the liquid dispersion, but also increasing the surface area for interface and entrainment between the jet and the fluidized bed of solids.
In this aspect, therefore, the present invention provides a nozzle assembly with a discharge nozzle having a convergent entry section following and connected to the flow conduit section to shear the liquid feed/steam mixture and create liquid feed droplets of reduced size within the discharge nozzle with a multilobe disperser at the orifice of the discharge nozzle to provide a spray jet of liquid feed having an increased surface area relative to a cylindrical jet. As an alternative to the lobed disperser, a simple fan shaped disperser may be used to increase the surface area of the spray relative to that of a plain circular spray pattern.
The flow conduit connecting the premixer with the discharge nozzle also functions to control spray stability and effectiveness. While a plain cylindrical flow conduit between the premixer and the nozzle is effective with the throttle body premixer and more so with the multilobe disperser, control over the droplet size in the spray may be achieved by the use of a flow stabilizer or conditioner in the flow conduit between the premixer and the discharge nozzle.
The nozzle assembly is useful for injecting fluids into various types of circulating fluid bed reactors in which good contact between the components of the fluidized bed and the injected fluid is required. The nozzle assembly is particularly useful in fluid coking reactors but is potentially useful in other CFB reactors where similar problems are encountered.
In the preferred form used in fluid coking units, the reactor of the unit comprises:
The reactor will be coupled in the unit to a burner/heater by means of coke lines in the normal way: a cold coke transfer line takes coke from the bottom of the stripper to the burner/heater and a hot coke return line brings hot coke from the burner/heater back to the reactor. In the case of a Flexicoker, the gasifier section follows the heater vessel as described above.
In the fluid coker the feed inlets which are disposed substantially horizontally around the periphery of the reactor lead the heavy oil feed into the reactor. They each have a feed nozzle assembly as described above preferably with the throttle body premixer and flow conditioner and with a multilobe disperser to provide the optimal configuration for the spray entering the reactor from the nozzle.
In this aspect, therefore, the invention in its preferred form provides a circulating fluid bed reactor having a reactor wall of circular cross section about a vertical axis, a lower inlet for fluidizing gas and nozzle assemblies for a liquid heavy oil feed and atomization steam above the lower fluidizing gas inlet and around the reactor wall, the nozzle assemblies each extending substantially horizontally through the reactor wall into the reactor with a discharge nozzle orifice within the reactor and an inlet for the liquid heavy oil feed at the end remote from the discharge nozzle. Each nozzle assembly comprises:
The nozzle assembly utilizes the converging-diverging throttle body premixer section to introduce atomization steam into the heavy oil stream under pressure at the narrow throat portion of the constriction. The stability in feed flow imparted by the use of the premixer is further improved by the use of the constricting-expanding flow conditioner or stabilizer in the flow conduit between the premixer and the nozzle orifice.
In the accompanying drawings:
A complete nozzle assembly for producing the improved feed dispersion in the fluidized bed is shown in
Inlet port 22 is provided for the heavy oil feed and atomizing steam enters through two radially opposed steam inlet lines 23, 24, into the ports in the body of the premixer. The steam lines are also provided with cleaning ports 25, 26 at their outer ends, normally covered by flanged cover plates 25a, 26a, to permit cleaning rods to be passed to the inlet ports in the body of the premixer.
Conduit 15, of circular cross-section, leads through the wall 11 of the reactor and inside the reactor is encased in shroud 28 as far as the discharge nozzle body, mainly for structural support and to protect the conduit from erosion by the solids circulating in the reactor.
The objective of the premixer is to create a stable two-phase flow for effective atomization in the reactor. A preferred configuration for the throttle body premixer section that mixes the steam and heavy oil feed to generate a dispersed “bubbly” flow in the conduit leading to the atomization nozzle is shown in
Gas (steam) is introduced into the throttle body 13 at its throat 31 via two or more steam ports, 32, 33 which admit the steam from inlet lines 23, 24. The steam ports generate high velocity steam jets in the throat region where the steam mixes with the liquid feed entering through liquid inlet 34 at maximum shear, creating dispersed bubbly flow. The number of ports may be varied according to service requirements and the size of the assembly and usually from two to six are suitable, in most cases from two to four. Two ports have been found to give good results and also can be made large enough to reduce the likelihood of becoming fouled. The axial and radial locations of the gas ports can be varied to optimize the premixer performance, e.g if the length of the throat is relatively great, the ports may be disposed at various locations along its length although in most cases, the throat will be relatively short with the ports located at the narrowest point. The preferred location for the steam ports is in the upstream half of the throat. Symmetrical radial port disposition is preferred, e.g with two ports diametrically opposite and with four ports, at the quadrants. The mixing of the gas and liquid in the throat region is considered optimal as this is where the liquid velocity reaches its maximum. The steam lines may be provided, if necessary, with flanged-off cleaning ports which will admit cleaning rods to be passed down as far as the entry ports at the throat of the throttle body.
