The present invention relates to surgical tools and implantable devices which modify subdermal structures for decreasing the appearance of cellulite.
Most aesthetic issues for which patients seek treatment from physicians today are “more than skin deep.” For instance, gynoid lipodystrophy is a localized disorder of the subcutaneous tissue which leads to an alteration in the topography of the cutaneous surface (skin), or a dimpling effect. It is thought to be caused by increased fluid retention and/or proliferation of adipose tissue in certain subdermal regions, but known to be structure related. This condition, commonly known as cellulite, affects over 90% of post-pubescent women, and some men. Cellulite commonly appears on the hips, buttocks and legs, but is not necessarily caused by being overweight, as is a common perception. Cellulite is formed in the subcutaneous level of tissue, in the subdermal fat layer below the epidermis and dermis layers. In this region, fat cells are arranged in chambers surrounded by bands of connective tissue called septae. Cellulite is in part due to the parallel orientation of these fibrous septae structures. The fibrous structures being oriented in a parallel fashion (and perpendicular to the skin) is unique to women, whereas men typically have more random orientation of fibrous structures. This difference in fibrous structure may be in part or wholly responsible for the fact that men do not exhibit widespread cellulite in comparison to women. As the fat cells held within the perimeters defined by these fibrous septae expand they stretch the septae and surrounding connective tissue. Furthermore, adipocyte expansion from weight gain may also stretch the septae. Eventually this connective tissue contracts and hardens (scleroses) holding the skin at a non-flexible length, while the chambers between the septae continue to expand with weight gain, or water gain. This results in areas of the skin being held down while other sections bulge outward, resulting in the lumpy, ‘orange peel’ or ‘cottage cheese’ appearance on the skin surface. Even though obesity is not considered to be a root cause of cellulite, it can certainly worsen the dimpled appearance of a cellulitic region due to the increased number of fat cells in the region.
Over the years, a variety of approaches for treatment of skin irregularities such as cellulite and removal of unwanted adipose tissue have been proposed. For example, methods and devices that provide mechanical massage to the affected area, through either a combination of suction and massage or suction, massage and application of energy, in addition to application of various topical agents are currently available. Developed in the 1950's, mesotherapy is an injection of various treatment solutions through the skin that has been widely used in Europe for conditions ranging from sports injuries to chronic pain, to cosmetic procedures to treat wrinkles and cellulite. This treatment consists of the injection or transfer of various agents through the skin to provide increased circulation and the potential for fat oxidation, such as aminophylline, hyaluronic acid, Novocain, plant extracts and other vitamins. Another treatment entitled Acthyderm (Turnwood International, Ontario, Canada) employs a roller system that electroporates the stratum corneum to open small channels in the dermis, followed by the application of various mesotherapy agents, such as vitamins, antifibrotics, lypolitics, anti-inflammatories and the like.
Various other approaches employing dermatologic creams, lotions, vitamins and herbal supplements have also been proposed to treat cellulite. Private spas and salons offer cellulite massage treatments that include body scrubs, pressure point massage, essential oils, and herbal products using extracts from plant species such as seaweed, horsetail and clematis and ivy have also been proposed. Although a multitude of therapies exist, most of them do not provide a lasting effect on the skin irregularity, and some therapies may even cause the worsening of cellulite in certain patients. Yet other treatments for cellulite have negative side effects that limit their adoption. Regardless, most of these therapies require multiple treatments on an ongoing basis to maintain their effect at significant expense and with mixed results.
Massage techniques were tried as early as the 1930's as a method to increase lymphatic drainage and improve the appearance of cellulite. Mechanical massage devices, or Pressotherapy, have also been developed such as the “Endermologie” device (LPG Systems, France), the “Synergie” device (Dynatronics, Salt Lake City, Utah) and the “Silklight” device (Lumenis, Tel Aviv, Israel), all utilizing subdermal massage via vacuum and mechanical rollers. Other approaches have included a variety of energy sources, such as Cynosure's “TriActive” device (Cynosure, Westford, Mass.) utilizing a pulsed semiconductor laser in addition to mechanical massage, and the “Cellulux” device (Palomar Medical, Burlington, Mass.) which emits infrared light through a cooled chiller to target subcutaneous adipose tissue. The “VelaSmooth” system (Syneron, Inc., Yokneam Illit, Israel) employs bipolar radiofrequency energy in conjunction with suction massage to increase metabolism in adipose tissue, and the “Thermacool” device (Thermage, Inc., Hayward, Calif.) utilizes radiofrequency energy to shrink the subdermal fibrous septae to treat wrinkles and other skin defects. Other energy-based therapies such as electrolipophoresis, using several pairs of needles to apply a low frequency interstitial electromagnetic field to aid circulatory drainage have also been developed. Similarly, non-invasive ultrasound is used in the “Dermosonic” device (Symedex Medical, Minneapolis, Minn.) to promote increased fat reabsorption and drainage of retained fluids and toxins.
Methods and devices using ultrasound to disrupt subcutaneous tissues directly has been described in the known art. Such techniques may utilize a high intensity ultrasound wave that is focused on a tissue within the body, thereby causing a localized destruction or injury to cells. The focusing of the high intensity ultrasound may be achieved utilizing, for example, a concave transducer or am acoustic lens. Use of high intensity focused ultrasound to disrupt fat, sometimes in combination with removal of the fat by liposuction, has been described in the known prior art. Such use of high intensity focused ultrasound is distinguished from low acoustic pressure, therapeutic ultrasound.
Recently, it is has also become possible to exploit ultrasound waves for the purpose of disrupting tissue and tissue ablation without heating tissue to a level of tissue disruption. One such device is disclosed in U.S. Publication No. 2007/0055179 to Deem et al., incorporated herein by reference, which includes a method of infiltrating exogenous microbubbles into the target tissue, followed by applying low acoustic pressure ultrasound to the infiltrated tissue to cavitate the bubbles and destroy the target tissue without direct thermal injury to the dermis. Although low acoustic pressure ultrasound may somewhat heat tissue, the tissue is not heated sufficiently to cause direct tissue disruption or to enhance the ablation, and thus significantly reduces the risk of thermal damage to the dermis and associated structures (nerves, hair follicles, blood vessels). Liposonix (Bothell, Wash.) and Ultrashape (Tel Aviv, Israel) employ the use of focused ultrasound to destroy adipose tissue noninvasively. In addition, cryogenic cooling has been proposed for destroying adipose tissue.
Certain other techniques known as liposuction, tumescent liposuction, lypolysis and the like, target adipose tissue in the subdermal and deep fat regions of the body. These techniques may include also removing the fat cells once they are disrupted, or leaving them to be resorbed by the body's immune/lymphatic system. Liposuction is the most commonly performed cosmetic surgical procedure. Traditional liposuction includes the use of a surgical cannula placed at the site of the fat to be removed, and then the use of an infusion of fluids and mechanical motion of the cannula to break up the fatty tissue, and suction to “vacuum” the disrupted fatty tissue directly out of the patient. A variation on the traditional liposuction technique known as tumescent liposuction was introduced in 1985 and is currently considered by some to be the standard of care in the United States. It involves the infusion of tumescent fluids to the targeted region prior to mechanical disruption and removal by the suction cannula. The fluids may help to ease the pain of the mechanical disruption in some patients, while also swelling the tissues to make them more susceptible to mechanical removal. Various combinations of fluids may be employed in the tumescent solution including a local anesthetic such as lidocaine, a vasoconstrictive agent such as epinephrine, saline, potassium and the like. The benefits of such an approach are detailed in the articles, “Laboratory and Histopathologic Comparative Study of Internal Ultrasound-Assisted Lipoplasty and Tumescent Lipoplasty” Plastic and Reconstructive Surgery, September 15, (2002) 110:4, 11581164, and “When One Liter Does Not Equal 1000 Milliliters: Implications for the Tumescent Technique” Dermatol. Surg. (2000) 26:1024-1028, the contents of which are expressly incorporated herein by reference in their entirety.
