1. Field of the Invention
The present invention relates to a fluid injection nozzle having a plate in which a fluid injection hole is formed. For instance, the present invention applies to a fuel injection valve for supplying fuel to an internal combustion engine (engine).
2. Description of Related Art
DE 19636396A1 discloses fuel injector having a plate in which a plurality of through holes are formed as fuel injection orifices. Such a plate type injectors are effective to generate a plurality of fuel jets. In this arrangement, fuel flows along an inclined surface formed by a valve seat. However, some of the through holes are opened on an imaginary line where a surface of the plate crosses an extended line of the inclined surface. Therefore, fuel flowing along the inclined surface directly flows-into the through holes. Therefore, fuel is insufficiently atomized.
U.S. Pat. No. 4,907,748, U.S. Pat. No. 5,762,272 and WO 98/34026 disclose the fuel injectors having flat chambers just upstream the through holes. Such a chamber provides a compound fuel flow just upstream the through hole and is effective to atomize fuel. However, there is a possibility to spoil an atomization by a collision of injected fuel columns at just after the through holes. Here, the fuel column is a shape of fuel before fuel is atomized by collision with air. Further, a shape of a wall defining the chamber is important to define a fuel flow at an inlet of the through hole, since the fuel atomization is affected by the fuel flow flowing along the plate. However, WO 98/34026 does not provide a surface having a sufficient flatness and a size to atomize fuel.
The present invention addresses these drawbacks by providing an improved fluid injection nozzle arrangement.
It is therefore an object of this invention to improve an atomization of fluid.
It is a further object of this invention to provide a fluid injection nozzle in which a collision of injected fluid columns is avoided.
According to a first aspect of the present invention, the fluid injection nozzle has a chamber for controlling a fluid flow to a through hole formed on a plate. Fluid flowing along an inner surface of a valve body is inclined to meet and collide at a center region of the plate. Therefore, fluid turns its direction and flows along the plate. Specifically, the chamber is flat and is extended more than a diameter of the through hole at an outside of the through hole. Therefore, fluid flows along the chamber for a sufficient distance and reaches the through hole from all directions and collides at an inlet of the through hole. As a result, fluid injected from the through hole has a lot of turbulences and is finely atomized. Further, an inlet of the through hole opens at an outer area of a projected area which is defined by projecting a downstream end opening of the inner surface of the valve body. Therefore, the through holes are separately arranged to avoid a collision of columns of fluid injected from the through holes.
According to another aspect of the present invention, a plate has an inner through hole and an outer through hole located both side of an imaginary line. Here, the imaginary line is defined by crossing a surface of the plate and a line extended along the inner surface of the valve body. Therefore, the inner through hole and the outer through hole are mainly influenced by fluid flows having different directions. As a result, columns of injected fluid are directed in different directions and a collision of the columns is avoided.
Other features and advantages of the present invention will be appreciated, as well as methods of operation and the function of the related parts, from a study of the following detailed description, the appended claims, and the drawings, all of which form a part of this application. In the drawings:
Preferred embodiments of the present invention will be explained with reference to the drawings.
FIG. 1 through
Referring to
A movable valve member is disposed between the stator core 30 and the valve body 13. The movable valve member has a needle 20 and an armature core 31 made of a magnetic material. The armature core 31 is connected to an upper end of the needle 20 and is guided on an inner surface of the first pipe 32 in a slidable manner. A spring 35 is disposed between the armature core 31 and an adjust pipe 34 adjustably fixed on an inner surface of the stator core 30. The needle 20 has an annular contact portion 21 and a flat end surface 20a on its bottom end and is guided on an inner surface of the valve body 13. The annular contact portion 21 contacts with a valve seat 14a formed on an inner surface 14 of the valve body 13.
Referring to FIG. 1 and
A circular plate 25 is fixed on a bottom surface 13a of the valve body 13 by a laser welding. The plate 25 covers the depression 15 and defines a chamber 52 between the plate 25 and the valve body 13. The chamber 52 is thin, circular-shaped, and extended parallel with the plate 25. The plate 25 provides an approximately flat wall defining a downstream wall of the chamber 51. The plate 25 provides the flat wall extending throughout the chamber 51. The chamber 52 is divided into an inner chamber 52 and an outer chamber 53 by a projected line 200. The projected line 200 is defined by projecting the opening 14a on the plate 25 in an axial direction.
The plate 25 has a plurality of through holes 25a, 25b, 25c, and 25d as fuel orifices for defining a flow rate of fuel. The through holes 25a to 25d have the same diameter d1 and are arranged on a circle having a larger diameter than that of the contact portion 21 and the projected line 200. Each of the through holes is inclined to apart from an axis 26 of the plate 25 and the injector 1. The through holes 25a and 25b are inclined at the same angle α and the through holes 25c and 25d are inclined at the same angle α in an opposite direction. Therefore, the injector 1 provides two directional fuel injections. In this embodiment, the inclined angle α is set within 2° to 40° (2°≦α≦40°).