Significant performance criteria for the premixer are: convergence angle at entry to the throat, throat diameter and length, divergence angles from the throat, entry and exit diameter. These values are best set empirically depending upon feed characteristics (mainly viscosity) and the required flow rate. Typically, a low convergence/divergence angle is preferred, normally from about 3 to 15° (cone half angle) with values between 4 and 8° preferred although at higher rates of flow, the differences in performance as indicated by the Instability Index tend to disappear so that larger values of the half angle e.g. 20° are acceptable. The angles of convergence and divergence are normally substantially identical
Typical dimensions for the premixer are as shown in Table 1 below (dimensions all in mm.):
Flow stability is maintained relatively more constant over a wider range of liquid flow rates with smaller gas ports, e.g. about 4 mm but again, the differences tend to disappear at higher liquid flow rates so that the larger ports are preferred in view of their greater resistance to fouling. In a similar way, flow stability is favored by the smaller throat sizes although the larger sizes result in a smaller pressure drop but here, throat size must be selected in accordance with the desired flow rate for the nozzle assembly.
One highly favorable feature of the throttle body premixer is that it facilitates the use of longer flow conduits between the premixer and the nozzle by maintaining flow stability over a broad range of flowrates. While the Bilateral Flow Conditioner provides comparable performance to the throttle body premixer with short flow conduits (up to about 80 cm long), the flow in longer conduits, e.g. 130 cm or longer, at gas/liquid ratios over about 1.8 wt. pct., tends to destabilize rapidly in cold flow testing.
The premixer necessarily has to be designed to accommodate the desired flow rate of heavy oil with the concomitant steam flow for good atomization. Generally, the steam/oil ratio will be in the range of 0.3 to 1.2 percent by weight of the oil and usually rather less, in the range 0.4 to 0.9 steam/oil with ratios of about 0.86 likely to be typical. Feed header pressures for the steam are typically in the range of 1500 to 2000 kPag (about 200 to 290 psig).
Maintenance of the dispersed bubbly flow formed by the use of the premixer over a broad range of nozzle operating conditions enhances the operating flexibility of a particular nozzle assembly. When the dispersed bubbly flow is not carried fully through to the nozzle orifice, the nozzle will tend to send slugs of liquid feed into the fluidized bed of solids. The nozzle assembly functions well with a plain, tubular flow conduit of constant cross-section between the premixer and the discharge nozzle as shown in
A preferred form of flow conditioner is shown in
An alternative configuration for the flow conditioner is shown in
Typical dimensions for a flow conditioner of this type are as shown in Table 2 below (dimensions in mm.):
The diameter and length of circular conduit 15 in the nozzle body downstream of the premixer leading to the flow conditioner section 14 will also affect the stability of the dispersed bubbly flow and therefore the atomization performance of the nozzle. An excessively long residence time in the conduit will lead to coalescence of bubbles and instability of the two-phase flow. Hence there is a balance in the selection of the conduit diameter/length ratio between the need to keep the fluid residence time in the conduit to a minimum and the contribution of the pressure drop in the conduit to the overall pressure requirement for the nozzle.
The annular constriction-expansion of the flow stabilizer or conditioner may conveniently be fabricated in a manner similar to the preferred form of the throttle body premixer with equal entry and discharge angles or, alternatively, with a long, progressively expanding divergence-expansion zone following the throat of the constriction. This long divergence zone may be extended up to the point where the converging portion of the discharge nozzle commences or it may stop short of it. The combination of the convergent/divergent flow conditioner in the flow passage connecting the premixer and the nozzle with the converging flow passage in the nozzle body is highly effective to impart shear to the liquid oil droplets in the mixture to reduce their size upon exiting the discharge nozzle.
With either form of flow conditioner, the purpose of the first convergence zone is to accelerate the steam/oil mixture from the premixer to reduce droplet size by elongation and shear stress. Following this, the divergence or diffusion section of expanding diameter allows the mixture to decelerate so that sufficient acceleration may be attained in the next convergence section in the nozzle to reduce droplet size further and preferably for accelerating the mixture with greater acceleration than in the first contraction section so as to reduce droplet size by elongation and shear stress yet further before the mixture enters the discharge orifice and emerges in the form of a jet of relatively fine oil droplets distributed in the steam.
The break-up of the heavy oil droplets in the convergence zone to smaller droplets can be estimated. The smaller droplet diameter produced by the accelerated flow in the convergence zone depends on the third root of the product of the surface tension coefficient of the heavy oil times the original diameter divided by the product of the heavy oil density times the estimated acceleration of the droplet. The acceleration of the heavy oil is obtained by considering the geometry of the convergence zone and two-phase flow theory.
An analytical treatment of design factors can be carried out in the manner set out in U.S. Pat. No. 6,003,789, to which reference is made for a description of the design factors and application to specific nozzle assembly configurations. For example, it can be shown that for a flow of heavy oil and steam at typical temperature and pressure for the fluidized bed coker at a flow rate of 10,730 l/hr. (1620 barrels per day) and a steam flow rate of 47 kg/hr. (103 lb./hr.), if the initial diameter of the heavy oil droplet is 12 mm, the heavy oil droplets reduce in size to about 4 mm over a length of 30 conduit diameters. On entering the convergence zone of the flow conditioner the acceleration of the mixture and elongation of the heavy oil droplets causes the droplet diameter to reduce further to about 0.6 mm (using a convergence ratio of 0.286 over a length of 4.6 cm). To determine the final diameter of the droplet from the nozzle orifice, this analysis has to be repeated for the second convergence zone in the nozzle body.