Traditional fat extraction techniques such as liposuction, target deep fat and larger regions of the anatomy and can sometimes worsen the appearance of cellulite. The subdermal fat pockets remain and are accentuated by the loss of underlying bulk (deep fat) in the region. Many times liposuction is performed and patients still seek therapy for remaining skin irregularities, such as cellulite. The tools used in these procedures often have cutting edges and are intended to dissect the subcutaneous tissue and fibrous septae. Representative of such conventional tools is the “Toledo” cannula, pictured in Toledo L S, Mauas R, Complications of Body Sculpture: Prevention and Treatment. Clin Plastic Surg. 2006:33; 1-11.
There are physicians who target the more shallow subdermal fat pockets with liposuction, but at a higher risk of directly creating surface irregularities rather than treating them. Liposuction is not considered a viable treatment for cellulite for these reasons.
Another issue that must be factored in with liposuction is the amount of drugs infused with the tumescent solution. With large volume liposuctions, the Lidocaine infusion (for pain) can get up as high as 50 mg/kg, well above the intravascular toxicity limit of 7 mg/kg. The reason why liposuction patients can tolerate such a large volume of lidocaine is that the lidocaine is injected subcutaneously, is highly diluted, and is absorbed slowly over time. Thus, the actual systemic level of lidocaine is lower. However, in some cases lidocaine can spill over into the circulation and has resulted in patient mortality. For this reason, physicians monitor the Lidocaine does closely and often limit the area or treatment as a result.
More recently, energy sources have been added to the cannula to assist in the break-up and liquefication of the fat which in turn improves the ease of use. The “Lysonix” system (Mentor Corporation, Santa Barbara, Calif.) and “Vaser” system (Sound Surgical, Louisville, Colo.) utilize an ultrasonic transducer within the suction cannula to assist in tissue disruption (by cavitation of the tissue at the targeted site). Laser assisted cannula are offered by several companies including “Smartlipo” (Cynosure, Westford, Mass.), “Slimlipo” (Palomar Medical, Burlington, Mass.), and “Smoothlipo” (Eleme Medical, Merrimack, N.H.).
Subcutaneous dissection without fat aspiration is another approach to the treatment of skin irregularities such as scarring and dimpling. A technique called “subcision” was described by Orentreich in 1995. See Orentreich D S, Orentreich N. Subcutaneous incisionless surgery for the correction of depressed scars and wrinkles. Dermatological Surgery 1995 June; 21 (6): 543-9 This technique involves the insertion of a relatively large gauge needle subdermally in the region of dimpling or scarring, and then mechanically manipulating the needle below the skin to break up the fibrous septae in the subdermal region. In at least one known method of subcision, a solution containing an anesthetic (Lidocaine) and vasoconstrictor is injected into the targeted region and allowed to take effect. An 18-gauge needle is then inserted 10-20 mm below the cutaneous surface. The needle is then pulled back and directed parallel to the epidermis to create a dissection plane beneath the skin to essentially tear through, or “free up” the tightened septae causing the dimpling or scarring. Pressure is then applied to control bleeding acutely, and then by the use of compressive clothing following the procedure. While clinically effective in some patients, pain, bruising, bleeding and scarring can result. Other cutting implements include the aforementioned Toledo cannula, and several string or wire based cutting methods including the “Surgiwire” (Coapt Systems, Palo Alto, Calif.) and “ReleaseWire” (MicroAire, Charlottesville, Va.).
Cutting or relieving of the fibrous septae in the subdermal region by current subcision methods, is labor intensive, time consuming and techniques are highly variable. Significant physician time must be devoted to the procedure and there are technical limits as well as anesthetic limits to the size of a treatable area. There is a lack of clinical proof of that the techniques work for most patients and that the effects are lasting. For these reasons, and because of the potential side effects and extended time required for healing, subcision and liposuction have largely been abandoned as a treatment for cellulite in the United States.
In light of the foregoing, it would be desirable to provide a device and method for treating skin irregularities such as cellulite and to provide a sustained aesthetic result to a body region, such as the face, neck, arms, legs, thighs, buttocks, breasts, stomach and other targeted regions. It would also be desirable to provide device and method for treating skin irregularities that enhance prior techniques and make them less time intensive, more controlled, minimally invasive, and subject the patient to fewer side effects. The present invention adds a minimally invasive device and method for skin treatment by providing a controlled and less traumatic means for subcutaneous dissection and cutting of the fibrous septae in the subdermal fat or in the layer between the subdermal fat layers and the dermis, responsible for the appearance of cellulite. The device and method also provides an even level of cutting, parallel to the surface of the skin and with adequate skin traction, without further puncture or cutting of the skin. In addition to treating cellulite, this device and method may be used to treat hyperhidrosis, acne or other scars, and wrinkles. This treatment may also be used in conjunction with known methods of removing fat, skin tightening, or dermal thickening.
A system for minimally invasive skin treatment is disclosed. In some aspects, the system includes a platform having a perimeter elevation and a top which cooperatively define a recessed area with an inner side of the perimeter elevation and top defining an apposition surface facing into the recessed area. An injection port is provided and positioned about an entry hole through the top of the platform. The system further includes an injection device having a needle. The injection device is configured to be slidably disposed in the injection port such that a distal end of the needle passes through the entry hole into the recessed area and is also removably secured perpendicular to the platform, and configured to discharge a fluid in a direction orthogonal to an axis of the needle and parallel to the top of the platform. In some aspects, the distal end of the needle has a nozzle flush with a side of the needle. In some aspects the injection port is a cylinder; however, the port can be square, ovoid, rectangular, triangular, a polygon, or other shape without deviation from the scope of the invention.
In some aspects, the injection device may have a base and an upper body, and wherein an outer perimeter of the base snuggly fits within an inner perimeter of the selected injection port. In some aspects, the outer perimeter of the base of the injection device is smaller than an outer perimeter of the upper body of the injection device. In these aspects, the injection port is preferably raised above the top of the platform such that a bottom rim of the upper body rests flush upon a top rim of the injection port when the injection device is fully inserted into the injection port. The top rim of the injection port, in some aspects, may have a notch and the injection device has a keyed protrusion located proximal an interface between the base and the upper body of the injection device. To that end, the keyed protrusion fits within the notch when the bottom rim of the upper body is flush upon the top rim of the injection port, such that the injection device is prevented from rotating relative to the platform. In other aspects, the injection port is a recessed bore in the top of the platform about the entry hole, and the injection device includes a disk having a shallow boss on a bottom of the disk, wherein the shallow boss is configured to snuggly fit within the recessed bore such that a bottom of an outer perimeter of the disk rests upon the top surface about the injection port when the injection device is disposed in to the injection port.
In some aspects, the system may also include a mechanism for automatically rotating the needle. In some aspects, multiple injection ports are provided on the platform, and each of the injection ports are positioned about a corresponding entry hole through the top of the platform.
Further aspects of the system may include a vacuum fitting operably connected to one of the top of the platform and the perimeter elevation of the platform and in fluid communication with the recessed area, and a vacuum pump in fluid communication with the vacuum fitting, wherein the vacuum pump is configured to supply a suction force to the recessed area to pull a tissue snugly and securely against the apposition surface when the recessed area is placed over the tissue. In these aspects, each of the multiple injection ports may be sealed to maintain an applied vacuum. In some aspects, this is accomplished by covering each of the ports with an elastomeric septum, the elastomeric septum being configured to be pierced by the needle and to substantially self-seal when the needle is removed such as to substantially prevent a vacuum leakage from the recessed area when the suction force is supplied.
The system may also include a rigid pressure canister including a source of a solution and a supply exit port, wherein the canister is filled with a pressurized gas and the source of the solution is in fluid communication with the injection device and the needle. The source of the solution may be a flexible bag inside the rigid pressure canister, the flexible bag being at least partially filled with a solution, and wherein the solution is in fluid isolation from the pressurized gas. The system may yet further include a high-pressure syringe having a syringe pump, wherein the syringe is in fluid connection with the needle, and wherein the syringe is configured to inject a solution through the needle when the syringe pump is actuated.
