This disclosure, in general, relates to containers for liquid media and interfaces for attaching such containers to instruments.
Increasingly, laboratories are seeking instruments to perform testing of analytes. Preparation of such instruments can be labor-intensive, relying on the time-consuming preparation of reagent solutions. To reduce preparation times, industry is turning to pre-made reagent solutions provided to laboratory customers in kits. But, the shipping and handling of liquid reagents can lead to degradation of the reagent and spillage. As such, an improved reagent container and instrument interface would be desirable.
The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
The use of the same reference symbols in different drawings indicates similar or identical items.
In an embodiment, an instrument includes a fluidics interface to receive a removable container. The instrument side interface can include ports, such as liquid ports or a gas port. The removable container can include complementary ports, such as liquid ports and a gas port. In a particular example, a top of the container includes a swing bar to couple with a cradle of the instrument side fluidics interface. Once the swing bar and cradle are engaged, the container can swing into place to engage the fluidics interface of the instrument. In a particular example, the cradle is positioned outward from the instrument relative to the fluidics ports.
In an example illustrated in
For example, as illustrated in
In a particular example illustrated in
In an example, the lower portion 424 of the container 108 can have a conical portion 422. In a further example, the lower portion 424 can include volume gradations.
Optionally, the top 210 of the container 108 can be connected to one or more sipper tubes 522 or 524 residing within the container 108, as illustrated in
As illustrated in more detail in
6, the swing bar 212 is disposed on an opposite side of the fluidics interface 420 from a counter structure 418. For example, a line can extend across the upper surface of the top 210 through the center of the swing bar 212, the fluidics interface 420, and the counter structure 418.
As illustrated in
In an example, a gas port 628 can be disposed to a side of the liquid port 630 and within the boundary of the sealing ring 626. In an example, the gas port 628 is disposed within the sealing ring closer to the swing bar 212 than the liquid port 630. Optionally, the gas port 628 has a raised sealing structure. In an example, the raised sealing structure is shorter than the sealing ring 626 and shorter than the raised sealing structure of the liquid port 630.
As illustrated in
Such a configuration of the top 210 of the container 108 and the associated liquid and gas ports can effectively receive a complementary lid during shipping. Such a configuration can limit fluid leakage.
As illustrated in
As further illustrated in
As further illustrated in
In use, the swing bar 212 of the top 210 of the container 108 can engage the cradle 214 of the fluidics interface 106 at an angle. The container 108 can then swing around a pivot formed by the cradle 214 and swing bar 212 into the recess 104 of the instrument 100. The counter structure 418 can engage the recess 1038 and optional connectors 1142. In a particular example, the weight of the bottle and optional connection to the connectors 1142 forms a leak-tight seal between the fluidics ports 420 of the container 108 and the fluid manifold of the fluidics interface 106. For example, the interface 106 can be angled relative to a direction of gravity to allow the weight of the container 108 to form the fluidics interface 420 against the ring 1032. To disengage the container 108, the process can be reversed.
In an example, a liquid reagent can be added to the container 108 through the liquid ports 1040 and 632. Optionally, an inert gas or air can be applied through the gas ports and into the container 108. The liquid reagent solution within the container can be drawn or pushed through the liquid port 630 and into the instrument 100. For example, the inert gas or air can push the liquid reagent solution through the liquid port 630 and into the instrument 100.
While the examples illustrated herein include a cradle in the instrument side fluidics interface and a swing bar on the top of the container, the container can alternatively include the cradle and the instrument side fluidics interface the swing bar. In another alternative example, the positioning of the liquid port and the gas port can be reversed or can be disposed in different positions with different male or female configurations.
The fluidics interface and container find particular use in a sequencing system.
Each electronic sensor of the apparatus generates an output signal that depends on the value of a reference voltage. The fluid circuit permits multiple reagents to be delivered to the reaction chambers.
In
The control system 1318 also includes controllers for other components of the system, such as wash solution valve 1324 connected thereto by electrical connection 1322, and reference electrode 1328. Control system 1318 can also include control and data acquisition functions for biosensor 1334. In one mode of operation, fluidic circuit 1302 delivers a sequence of selected reagents 1, 2, 3, 4, or 5 to biosensor 1334 under programmed control of control system 1318, such that in between selected reagent flows, fluidics circuit 1302 is primed and washed, and biosensor 1334 is washed. Fluids entering biosensor 1334 exit through outlet 1340 and are deposited in waste container 1336 via control of pinch valve regulator 1344. The valve 1344 is in fluidic communication with the sensor fluid output 1340 of the biosensor 1334.
The device including the dielectric layer defining the well formed from the first access and second access and exposing a sensor pad finds particular use in detecting chemical reactions and byproducts, such as detecting the release of hydrogen ions in response to nucleotide incorporation, useful in genetic sequencing, among other applications. In a particular embodiment, a sequencing system includes a flow cell in which a sensory array is disposed, includes communication circuitry in electronic communication with the sensory array, and includes containers and fluid controls in fluidic communication with the flow cell. In an example,
In an embodiment, reactions carried out in the well 1501 can be analytical reactions to identify or determine characteristics or properties of an analyte of interest. Such reactions can generate directly or indirectly byproducts that affect the amount of charge adjacent to the sensor plate 1520. If such byproducts are produced in small amounts or rapidly decay or react with other constituents, then multiple copies of the same analyte may be analyzed in the well 1501 at the same time in order to increase the output signal generated. In an embodiment, multiple copies of an analyte may be attached to a solid phase support 1512, either before or after deposition into the well 1501. The solid phase support 1512 maybe microparticles, nanoparticles, beads, solid or porous comprising gels, or the like. For simplicity and ease of explanation, solid phase support 1512 is also referred herein as a particle or bead. For a nucleic acid analyte, multiple, connected copies may be made by rolling circle amplification (RCA), exponential RCA, or like techniques, to produce an amplicon without the need of a solid support.
