Claims
- 1. A hybrid fluid jet applicator having an orifice array, means for supplying pressurized fluid to said orifice array, and means for selectively charging and deflecting fluid droplets to control the quantity of fluid striking a moving substrate, said hybrid fluid jet applicator further comprising:
- means for controlling said fluid jet applicator to operate in an electrostatic control mode;
- means for sensing when said fluid is being supplied at a predetermined flow rate in said electrostatic control mode and for generating a signal indicative thereof; and
- means, responsive to said signal from said means for sensing, for controlling said applicator to operate in a non-electrostatic control mode and for increasing said flow rate to a level beyond said predetermined rate.
- 2. A hybrid fluid jet applicator according to claim 1, wherein said means for selectively charging and deflecting fluid droplets includes charging and deflection electrodes and voltage supply means for supplying a predetermined voltage to said charging and deflection electrodes, further including means, responsive to said signal from said means for sensing, for turning off said voltage supply means.
- 3. A hybrid fluid jet applicator according to claim 1, wherein said means for supplying pressurized fluid includes a pump and pressure regulator means for regulating the fluid pressure produced by said pump which is received by said orifice array, and wherein said means for regulating the fluid pressure produced by said pump controls said pump to produce a fixed fluid pressure during operation in said electrostatic control mode.
- 4. A hybrid fluid jet applicator according to claim 3, wherein said means for controlling said applicator to operate in non-electrostatic control mode includes means coupled to said means for regulating the pump fluid pressure for controlling fluid flow by regulating the fluid pressure at said orifice array.
- 5. A hybrid fluid jet applicator according to claim 1, wherein said means for controlling operation in an electrostatic control mode and a non-electrostatic control mode include means for disposing a uniform application of fluid per unit area on said substrate.
- 6. A hybrid fluid jet applicator according to claim 1, wherein said means for controlling the applicator to operate in a non-electrostatic control mode includes data processing means having means, for a predetermined orifice array, for storing a set of orifice array fluid pressures required to achieve an associated set of fluid flow rates.
- 7. A hybrid fluid jet applicator according to claim 6, wherein said means for supplying pressurized fluid includes a pump and means for regulating the fluid pressure produced by said pump which is delivered to said orifice array, and wherein said data processing means is operable during said non-electrostatic control mode to provide pressure control signals to said means for regulating pressure to modulate the fluid pressure received at the orifice array in accordance with the required fluid flow rate needed at a predetermined substrate speed to achieve a uniform application of fluid to said substrate.
- 8. A hybrid fluid jet applicator according to claim 1, further including means for switching the control mode from said non-electrostatic control mode to said electrostatic control mode when the speed of the moving substrate drops down to a predetermined level.
- 9. A hybrid fluid jet applicator according to claim 4, wherein said means for controlling said applicator to operate in a non-electrostatic mode includes means for generating pressure control signals and wherein said means for regulating the fluid pressure includes valve means responsive to said pressure control signals for delivering a fluid pressure to said orifice plate in accordance with said pressure control signals.
- 10. In a fluid jet applicator having an orifice array, means for supplying pressurized fluid to said orifice array, means for selectively charging and deflecting fluid droplets to control the quantity of fluid striking a moving substrate, a method of applying uniform applications of fluid to said substrate comprising the steps of:
- controlling the application of said fluid in an electrostatic control mode;
- determining when said fluid is being supplied at a predetermined flow rate in said electrostatic control mode;
- generating a signal indicative of said predetermined electrostatic flow condition;
- controlling fluid application operation in response to said signal in a non-electrostatic mode; and
- increasing said flow rate in the non-electrostatic mode to a level beyond said predetermined rate.
- 11. A method according to claim 10, wherein said means for charging and deflecting fluid droplets include charging and deflection electrodes and voltage supply means for supplying a predetermined voltage to said charging and deflection electrodes, and further including the step of turning off the voltage supply means in response to said signal.
- 12. A method according to claim 10, wherein said means for supplying pressurized fluid includes a pump and pressure regulator means for regulating the fluid pressure produced by said pump which is delivered to said orifice array, and further including the step of controlling the pump to produce a fixed fluid pressure during operation in said electrostatic control mode.