In certain aspects of the system the nozzle is configured to increase a kinetic energy of a solution injected by the injection device through the needle. In some aspects, the syringe may include a passage at its distal end, the passage being configured to increase a kinetic energy of the solution when it is injected by the injection device. In some aspects, the nozzle may be a convergent nozzle, and wherein a throat of the nozzle converges toward the side of the needle. In some aspects, the interior of the needle may narrow near the distal end of the needle and downstream of the throat of the nozzle. In one aspect, the needle may have a hollow channel interfacing with the nozzle but terminating above a hardened and sharpened tip for piercing the skin.
In some aspects, the injection device may include a handpiece, and wherein the injection device is configured to be rotated relative to the platform and moved vertically along an axis of the injection port to control a depth of the nozzle relative to the apposition surface. The injection device may also include a swivel fitting for rotatably and fluidically coupling a tubing to the injection device such that the injection device can be rotated relative to the tubing.
A method for minimally invasive skin treatment is also disclosed. The method preferably includes the steps of (1) positioning a platform having a recessed area over a dermis, the platform having an injection port and an entry hole through a top of the platform; (2) applying a force to the platform to move a portion of the dermis into the recessed area to substantially fill the recessed area, such that the portion of the dermis is in contact with an inner surface of the platform and a subcutaneous tissue is disposed in the recessed area; (3) providing an injection device having a needle; (4) inserting a distal end of the needle through the injection port and through the entry hole such that a portion of the injection device is slidably disposed in the injection port and the injection device is secured perpendicular to the platform and the distal end of the needle is percutaneously inserted through the dermis and into the subcutaneous tissue; and (5) discharging at a pressure between 20 and 150 Bar a fluid through a nozzle in a side of the distal end of the needle and inside the subcutaneous tissue, the discharge being substantially parallel to the top of the platform.
In some aspects, the method may further include (5) removing the distal end of the needle from the injection port and the first subcutaneous tissue, (6) inserting a distal end of the needle through a second proximal injection port such that the injection device is secured perpendicular to the platform and the distal end of the needle is percutaneously inserted through the dermis and into the second subcutaneous tissue, and (7) discharging at a pressure between 20 and 150 Bar a fluid through a nozzle in a side of the distal end of the needle and inside the second subcutaneous tissue, the discharge being substantially parallel to the top of the platform. In some aspects, discharging the fluid includes rotating the nozzle to cut fibrous septae in a substantially circular direction in the first and second subcutaneous tissue. In further aspects, the first and second subcutaneous tissue are cut at different depths below the dermis.
In further aspects the method may include piercing an elastomeric septum covering the entry hole with the distal end of the needle. In some aspects the distal end of the needle is positioned such that the nozzle is maintained in the subcutaneous tissue at a selected depth, the depth selected from between 1 mm and 15 mm below the portion of the dermis in contact with the inner surface of the platform. In such aspects, the method may also include rotating the injection device to rotate the distal end of the needle while maintaining the depth of the nozzle in the subcutaneous tissue and an orthogonal positioning of the injection device relative to the platform. In a yet further aspect, the pressure is set above 50 Bar.
A further system for minimally invasive skin treatment is also disclosed. In this aspect, the system includes a recessed platform having a perimeter elevation and a top which cooperatively define a recessed area. An inner side of the perimeter elevation and the top define an apposition surface facing into the recessed area. Also included is a vacuum fitting operably connected to one of the top of the platform and the perimeter elevation of the platform and in fluid communication with the recessed area, and a vacuum pump in fluid communication with the vacuum fitting. The vacuum pump is preferably configured to supply a suction force to the recessed area to pull a tissue snugly and securely against the apposition surface when the recessed area is placed over the tissue. Multiple injection ports are provided on the platform and raised above the top of the platform, each injection port positioned about an entry hole through the top of the platform. Additionally, the system includes an injection device having a needle and a needle housing, the housing including an upper body and a base, the upper body including a handpiece and having a larger diameter than the base, the base being configured to be slidably disposed in a selected injection port such that a portion of the needle passes through a corresponding entry hole and the injection device is removably secured perpendicular to the platform in a manner such that a bottom rim of the upper body rests flush upon a top rim of the selected injection port when the injection device is fully inserted into the injection port. A distal end of the needle preferably has a nozzle flush with a side of the needle and is configured to discharge a fluid at a pressure between 20 and 150 Bar in a direction orthogonal to an axis of the needle and parallel to the top of the platform, and each of the multiple injection ports are preferably covered by an elastomeric septum, wherein the elastomeric septum is configured to be pierced by the needle and to substantially self-seal when the needle is removed such as to substantially prevent a vacuum leakage from the recessed area when the suction force is supplied.
As depicted by
Platform 101 may include one or more through-holes 110. As depicted by
Injection device 109 includes needle 108 and a needle housing 112. In the depicted embodiment, needle housing 112 includes a base 113 and an upper body 114. Upper body 114 may further include grips 115 that make up a handpiece for manual control or positioning of device 109. The outer perimeter of base 113 is sized slightly smaller than the inner perimeter of a selected injection port 111 so that injection device may be slidably inserted into injection port 111. In the depicted embodiment, injection port 111 is a cylinder fixed to top 103 of platform 101, however, as shown by other embodiments herein, injection port 111 can be any number of configurations that meet the purpose of providing support to injection device 109 and needle 108. In the depicted embodiment, injection port 111 is substantially circular in shape, however, injection port 111 can also be any shape, such as a square, rectangle, triangle, polygon, ovoid. Moreover, the depicted embodiment is configured for multiple ports 111, however, some embodiments may only include a single port. In some embodiments, injection device 111 may further include a connector 116 for connecting to a solution-supply tubing 117 to provide a fluidic connection to needle 108 for injection of a solution.
In some embodiments, a vacuum (suction) is used to enhance the capture of tissue within recessed area 104 and against apposition surface 107. A vacuum port 118 is provided on platform 101 and in fluid connection with one or more suction holes 119 disposed within inner surface 105. A vacuum pump 120 may be connected to port 118 to provide a suction to recessed area 104. In those embodiments including a vacuum to move a dermis into recessed area 104 and against apposition surface 107 a membrane formed of a flexible and resilient material may also be applied to apposition surface 107, and across through-holes 110 to minimize vacuum leakage there through. In the depicted embodiment, each through-hole 110 has its own individual membrane 121. Disposed about each through-hole 110 is an inner indentation 122 in inner surface 105 of platform 101. Each indentation 122 is larger than through-hole 110 and provides a recessed space for insertion of an individual membrane 121. The intent is that each membrane would be flush with the skin-side surface of the vacuum platform 101. When injection device 109 is inserted into injection port 111 and needle 108 passes through hole 110, a distal end 123 of needle 108 pierces through membrane 121 and is inserted into recessed area 104. The membrane is preferably snugly secured in indentation 122 and sufficiently resilient to seal around (self-sealing) needle 108 as it pierces therethrough. The membrane may be formed of silicone or other similar material.
In some embodiments needle 108 is configured to increase a kinetic energy of the solution when it is injected by the injection device. Injection device 109 is used to inject a solution in a direction 207 away from needle 108 and at a high pressure parallel to the surface of the dermis, and at depth 203, to cut fibrous septae 208 located in a treatment area located in the subcutaneous tissue 202. It has been determined that a pressure of between 20 and 60 Bar will sustain a fluid-jet with sufficient cutting power to cut 8 mm into subcutaneous tissue in one single pass or rotation of the needle. Deeper cuts can be achieved by repeated application on the same cut. Fluid-jet dissection can also lead to a fluid uptake of the cut tissue. Morphologically all the vessels, lying in the cut are undamaged if the pressure doesn't exceed 40 Bar pressure range. It has been found, in some embodiments, that setting the pressure to above 50 Bar ensures that the fibrous septae 208 located in the treatment area is cut. In some embodiments, for example, the pressure is set above 50 Bar. In some embodiments, the pressure is set between 50 and 60 Bar.