According to these design factors, the nozzle assembly is preferably designed in accordance with the following criteria:
By applying the configuration of tandem convergence zones separated by a diffusion zone in accordance with these design criteria, a cold flow model using water as the liquid and air as the gas produced relatively large water ligaments (stretched liquid droplets) of 12.5 mm average mean diameter in the pre-mixer which were reduced to relatively fine droplets having an average mean diameter of 0.3 mm, produced in the form of a jet having substantially evenly distributed droplets upon exit from a simple circular orifice in the nozzle body downstream of the second convergence zone.
As noted above, a plain cylindrical nozzle, i.e. with a convergent entry followed by a conical outlet, may be used with the preferred premixer but an improvement in oil-solid contact is possible with the use of a disperser at the nozzle orifice. The purpose of the disperser is to draw liquid off the centerline to maximize liquid contacting with the solids. This allows the feed to coat the coke particles more uniformly and on average, with thinner films. Since the diffusion path is shorter in a thinner film, there tends to be less secondary cracking resulting in improved liquid yields. Hence further improvement in yield comes primarily from the use of a disperser on a nozzle. Several types of dispersers were evaluated in early testing; these included “ninja star”, multi-holed, multi-lobe e.g clover and fan designs. Based on patternator1 flux measurements, the “ninja star” and multi-holed design were not found to be effective at pulling heavy oil droplets away from the liquid core. The clover and the bilobar or fan patterns providing a flat, bilobe or fan-shaped spray pattern for the jet had similar performance in the jet interaction with the fluidized bed; the preferred multi-lobe clover configuration is based on jet/bed interaction testing which showed generally better performance for dispersers with higher perimeter to area ratios with enhanced solids entrainment. The patternator is an instrument made for testing the pattern of spray from a nozzle. It replaces mechanical patternation and its high speed and elevated resolution allow it to be used for a variety of applications where the uniformity and pattern of sprays is important. The technology was developed by En'Urga Inc. of West Lafayette, Ind. The instrument is stated by En'Urga to be covered by U.S. Pat. No. 6,184,989.
A specific embodiment of a clover disperser is shown in
A premixer of the type shown in U.S. Pat. No. 7,140,558 (identified here as the Bilateral Flow Conditioner or “BFC” mixer) was compared with a throttle body mixer with two radial gas ports.
The premixer with opposing, impinging steam jets was found to have improved stability (less pulsation) compared to the BFC, as measured by dynamic pressure fluctuations. An instability parameter (P240) which is based on the integration of the pressure signal for the range of frequencies up to 40 Hz, was used to characterize the dynamic pressure fluctuations and can differentiate between stable and unstable flow. Low values of this parameter are associated with stable sprays and high values with unstable sprays. The instability parameter was recorded at pressure transducers located 10, 50, and 90 cm upstream of the nozzle exit. Based on cold flow testing with air and water, the results shown in
The configuration of the entire nozzle assembly is a significant contributor to atomization and to the interaction of the liquid jet with the fluid bed. A properly designed nozzle creates an appropriate shearing force (through the pressure drop across the nozzle tip) to form small, uniform feed droplets while also providing sufficient momentum to convey the droplets well into the bed of solids. There is, however, an interaction with the mixer type used as well as the configuration of the flow conduit between the mixer and the nozzle orifice.
Tests with a simple “V” shape for the diameter constriction at the nozzle exit and the throttle body premixer with a plain tubular flow conduit between the premixer and the exit nozzle essentially matched the performance of a nozzle of the same shape with the BFC mixer followed by the convergent/divergent nozzle ensemble as shown in
Additional testing showed that the nozzle convergence is optimally at a half angle of about 20° as this provides the highest flow stability at low flow rates with minimal increase in the feed pressure requirement.
The flow stability of the simple constriction nozzle design can be improved by the use of a flow conditioner upstream of the nozzle orifice. Comparative testing results are shown in
Simple constriction nozzle
Simple constriction nozzle with convergent/divergent flow conditioner
Double convergent nozzle assembly (TEB Nozzle)
When the flow conditioner formed by a constriction in the diameter of the flow conduit, comparable to the throttle body premixer, located within 10 pipe diameters upstream of the nozzle tip is used with a simple constriction nozzle, the resulting configuration (middle line) provides a significant improvement in jet stability compared to the simple constriction nozzle at the end of a plain cylindrical flow conduit downstream of the premixer (uppermost line).
The optimal configuration with the highest degree of jet stability was provided by a throttle body premixer and a double convergent nozzle assembly (TEB Nozzle, as shown in
The decrease in the liquid loading on the coke solids determined in the jet-bed interaction test which resulted from the use of a disperser is shown in
This application claims the priority of U.S. Provisional Application No. 61/348,013, filed 25 May 2010, the entire disclosure of which is incorporated in this present application by reference.
Number | Date | Country | |
---|---|---|---|
61348013 | May 2010 | US |