- 13. A method according to claim 12, wherein step of controlling said applicator to operate in a non-electrostatic control mode includes controlling fluid flow by regulating the fluid pressure which is delivered to said orifice array.
- 14. A method according to claim 10, wherein step of controlling the applicator to operate in a non-electrostatic control mode includes the step of storing, for a predetermined orifice array, a set of orifice array fluid pressures required to achieve an associated set of fluid flow rates.
- 15. A method according to claim 10, wherein said means for supplying pressurized fluid includes a pump and means for regulating the fluid pressure produced by said pump which is delivered to said orifice array, and further including data processing means operable during said non-electrostatic control mode for generating pressure control signals; said method further including the step of providing the pressure control signals to the means for regulating pressure to modulate the fluid pressure produced by said pump which is delivered to the orifice array in correspondence with the required fluid flow rate needed at a predetermined substrate speed to achieve a uniform application of fluid to said substrate.
- 16. A method according to claim 10, further including the step of switching the control mode from said non-electrostatic control mode to said electrostatic control mode when the speed of the moving substrate drops down to a predetermined level.
- 17. A method according to claim 13 wherein said means for regulating fluid pressure includes valve means, said method further including the step of generating pressure control signals upon sensing entry into the non-electrostatic control mode and controlling the valve means to deliver a fluid pressure at said orifice plate in accordance with the pressure control signals.
- 18. A multiple mode fluid jet applicator having an orifice array, means for selectively charging and deflecting fluid droplets to control the amount of fluid which is applied to a substrate, and means for moving said substrate, said applicator comprising:
- fluid pressure control means for setting operating fluid pressure at which the droplet breakup length will be such as to insure that the droplets will be properly charged during an electrostatic operating mode;
- means for sensing when the maximum flow of fluid is being applied to the substrate during the electrostatic droplet charging mode of operation, and for generating a signal indicative thereof;
- non-electrostatic mode control means responsive to said signal for controlling the fluid pressure delivered to said orifice array to increase fluid flow when the substrate moves at a greater speed than possible during said electrostatic mode to maintain uniform application of fluid to said substrate.
- 19. A multiple mode fluid jet applicator according to claim 18, including means responsive to said signal for deenergizing said means for selectively charging and deflecting.
- 20. A multiple mode fluid applicator according to claim 18, wherein said fluid pressure control means includes a pump and pressure regulation means for regulating the fluid pressure produced by said pump which is received at said orifice array and for generating during said electrostatic mode a fixed fluid pressure.
- 21. A multiple mode fluid jet applicator according to claim 20, wherein said non-electrostatic mode control means includes means coupled to said means for regulating the fluid pressure which is received at said orifice array for generating pressure control signals for modulating fluid flow by regulating the fluid pressure.
- 22. A multiple mode fluid jet applicator according to claim 18, wherein said non-electrostatic mode control means includes data processing means having means, for a predetermined orifice array, for storing a set of orifice array fluid pressures required to achieve an associated set of fluid flow rates.
- 23. A multiple mode fluid jet applicator according to claim 18, wherein said fluid pressure control means includes a pump and means for regulating the fluid pressure produced by said pump, and data processing means operable during said non-electrostatic control mode to provide pressure control signals to said means for regulating pressure to modulate the fluid pressure received at said orifice array in correspondence with the required fluid flow rate needed at a predetermined substrate speed in order to achieve a uniform application of fluid to said substrate.
CROSS REFERENCE TO RELATED APPLICATION
This invention is a continution-in-part of copending commonly assigned application Ser. No. 908,289 filed Sept. 17, 1986 which is a division of Ser. No. 729,412 filed May 1, 1985, now U.S. Pat. No. 4,650,694.
US Referenced Citations (28)
Foreign Referenced Citations (2)
Number |
Date |
Country |
751865 |
Jul 1980 |
SUX |
904799 |
Feb 1982 |
SUX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
729412 |
May 1985 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
908289 |
Sep 1986 |
|