Needle 108 includes a nozzle 209 on a side of the distal end 213 of the needle. Preferably, nozzle 208 is configured to increase a kinetic energy of a solution injected by the injection device through the needle. In some embodiments, such as that depicted by
Laser can also be used to cut fibrous septae. Laser cutting is dependent on the wavelength chosen, because the opto-thermal process becomes safe and efficient when a wavelength is chosen that is close to the absorption coefficient of the tissue to be cut (tissues, selectively absorb light of a particular color). Commonly used Laser wavelengths—for surgery etc—are 10.6 micro m (Carbon dioxide laser); 2.1 micro m (laser diode), 700-840 nm (laser diode). As found by Misbah H. Khan et al., Treatment of Cellulite, J. A
In one embodiment, the cutting is performed by laser rather than fluid-jet. In this embodiment, the laser is a multi-wavelength device—one wavelength could one that is most absorbed by water and commonly used (980 nm, 810, 10.6 micro-m). In further embodiments, the wavelength can be customized for fat melting (940 nm) or connective tissue structural destruction (for collagen, i.e., between 6 and 7 micro m). The kind of waveguide (articulation arm, fibre or hollow) will generally depend on the type of laser source. For use in this embodiment, however, a ‘fibre’ waveguide is used (i.e., replacing nozzle 209), and is generalized enough to be compatible with many wavelengths of laser. Focused laser can be achieved both by waveguide design and by using a lens at the end of the fibre. Focused laser can be used for cutting, while defocused laser can be used for coagulation only purposes. Depth of penetration is dependent on the wavelength selected and the minimum beam spot size. The beam spot size depends on the diameter of the fibre and the wavelength. In general, decreasing the wavelength, decreases the spot size & smaller the spot size, the smaller the depth of penetration. The power/intensity of the laser used is about between 20 and 40 W to cut fibrous septae.
Platform 101 is first placed over dermis 201. A portion of the dermis is then moved into recessed area 104 by a vacuum or manual pressure on top 103 of platform 101 (
When needle housing 112 is rotated 301, the diameter of circular cut 302 is controlled by various parameters, including the geometry of the exit nozzle 209, the speed of rotation, and the pressure of the fluid supply. In one embodiment, the pressure is set relatively low at 20 to 40 Bar to infuse a solution into the treatment area. In further embodiments, the pressure is set relatively high so as to (e.g., between 40 and 60 Bar) to displace and/or sever fibrous septae. In some embodiments, the spacing between platform through-holes 110 is chosen in conjunction with the cutting diameter of the fluid jet, so as to achieve the desired coverage efficiency. The system may also be configured such that treatment depths at adjacent sites are not identical, so as to prevent interconnecting the cut regions.
Turning to
In a yet further embodiment of platform 101, depicted by
The device allows for three-dimensional control of treatment solution delivery and dissection of subcutaneous tissues, not realized by present art. The platform typically controls a depth of between 4 mm and 20 mm below the surface of skin; however, a depth less than 4 mm or greater than 20 mm is contemplated. The cutting depth in a lateral direction 207 is controlled by various parameters, including the pressure of the fluid-jet at nozzle 209. The lateral cutting depth is measured orthogonally from the cutting tool, extending laterally between 4 mm and 25 mm. As the injection device is rotated, the pressure and other parameters may be varied to achieve different depths in lateral direction 207. Thus, the shape of the planar cut 302 in tissue 202 can vary. In some embodiments, the cut will be generally linear. In other embodiments, the cut may be ovoid. A circular cut 302 is depicted, however, with control and precision by the user of the injection device, it is conceived that substantially any shape may be achieved.
It is generally recognized that a large treatment site heals more slowly than a series of smaller treatment sites. Moreover, the larger the treatment site the greater the risk of skin necrosis and uneven healing, from which fibrosis may result. Turning to
According to one embodiment of the invention the treatment sites are not continuous, meaning that there is no single continuous lesion. Each port 111 creates a different treatment site 302 as an island surrounded by tissue 202 which has not been treated (the fibrous septae have not been severed). After the tissue within a treatment site is treated, the injection device 109 is repositioned on an adjacent injection port 111 having a well 601 of a different depth. In some embodiments, the lateral cutting depth parameters are configured such that adjacent treatment sites 302 have zero spacing or overlap. In this manner, a site is treated and the process is repeated on the remaining desired sites at different depths, so that the resulting overall treatment is performed in a checkerboard fashion. A relatively large treatment area can thus be divided into a plurality of smaller treatment sites. Treatment at different depths (measured perpendicularly from the dermis) allows zero spacing (or overlapping) between adjacent sites, without creating a continuous lesion. As a result, the extent of untreated tissue can be greatly diminished, while minimizing the risks associated with large treatment sites. Thus, from a top view of platform 101 (e.g.,
The interspersing of treatment sites at different treatment depths is believed to accommodate rapid healing. More specifically, the interspersing of treatment sites at different treatment depths allows for closer spacing between treatment sites while accommodating for a more rapid healing response time of the injured tissue. A physician may also choose to vary the treatment depth based on the severity of the condition or specific body area.
As depicted by
In yet further embodiments, as depicted by
The forgoing description for the preferred embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention not be limited by this detailed description, but by the claims and the equivalents to the claims appended hereto.
Although the present invention has been described in detail with regard to the preferred embodiments and drawings thereof, it should be apparent to those of ordinary skill in the art that various adaptations and modifications of the present invention may be accomplished without departing from the spirit and the scope of the invention. Accordingly, it is to be understood that the detailed description and the accompanying drawings as set forth hereinabove are not intended to limit the breadth of the present invention.