Each of the through holes 25a to 25d has an inlet opened between the projected line 200 and an outer line 201. Therefore, the inlets of the through holes 25a to 25d faces the bottom surface 15a of the valve body 13 and are shaded in an axial direction. Each of the through holes 25a to 25d has an outlet opened between the projected line 200 and the outer line 201. The inlet of each through holes 25a to 25d is disposed apart more than the diameter d1 from the outer line 201. In this embodiment, a significant distance d2 (d1≦d2) is provided in an inclining direction of the each through holes and in a radial direction. Therefore, the chamber 52 is extended more than the diameter d1 at an outside of the through holes.
When the coil 41 is not energized, the spring 35 pushes the needle 20 toward the seat 14a, the seat 14a and the contact portion 21 closes the fuel passage 50.
When the coil 41 is energized, the coil 41 generates an electromagnetic force between the stator core 30 and the armature core 31 and attracts the armature 31 and the needle 20 to lift up the needle 20. Therefore, the fuel passage 50 is opened to inject fuel.
Fuel flowing into the chamber 51 is divided into a first flow toward a center of the chamber 51 and a second flow toward radial outside of the chamber 52. The first flow meets and collides at a center of the plate 25 and turns into the radial outside. As a result, the first flow has a lot of turbulences. A part of the second flow and the turned first flow reaches to the inlets of the through holes after flowing along the plate 25. A remaining part of the second flow and the turned first flow passes between the inlets of the through holes and reaches to the outer end of the chamber 51. After that, the remaining part of the second flow changes its direction and reaches to the inlets of the through holes. Here, a distance d2 is wider than the diameter of the through holes to provide a passage on an outer side which is sufficient to provide a counter flow flowing radially from an outside to an inside. Therefore, fuel guided along the plate 25 flows into the inlets from all directions evenly. Fuel collides at just above the inlets and makes a lot of turbulences in the column of the injected fuel. Therefore, each of the columns of the injected fuel from the through holes 25a to 25d are atomized finely. Additionally, the columns of the injected fuel don't collide each other, since four through holes are separately arranged.
In this embodiment, a depression is formed on an upper surface of the plate 60 to provide the chamber 51. The through holes 60a to 60d are similar to the through holes 25a to 25d of the first embodiment.
In this embodiment, fuel flowing along the inner surface 14 is divided into a first flow toward the inner holes 80a and 80b and a second flow toward the outer holes 80c and 80d. Here, each of a paired through holes 80a and 80c mainly receives opposed flows. Therefore, fuel jet formed by the thorough hole 80a is influenced by the first flow so that the jet inclines inside from an axis 82 of the hole 80a. On the other hand, fuel jet formed by the thorough hole 80c is influenced by the second flow so that the jet inclines outside from an axis 82 of the hole 80c. As a result, a pair of jets injected from a pair of holes 80a and 80c are separated to avoid a collision of the fuel jets. In the through holes 80b and 80d, the same function is achieved.
Although the present invention has been described in connection with the preferred embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the present invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
11-224141 | Aug 1999 | JP | national |
This application is a Division of application Ser. No. 10/141,553, filed May 9, 2002 now U.S. Pat. No. 6,616,072, which was a Divisional of application Ser. No. 09/629,939, filed Aug. 1, 2000 now U.S. Pat. No. 6,405,946, the entire contents of each of which is hereby incorporated by reference in this application. This application is based upon, claims the benefit of priority of, and incorporates by reference, the contents of Japanese Patent Application No. Hei 11-224141 filed Aug. 6, 1999.
Number | Name | Date | Kind |
---|---|---|---|
4907748 | Gardner et al. | Mar 1990 | A |
4925111 | Foertsch et al. | May 1990 | A |
5762272 | Tani et al. | Jun 1998 | A |
5785254 | Zimmermann et al. | Jul 1998 | A |
5862991 | Willke et al. | Jan 1999 | A |
5921474 | Zimmermann et al. | Jul 1999 | A |
6089476 | Sugimoto et al. | Jul 2000 | A |
6170763 | Fuchs et al. | Jan 2001 | B1 |
6357677 | Ren et al. | Mar 2002 | B1 |
6405946 | Harata et al. | Jun 2002 | B1 |
6439484 | Harata et al. | Aug 2002 | B2 |
6616072 | Harata et al. | Sep 2003 | B2 |
Number | Date | Country |
---|---|---|
19636396 | Mar 1998 | DE |
3-264767 | Nov 1991 | JP |
10-122096 | May 1998 | JP |
11-200998 | Jul 1999 | JP |
9834026 | Aug 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20040124279 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10141553 | May 2002 | US |
Child | 10617700 | US | |
Parent | 09629939 | Aug 2000 | US |
Child | 10141553 | US |