In a first aspect, a container includes a lower portion and a lid to connect with the lower portion. The lid includes a fluidic interface, a swing bar, and a counter structure disposed on an opposite side of the fluidic interface relative to the swing bar. The fluidic interface includes a first liquid port, a second liquid port, a gas port, and a seal ring disposed around the first liquid port, the second liquid port, and the gas port, the first liquid port disposed along a center axis of the container.
In an example of the first aspect, the second liquid port is disposed along a line extending from a center of the swing bar to the counter structure through the first liquid port. For example, the second liquid port is closer to the counter structure than the swing bar. In another example, the gas port is disposed along the line closer to the swing bar.
In another example of the first aspect and the above examples, the container further includes a sipper tube connected to the first liquid port and extending into the lower portion. For example, the container further includes a second sipper tube connected to the second liquid port and extending into the lower portion. In another example, the second sipper tube is shorter than the sipper tube.
In a further example of the first aspect and the above examples, the lower portion has a conical section.
In an additional example of the first aspect and the above examples, the first liquid port includes a raised seal structure. In another example, the raised sealing structure is taller than the sealing ring. For example, the second liquid port has a second raised sealing structure. In an example, the second raised sealing structure is the same height as the raised sealing structure of the first liquid port. In another example, the gas port includes a third raised sealing structure. For example, the third raised sealing structure is shorter than the raised sealing structure of the first liquid port.
In another example of the first aspect and the above examples, the lid connects to the lower portion with a threaded connection.
In a second aspect, a fluidic interconnect includes an instrument interface including a cradle, and an instrument fluidic interface including an instrument sealing ring and a first instrument liquid port, a second instrument liquid port, and an instrument gas port disposed within the instrument sealing ring. The fluidic interconnect further includes a container including a lower portion and a lid to connect with the lower portion. The lid includes a fluidic interface, a swing bar, and a counter structure disposed on an opposite side of the fluidic interface relative to the swing bar. The fluidic interface includes a first liquid port, a second liquid port, a gas port, and a seal ring disposed around the first liquid port, the second liquid port, and the gas port. The first liquid port is disposed along a center axis of the container. The instrument fluidic interface and the fluidic interface of the lid connects to engage the first instrument liquid port to the first liquid port, the second instrument liquid port to the second liquid port, and the instrument gas port to the gas port, when the swing bar engages the cradle.
In an example of the second aspect, the instrument interface further includes a recess to receive the counter structure of the lid. For example, the instrument interface further includes connectors to engage the counter structure of the lid.
In another example of the second aspect and the above examples, the second liquid port is disposed along a line extending from a center of the swing bar to the counter structure through the first liquid port. For example, the second liquid port is closer to the counter structure than the swing bar. In an example, the gas port is disposed along the line closer to the swing bar.
In a further example of the second aspect and the above examples, the fluidic interconnect further includes a sipper tube connected to the first liquid port and extending into the lower portion. For example, the fluidic interconnect further includes a second sipper tube connected to the second liquid port and extending into the lower portion. For example, the second sipper tube is shorter than the sipper tube.
In an additional example of the second aspect and the above examples, the lower portion has a conical section.
In another example of the second aspect and the above examples, the first liquid port includes a raised seal structure. In an example, the raised sealing structure is taller than the sealing ring. For example, the second liquid port has a second raised sealing structure. In an additional example, the second raised sealing structure is the same height as the raised sealing structure of the first liquid port. For example, the gas port includes a third raised sealing structure. In another example, the third raised sealing structure is shorter than the raised sealing structure of the first liquid port.
In further example of the second aspect and the above examples, the lid connects to the lower portion with a threaded connection.
In a third aspect, a method of connecting a container to an instrument includes applying a swing bar of a container to a cradle of an instrument interface. The instrument interface includes the cradle, and an instrument fluidic interface including an instrument sealing ring and a first instrument liquid port, a second instrument liquid port, and an instrument gas port disposed within the instrument sealing ring. The container includes a lower portion and a lid to connect with the lower portion. The lid includes a fluidic interface, the swing bar, and a counter structure disposed on an opposite side of the fluidic interface relative to the swing bar. The fluidic interface includes a first liquid port, a second liquid port, a gas port, and a seal ring disposed around the first liquid port, the second liquid port, and the gas port, the first liquid port disposed along a center axis of the container. The method further includes applying gas through the gas port to drive liquid from container through the liquid ports into the instrument.
In an example of the third aspect, the method further includes swinging the container to apply the counter structure into a recess of the instrument interface. In another example, the method further includes applying a reagent solution through the second instrument port and the second liquid port into the container.
Note that not all of the activities described above in the general description or the examples are required, that a portion of a specific activity may not be required, and that one or more further activities may be performed in addition to those described. Still further, the order in which activities are listed are not necessarily the order in which they are performed.
In the foregoing specification, the concepts have been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of invention.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of features is not necessarily limited only to those features but may include other features not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive-or and not to an exclusive-or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
Also, the use of “a” or “an” are employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature of any or all the claims.
After reading the specification, skilled artisans will appreciate that certain features are, for clarity, described herein in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features that are, for brevity, described in the context of a single embodiment, may also be provided separately or in any subcombination. Further, references to values stated in ranges include each and every value within that range.
This application is a continuation of U.S. patent application Ser. No. 16/885,904, filed May 28, 2020, which claims benefit of U.S. Provisional Application No. 62/854,924, filed May 30, 2019, each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62854924 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16885904 | May 2020 | US |
Child | 18437605 | US |