This application is a continuation of co-pending U.S. patent application Ser. No. 12/787,377, filed May 25, 2010, the entire contents of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2370529 | Fuller | Feb 1945 | A |
2490409 | Brown | Dec 1949 | A |
2738172 | Spiess et al. | Mar 1956 | A |
2945496 | Fosdal | Jul 1960 | A |
2961382 | Singher et al. | Nov 1960 | A |
3129944 | Amos et al. | Apr 1964 | A |
3324854 | Weese | Jun 1967 | A |
3590808 | Muller | Jul 1971 | A |
3735336 | Long | May 1973 | A |
3964482 | Gerstel | Jun 1976 | A |
3991763 | Genese | Nov 1976 | A |
4150669 | Latorre | Apr 1979 | A |
4188952 | Loschilov et al. | Feb 1980 | A |
4211949 | Brisken et al. | Jul 1980 | A |
4212206 | Hartemann et al. | Jul 1980 | A |
4231368 | Becker et al. | Nov 1980 | A |
4248231 | Herczog et al. | Feb 1981 | A |
4249923 | Walda | Feb 1981 | A |
4276885 | Tickner et al. | Jul 1981 | A |
4299219 | Norris, Jr. | Nov 1981 | A |
4309989 | Fahim | Jan 1982 | A |
4373458 | Dorosz | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4466442 | Hilmann et al. | Aug 1984 | A |
4497325 | Wedel | Feb 1985 | A |
4536180 | Johnson | Aug 1985 | A |
4549533 | Cain | Oct 1985 | A |
4608043 | Larkin | Aug 1986 | A |
4641652 | Hutterer et al. | Feb 1987 | A |
4646754 | Seale | Mar 1987 | A |
4657756 | Rasor et al. | Apr 1987 | A |
4673387 | Phillips et al. | Jun 1987 | A |
4681119 | Rasor et al. | Jul 1987 | A |
4684479 | D'Arrigo | Aug 1987 | A |
4688570 | Kramer et al. | Aug 1987 | A |
4689986 | Carson et al. | Sep 1987 | A |
4718433 | Feinstein | Jan 1988 | A |
4720075 | Peterson et al. | Jan 1988 | A |
4751921 | Park | Jun 1988 | A |
4762915 | Kung et al. | Aug 1988 | A |
4774958 | Feinstein | Oct 1988 | A |
4796624 | Trott et al. | Jan 1989 | A |
4797285 | Barenholz et al. | Jan 1989 | A |
4815462 | Clark | Mar 1989 | A |
4844080 | Frass et al. | Jul 1989 | A |
4844470 | Hammon et al. | Jul 1989 | A |
4844882 | Widder et al. | Jul 1989 | A |
4886491 | Parisi et al. | Dec 1989 | A |
4900311 | Stern et al. | Feb 1990 | A |
4900540 | Ryan et al. | Feb 1990 | A |
4919986 | Lay et al. | Apr 1990 | A |
4920954 | Alliger et al. | May 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4936303 | Detwiler et al. | Jun 1990 | A |
4957656 | Cerny et al. | Sep 1990 | A |
5000172 | Ward | Mar 1991 | A |
5022414 | Muller | Jun 1991 | A |
5040537 | Katakura | Aug 1991 | A |
5050537 | Fox | Sep 1991 | A |
5069664 | Guess et al. | Dec 1991 | A |
5083568 | Shimazaki et al. | Jan 1992 | A |
5088499 | Unger | Feb 1992 | A |
5100390 | Lubeck et al. | Mar 1992 | A |
5131600 | Klimpel | Jul 1992 | A |
5143063 | Fellner | Sep 1992 | A |
5149319 | Unger | Sep 1992 | A |
5158071 | Umemura et al. | Oct 1992 | A |
5170604 | Hedly | Dec 1992 | A |
5178433 | Wagner | Jan 1993 | A |
5203785 | Slater | Apr 1993 | A |
5209720 | Unger | May 1993 | A |
5215104 | Steinert | Jun 1993 | A |
5215680 | D'Arrigo | Jun 1993 | A |
5216130 | Line et al. | Jun 1993 | A |
5219401 | Cathignol et al. | Jun 1993 | A |
5261922 | Hood | Nov 1993 | A |
5308334 | Sancoff | May 1994 | A |
5310540 | Giddey et al. | May 1994 | A |
5312364 | Jacobs | May 1994 | A |
5315998 | Tachibana et al. | May 1994 | A |
5316000 | Chapelon et al. | May 1994 | A |
5320607 | Ishibashi | Jun 1994 | A |
5323642 | Condon | Jun 1994 | A |
5342380 | Hood | Aug 1994 | A |
5352436 | Wheatley et al. | Oct 1994 | A |
5354307 | Porowski | Oct 1994 | A |
5380411 | Schlief | Jan 1995 | A |
5383858 | Reilly et al. | Jan 1995 | A |
5385561 | Cerny | Jan 1995 | A |
5409126 | DeMars | Apr 1995 | A |
5413574 | Fugo | May 1995 | A |
5415160 | Ortiz et al. | May 1995 | A |
5417654 | Kelman | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5419777 | Hofling et al. | May 1995 | A |
5425580 | Beller | Jun 1995 | A |
5437640 | Schwab | Aug 1995 | A |
5441490 | Svedman | Aug 1995 | A |
5449351 | Zohmann | Sep 1995 | A |
5457041 | Ginaven et al. | Oct 1995 | A |
5476368 | Rabenau et al. | Dec 1995 | A |
5478315 | Brothers | Dec 1995 | A |
5494038 | Wang et al. | Feb 1996 | A |
5507790 | Weiss | Apr 1996 | A |
5522797 | Grimm | Jun 1996 | A |
5533981 | Mandro et al. | Jul 1996 | A |
5545123 | Ortiz et al. | Aug 1996 | A |
5556406 | Gordon et al. | Sep 1996 | A |
5562693 | Devlin et al. | Oct 1996 | A |
5569242 | Lax et al. | Oct 1996 | A |
5571131 | Ek et al. | Nov 1996 | A |
5573002 | Pratt | Nov 1996 | A |
5573497 | Chapelon | Nov 1996 | A |
5590657 | Cain | Jan 1997 | A |
5601526 | Chapelon | Feb 1997 | A |
5601584 | Obaji et al. | Feb 1997 | A |
5607441 | Sierocuk et al. | Mar 1997 | A |
5634911 | Hermann et al. | Jun 1997 | A |
5639443 | Schutt et al. | Jun 1997 | A |
5649947 | Auerbach et al. | Jul 1997 | A |
5662646 | Fumich | Sep 1997 | A |
5681026 | Durand | Oct 1997 | A |
5690657 | Koepnick | Nov 1997 | A |
5695460 | Siegel et al. | Dec 1997 | A |
5716326 | Dannan | Feb 1998 | A |
5733572 | Unger et al. | Mar 1998 | A |
5755753 | Knowlton | May 1998 | A |
5766198 | Li | Jun 1998 | A |
5772688 | Muroki | Jun 1998 | A |
5778894 | Dorogi et al. | Jul 1998 | A |
5792140 | Tu | Aug 1998 | A |
5795311 | Wess | Aug 1998 | A |
5797627 | Salter | Aug 1998 | A |
5810765 | Oda | Sep 1998 | A |
5817054 | Grimm | Oct 1998 | A |
5817115 | Nigam | Oct 1998 | A |
5827204 | Grandia et al. | Oct 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5865309 | Futagawa et al. | Feb 1999 | A |
5871524 | Knowlton | Feb 1999 | A |
5884631 | Silberg | Mar 1999 | A |
5885232 | Guitay | Mar 1999 | A |
5902272 | Eggers et al. | May 1999 | A |
5911700 | Mozsary et al. | Jun 1999 | A |
5911703 | Slate | Jun 1999 | A |
5918757 | Przytulla et al. | Jul 1999 | A |
5919219 | Knowlton | Jul 1999 | A |
5935142 | Hood | Aug 1999 | A |
5935143 | Hood | Aug 1999 | A |
5942408 | Christensen et al. | Aug 1999 | A |
5948011 | Knowlton | Sep 1999 | A |
5961475 | Guitay | Oct 1999 | A |
5964776 | Peyman | Oct 1999 | A |
5976153 | Fischell et al. | Nov 1999 | A |
5976163 | Nigam | Nov 1999 | A |
5980517 | Gough | Nov 1999 | A |
5983131 | Weaver | Nov 1999 | A |
5984915 | Loeb et al. | Nov 1999 | A |
5993423 | Choi | Nov 1999 | A |
5997501 | Gross | Dec 1999 | A |
6035897 | Kozyuk | Mar 2000 | A |
6039048 | Silberg | Mar 2000 | A |
6042539 | Harper et al. | Mar 2000 | A |
6047215 | McClure et al. | Apr 2000 | A |
6048337 | Svedman | Apr 2000 | A |
6066131 | Mueller | May 2000 | A |
6071239 | Cribbs et al. | Jun 2000 | A |
6083236 | Feingold | Jul 2000 | A |
6102887 | Altman | Aug 2000 | A |
6113558 | Rosenschein et al. | Sep 2000 | A |
6117152 | Huitema | Sep 2000 | A |
RE36939 | Tachibana et al. | Oct 2000 | E |
6128958 | Cain | Oct 2000 | A |
6132755 | Eicher | Oct 2000 | A |
6139518 | Mozary et al. | Oct 2000 | A |
6155989 | Collins | Dec 2000 | A |
6162232 | Shadduck | Dec 2000 | A |
6176854 | Cone | Jan 2001 | B1 |
6183442 | Athanasiou et al. | Feb 2001 | B1 |
6193672 | Clement | Feb 2001 | B1 |
6200291 | Di Pietro | Mar 2001 | B1 |
6200313 | Abe et al. | Mar 2001 | B1 |
6203540 | Weber et al. | Mar 2001 | B1 |
6210393 | Brisken | Apr 2001 | B1 |
6214018 | Kreizman et al. | Apr 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6241753 | Knowlten | Jun 2001 | B1 |
6254580 | Svedman | Jul 2001 | B1 |
6254614 | Jesseph | Jul 2001 | B1 |
6258056 | Turley et al. | Jul 2001 | B1 |
6258378 | Schneider et al. | Jul 2001 | B1 |
6261272 | Gross | Jul 2001 | B1 |
6273877 | West | Aug 2001 | B1 |
6277116 | Utely | Aug 2001 | B1 |
6280401 | Mahurkar | Aug 2001 | B1 |
6287274 | Sussman et al. | Sep 2001 | B1 |
6302863 | Tankovich | Oct 2001 | B1 |
6309355 | Cain et al. | Oct 2001 | B1 |
6311090 | Knowlton | Oct 2001 | B1 |
6312439 | Gordon | Nov 2001 | B1 |
6315756 | Tankovich | Nov 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6319230 | Palasis et al. | Nov 2001 | B1 |
6321109 | Ben-Haim et al. | Nov 2001 | B2 |
6325801 | Monnier | Dec 2001 | B1 |
6338710 | Takahashi et al. | Jan 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6366206 | Ishikawa | Apr 2002 | B1 |
6375634 | Carroll | Apr 2002 | B1 |
6377854 | Knowlton | Apr 2002 | B1 |
6377855 | Knowlton | Apr 2002 | B1 |
6381497 | Knowlton | Apr 2002 | B1 |
6381498 | Knowlton | Apr 2002 | B1 |
6387380 | Knowlton | May 2002 | B1 |
6391020 | Kurtz et al. | May 2002 | B1 |
6391023 | Weber et al. | May 2002 | B1 |
6397098 | Uber, III et al. | May 2002 | B1 |
6405090 | Knowlton | Jun 2002 | B1 |
6409665 | Scott et al. | Jun 2002 | B1 |
6413216 | Cain et al. | Jul 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432101 | Weber et al. | Aug 2002 | B1 |
6436078 | Svedman | Aug 2002 | B1 |
6438424 | Knowlton | Aug 2002 | B1 |
6440096 | Lastovich | Aug 2002 | B1 |
6440121 | Weber et al. | Aug 2002 | B1 |
6443914 | Costantino | Sep 2002 | B1 |
6450979 | Miwa | Sep 2002 | B1 |
6451240 | Sherman | Sep 2002 | B1 |
6453202 | Knowlton | Sep 2002 | B1 |
6454730 | Hechel et al. | Sep 2002 | B1 |
6461350 | Underwood et al. | Oct 2002 | B1 |
6461378 | Knowlton | Oct 2002 | B1 |
6464680 | Brisken et al. | Oct 2002 | B1 |
6470216 | Knowlton | Oct 2002 | B1 |
6470218 | Behl | Oct 2002 | B1 |
6479034 | Unger et al. | Nov 2002 | B1 |
6500141 | Irion | Dec 2002 | B1 |
6506611 | Bienert et al. | Jan 2003 | B2 |
6511463 | Wood | Jan 2003 | B1 |
6514220 | Melton | Feb 2003 | B2 |
6517498 | Burbank | Feb 2003 | B1 |
6537242 | Palmer | Mar 2003 | B1 |
6537246 | Unger et al. | Mar 2003 | B1 |
6544201 | Guitay | Apr 2003 | B1 |
6569176 | Jesseph | May 2003 | B2 |
6572839 | Sugita | Jun 2003 | B2 |
6575930 | Trombley, III et al. | Jun 2003 | B1 |
6582442 | Simon et al. | Jun 2003 | B2 |
6585678 | Tachibana et al. | Jul 2003 | B1 |
6599305 | Feingold | Jul 2003 | B1 |
6602251 | Burbank et al. | Aug 2003 | B2 |
6605079 | Shanks et al. | Aug 2003 | B2 |
6605080 | Altshuler et al. | Aug 2003 | B1 |
6607498 | Eshel | Aug 2003 | B2 |
6611707 | Prausnitz | Aug 2003 | B1 |
6615166 | Guheen et al. | Sep 2003 | B1 |
6623457 | Rosenberg | Sep 2003 | B1 |
6626854 | Friedman et al. | Sep 2003 | B2 |
6629949 | Douglas | Oct 2003 | B1 |
6638767 | Unger et al. | Oct 2003 | B2 |
6645162 | Friedman et al. | Nov 2003 | B2 |
6662054 | Kreindel et al. | Dec 2003 | B2 |
6663616 | Roth et al. | Dec 2003 | B1 |
6663618 | Weber et al. | Dec 2003 | B2 |
6663820 | Arias | Dec 2003 | B2 |
6685657 | Jones | Feb 2004 | B2 |
6687537 | Bernabei | Feb 2004 | B2 |
6695781 | Rabiner | Feb 2004 | B2 |
6695808 | Tom | Feb 2004 | B2 |
6702779 | Connelly | Mar 2004 | B2 |
6725095 | Fenn et al. | Apr 2004 | B2 |
6730061 | Cuschieri et al. | May 2004 | B1 |
6743211 | Prausnitz et al. | Jun 2004 | B1 |
6743214 | Heil et al. | Jun 2004 | B2 |
6743215 | Bernabei | Jun 2004 | B2 |
6749624 | Knowlton | Jun 2004 | B2 |
6770071 | Woloszko et al. | Aug 2004 | B2 |
6780171 | Gabel | Aug 2004 | B2 |
6795727 | Giammarusti | Sep 2004 | B2 |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6817988 | Bergeron et al. | Nov 2004 | B2 |
6826429 | Johnson et al. | Nov 2004 | B2 |
6855133 | Svedman | Feb 2005 | B2 |
6882884 | Mosk et al. | Apr 2005 | B1 |
6883729 | Putvinski et al. | Apr 2005 | B2 |
6889090 | Kreindel | May 2005 | B2 |
6892099 | Jaafar et al. | May 2005 | B2 |
6896659 | Conston et al. | May 2005 | B2 |
6896666 | Kochamba | May 2005 | B2 |
6896674 | Woloszko et al. | May 2005 | B1 |
6902554 | Huttner | Jun 2005 | B2 |
6905480 | McGuckin et al. | Jun 2005 | B2 |
6910671 | Korkus et al. | Jun 2005 | B1 |
6916328 | Brett et al. | Jul 2005 | B2 |
6918907 | Kelly | Jul 2005 | B2 |
6918908 | Bonner et al. | Jul 2005 | B2 |
6920883 | Bessette et al. | Jul 2005 | B2 |
6926683 | Kochman et al. | Aug 2005 | B1 |
6931277 | Yuzhakov et al. | Aug 2005 | B1 |
6945937 | Culp et al. | Sep 2005 | B2 |
6957186 | Guheen et al. | Oct 2005 | B1 |
6960205 | Jahns et al. | Nov 2005 | B2 |
6971994 | Young | Dec 2005 | B1 |
6974450 | Weber | Dec 2005 | B2 |
6994691 | Ejlerson | Feb 2006 | B2 |
6994705 | Nebis et al. | Feb 2006 | B2 |
7066922 | Angel et al. | Jun 2006 | B2 |
7083580 | Bernabei | Aug 2006 | B2 |
7115108 | Wilkinson | Oct 2006 | B2 |
7149698 | Guheen et al. | Dec 2006 | B2 |
7153306 | Ralph et al. | Dec 2006 | B2 |
7169115 | Nobis et al. | Jan 2007 | B2 |
7184614 | Slatkine | Feb 2007 | B2 |
7184826 | Cormier | Feb 2007 | B2 |
7186252 | Nobis et al. | Mar 2007 | B2 |
7217265 | Hennings | May 2007 | B2 |
7223275 | Shiuey | May 2007 | B2 |
7226446 | Mody et al. | Jun 2007 | B1 |
7238183 | Kreindel | Jul 2007 | B2 |
7250047 | Anderson et al. | Jul 2007 | B2 |
7252641 | Thompson et al. | Aug 2007 | B2 |
7258674 | Cribbs et al. | Aug 2007 | B2 |
7278991 | Morris et al. | Oct 2007 | B2 |
7306095 | Bourque et al. | Dec 2007 | B1 |
7315826 | Guheen et al. | Jan 2008 | B1 |
7331951 | Eschel et al. | Feb 2008 | B2 |
7335158 | Taylor | Feb 2008 | B2 |
7338551 | Kozyuk | Mar 2008 | B2 |
7347855 | Eshel et al. | Mar 2008 | B2 |
7351295 | Pawlik et al. | Apr 2008 | B2 |
7374551 | Liang | May 2008 | B2 |
7376460 | Bernabei | May 2008 | B2 |
7392080 | Eppstein | Jun 2008 | B2 |
7410476 | Wilkinson et al. | Aug 2008 | B2 |
7419798 | Ericson | Sep 2008 | B2 |
7437189 | Matsumura | Oct 2008 | B2 |
7442192 | Knowlton | Oct 2008 | B2 |
7452358 | Stern et al. | Nov 2008 | B2 |
7455663 | Bikovsky | Nov 2008 | B2 |
7470237 | Beckman et al. | Dec 2008 | B2 |
7473251 | Knowlton et al. | Jan 2009 | B2 |
7479104 | Lau | Jan 2009 | B2 |
7494488 | Weber | Feb 2009 | B2 |
7507209 | Nezhat | Mar 2009 | B2 |
7524318 | Young et al. | Apr 2009 | B2 |
7546918 | Gollier et al. | Jun 2009 | B2 |
7559905 | Kagosaki et al. | Jul 2009 | B2 |
7566318 | Haefner | Jul 2009 | B2 |
7585281 | Nezhat et al. | Sep 2009 | B2 |
7588547 | Deem et al. | Sep 2009 | B2 |
7588557 | Nakao | Sep 2009 | B2 |
7601128 | Deem et al. | Oct 2009 | B2 |
7625354 | Hochman | Dec 2009 | B2 |
7625371 | Morris et al. | Dec 2009 | B2 |
7678097 | Peluso et al. | Mar 2010 | B1 |
7740600 | Slatkine et al. | Jun 2010 | B2 |
7762964 | Slatkine et al. | Jul 2010 | B2 |
7762965 | Slatkine et al. | Jul 2010 | B2 |
7770611 | Houwaert et al. | Aug 2010 | B2 |
7771374 | Slatkine et al. | Aug 2010 | B2 |
7824348 | Barthe et al. | Nov 2010 | B2 |
7828827 | Gartstein | Nov 2010 | B2 |
7842008 | Clarke et al. | Nov 2010 | B2 |
7901421 | Shiuey et al. | Mar 2011 | B2 |
7935139 | Slatkine et al. | May 2011 | B2 |
7938824 | Chornenky et al. | May 2011 | B2 |
7967763 | Deem et al. | Jun 2011 | B2 |
7985199 | Kornerup | Jul 2011 | B2 |
7988667 | Imai | Aug 2011 | B2 |
8025658 | Chong | Sep 2011 | B2 |
8083715 | Sonoda et al. | Dec 2011 | B2 |
8086322 | Schouenborg | Dec 2011 | B2 |
8103355 | Mulholland et al. | Jan 2012 | B2 |
8127771 | Hennings | Mar 2012 | B2 |
8133191 | Rosenberg et al. | Mar 2012 | B2 |
8256429 | Hennings et al. | Sep 2012 | B2 |
8348867 | Deem et al. | Jan 2013 | B2 |
8357146 | Hennings et al. | Jan 2013 | B2 |
8366643 | Deem et al. | Feb 2013 | B2 |
8401668 | Deem | Mar 2013 | B2 |
8406894 | Johnson et al. | Mar 2013 | B2 |
8439940 | Chomas et al. | May 2013 | B2 |
8518069 | Clark, III et al. | Aug 2013 | B2 |
8535302 | Ben-Haim et al. | Sep 2013 | B2 |
8540705 | Mehta | Sep 2013 | B2 |
8573227 | Hennings et al. | Nov 2013 | B2 |
8608737 | Mehta et al. | Dec 2013 | B2 |
8636665 | Slayton et al. | Jan 2014 | B2 |
8652123 | Gurtner et al. | Feb 2014 | B2 |
8663112 | Slayton et al. | Mar 2014 | B2 |
8671622 | Thomas | Mar 2014 | B2 |
8672848 | Slayton et al. | Mar 2014 | B2 |
8676338 | Levinson | Mar 2014 | B2 |
8685012 | Hennings et al. | Apr 2014 | B2 |
8753339 | Clark, III | Jun 2014 | B2 |
8758366 | McLean et al. | Jun 2014 | B2 |
8771263 | Epshtein et al. | Jul 2014 | B2 |
8825176 | Johnson et al. | Sep 2014 | B2 |
8834547 | Anderson et al. | Sep 2014 | B2 |
8868204 | Edoute et al. | Oct 2014 | B2 |
8882753 | Mehta et al. | Nov 2014 | B2 |
8882758 | Nebrigie et al. | Nov 2014 | B2 |
8894678 | Clark, III et al. | Nov 2014 | B2 |
8900261 | Clark, III et al. | Dec 2014 | B2 |
8900262 | Clark, III et al. | Dec 2014 | B2 |
8979882 | Drews et al. | Mar 2015 | B2 |
9011473 | Clark, III et al. | Apr 2015 | B2 |
9039722 | Clark, III et al. | May 2015 | B2 |
9345456 | Tsonton et al. | May 2016 | B2 |
9358033 | Ballakur | Jun 2016 | B2 |
9364246 | Clark, III et al. | Jun 2016 | B2 |
20010001829 | Sugimura et al. | May 2001 | A1 |
20010004702 | Peyman | Jun 2001 | A1 |
20010014805 | Burbank et al. | Aug 2001 | A1 |
20010053887 | Douglas et al. | Dec 2001 | A1 |
20020029053 | Gordon | Mar 2002 | A1 |
20020082528 | Friedman et al. | Jun 2002 | A1 |
20020082589 | Friedman et al. | Jun 2002 | A1 |
20020099356 | Unger et al. | Jul 2002 | A1 |
20020111569 | Rosenschein | Aug 2002 | A1 |
20020120238 | McGuckin et al. | Aug 2002 | A1 |
20020120260 | Morris | Aug 2002 | A1 |
20020120261 | Morris et al. | Aug 2002 | A1 |
20020130126 | Rosenberg | Sep 2002 | A1 |
20020134733 | Kerfoot | Sep 2002 | A1 |
20020137991 | Scarantino | Sep 2002 | A1 |
20020143326 | Foley et al. | Oct 2002 | A1 |
20020169394 | Eppstein | Nov 2002 | A1 |
20020177846 | Muller | Nov 2002 | A1 |
20020185557 | Sparks | Dec 2002 | A1 |
20020193784 | McHale et al. | Dec 2002 | A1 |
20020193831 | Smith, III | Dec 2002 | A1 |
20030006677 | Okuda et al. | Jan 2003 | A1 |
20030009153 | Brisken et al. | Jan 2003 | A1 |
20030069502 | Makin et al. | Apr 2003 | A1 |
20030074023 | Kaplan et al. | Apr 2003 | A1 |
20030083536 | Eshel et al. | May 2003 | A1 |
20030120269 | Bessette et al. | Jun 2003 | A1 |
20030130628 | Duffy | Jul 2003 | A1 |
20030130655 | Woloszko et al. | Jul 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030139740 | Kreindel | Jul 2003 | A1 |
20030139755 | Dybbs | Jul 2003 | A1 |
20030153905 | Edwards et al. | Aug 2003 | A1 |
20030153960 | Chornenky et al. | Aug 2003 | A1 |
20030158566 | Brett | Aug 2003 | A1 |
20030171670 | Gumb et al. | Sep 2003 | A1 |
20030187371 | Vortman et al. | Oct 2003 | A1 |
20030212350 | Tadlock | Nov 2003 | A1 |
20030228254 | Klaveness et al. | Dec 2003 | A1 |
20030233083 | Houwaert | Dec 2003 | A1 |
20030233110 | Jesseph | Dec 2003 | A1 |
20040006566 | Taylor et al. | Jan 2004 | A1 |
20040019299 | Ritchart et al. | Jan 2004 | A1 |
20040019371 | Jaafar et al. | Jan 2004 | A1 |
20040023844 | Pettis et al. | Feb 2004 | A1 |
20040030263 | Dubrul et al. | Feb 2004 | A1 |
20040039312 | Hillstead et al. | Feb 2004 | A1 |
20040058882 | Eriksson et al. | Mar 2004 | A1 |
20040073144 | Carava | Apr 2004 | A1 |
20040073206 | Foley et al. | Apr 2004 | A1 |
20040079371 | Gray | Apr 2004 | A1 |
20040097967 | Ignon | May 2004 | A1 |
20040106867 | Eshel et al. | Jun 2004 | A1 |
20040120861 | Petroff | Jun 2004 | A1 |
20040122483 | Nathan et al. | Jun 2004 | A1 |
20040138712 | Tamarkin et al. | Jul 2004 | A1 |
20040158150 | Rabiner | Aug 2004 | A1 |
20040162546 | Liang et al. | Aug 2004 | A1 |
20040162554 | Lee et al. | Aug 2004 | A1 |
20040167558 | Igo et al. | Aug 2004 | A1 |
20040186425 | Schneider et al. | Sep 2004 | A1 |
20040200909 | McMillan et al. | Oct 2004 | A1 |
20040202576 | Aceti | Oct 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040210214 | Knowlton | Oct 2004 | A1 |
20040215101 | Rioux et al. | Oct 2004 | A1 |
20040215110 | Kreindel | Oct 2004 | A1 |
20040220512 | Kreindel | Nov 2004 | A1 |
20040236248 | Svedman | Nov 2004 | A1 |
20040236252 | Muzzi et al. | Nov 2004 | A1 |
20040243159 | Shiuey | Dec 2004 | A1 |
20040243160 | Shiuey et al. | Dec 2004 | A1 |
20040251566 | Kozyuk | Dec 2004 | A1 |
20040253148 | Leaton | Dec 2004 | A1 |
20040253183 | Uber, III et al. | Dec 2004 | A1 |
20040264293 | Laugharn et al. | Dec 2004 | A1 |
20050010197 | Lau | Jan 2005 | A1 |
20050015024 | Babaev | Jan 2005 | A1 |
20050027242 | Gabel | Feb 2005 | A1 |
20050033338 | Ferree | Feb 2005 | A1 |
20050049543 | Anderson et al. | Mar 2005 | A1 |
20050055018 | Kreindel | Mar 2005 | A1 |
20050080333 | Piron et al. | Apr 2005 | A1 |
20050085748 | Culp et al. | Apr 2005 | A1 |
20050102009 | Costantino | May 2005 | A1 |
20050131439 | Brett et al. | Jun 2005 | A1 |
20050136548 | McDevitt | Jun 2005 | A1 |
20050137525 | Wang et al. | Jun 2005 | A1 |
20050139142 | Kelley et al. | Jun 2005 | A1 |
20050154309 | Etchells et al. | Jul 2005 | A1 |
20050154314 | Quistgaard | Jul 2005 | A1 |
20050154443 | Linder et al. | Jul 2005 | A1 |
20050163711 | Nycz et al. | Jul 2005 | A1 |
20050182385 | Epley | Aug 2005 | A1 |
20050182462 | Chornenky et al. | Aug 2005 | A1 |
20050191252 | Mutsui | Sep 2005 | A1 |
20050197633 | Schwartz et al. | Sep 2005 | A1 |
20050203497 | Speeg | Sep 2005 | A1 |
20050215987 | Slatkine | Sep 2005 | A1 |
20050234527 | Slatkine | Oct 2005 | A1 |
20050256536 | Grundeman et al. | Nov 2005 | A1 |
20050268703 | Funck et al. | Dec 2005 | A1 |
20060036300 | Kreindel | Feb 2006 | A1 |
20060058678 | Vitek et al. | Mar 2006 | A1 |
20060074313 | Slayton | Apr 2006 | A1 |
20060074314 | Slayton et al. | Apr 2006 | A1 |
20060079921 | Nezhat et al. | Apr 2006 | A1 |
20060094988 | Tosaya et al. | May 2006 | A1 |
20060100555 | Cagle et al. | May 2006 | A1 |
20060102174 | Hochman | May 2006 | A1 |
20060111744 | Makin et al. | May 2006 | A1 |
20060122509 | Desilets | Jun 2006 | A1 |
20060206040 | Greenberg | Sep 2006 | A1 |
20060206117 | Harp | Sep 2006 | A1 |
20060211958 | Rosenberg et al. | Sep 2006 | A1 |
20060235371 | Wakamatsu et al. | Oct 2006 | A1 |
20060235732 | Miller et al. | Oct 2006 | A1 |
20060241672 | Zadini et al. | Oct 2006 | A1 |
20060241673 | Zadini | Oct 2006 | A1 |
20060259102 | Slatkine | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20060264926 | Kochamba | Nov 2006 | A1 |
20060293722 | Slatkine et al. | Dec 2006 | A1 |
20070005091 | Zadini et al. | Jan 2007 | A1 |
20070010810 | Kochamba | Jan 2007 | A1 |
20070016234 | Daxer | Jan 2007 | A1 |
20070027411 | Ella et al. | Feb 2007 | A1 |
20070031482 | Castro et al. | Feb 2007 | A1 |
20070035201 | Desilets et al. | Feb 2007 | A1 |
20070041961 | Hwang et al. | Feb 2007 | A1 |
20070043295 | Chomas et al. | Feb 2007 | A1 |
20070055156 | Desilets et al. | Mar 2007 | A1 |
20070055179 | Deem | Mar 2007 | A1 |
20070060989 | Deem | Mar 2007 | A1 |
20070118077 | Clarke et al. | May 2007 | A1 |
20070118166 | Nobis et al. | May 2007 | A1 |
20070129708 | Edwards et al. | Jun 2007 | A1 |
20070142881 | Hennings | Jun 2007 | A1 |
20070156096 | Sonoda et al. | Jul 2007 | A1 |
20070179515 | Matsutani et al. | Aug 2007 | A1 |
20070191827 | Lischinsky et al. | Aug 2007 | A1 |
20070197907 | Bruder et al. | Aug 2007 | A1 |
20070197917 | Bagge | Aug 2007 | A1 |
20070239075 | Manstein et al. | Oct 2007 | A1 |
20070239079 | Manstein et al. | Oct 2007 | A1 |
20070255355 | Altshuler et al. | Nov 2007 | A1 |
20070270745 | Nezhat et al. | Nov 2007 | A1 |
20070282318 | Spooner et al. | Dec 2007 | A1 |
20070293849 | Hennings et al. | Dec 2007 | A1 |
20080014627 | Merchant | Jan 2008 | A1 |
20080015435 | Cribbs et al. | Jan 2008 | A1 |
20080015624 | Sonoda et al. | Jan 2008 | A1 |
20080027328 | Klopotek et al. | Jan 2008 | A1 |
20080027384 | Wang | Jan 2008 | A1 |
20080058603 | Edelstein et al. | Mar 2008 | A1 |
20080058851 | Edelstein et al. | Mar 2008 | A1 |
20080091126 | Greenburg | Apr 2008 | A1 |
20080091182 | Mehta | Apr 2008 | A1 |
20080109023 | Greer | May 2008 | A1 |
20080147084 | Bleich et al. | Jun 2008 | A1 |
20080172012 | Hiniduma-Lokuge et al. | Jul 2008 | A1 |
20080183164 | Elkins et al. | Jul 2008 | A1 |
20080188835 | Hennings et al. | Aug 2008 | A1 |
20080195036 | Merchant | Aug 2008 | A1 |
20080200845 | Sokka et al. | Aug 2008 | A1 |
20080200864 | Holzbaur | Aug 2008 | A1 |
20080215039 | Slatkine et al. | Sep 2008 | A1 |
20080234609 | Kreindel et al. | Sep 2008 | A1 |
20080249526 | Knowlton | Oct 2008 | A1 |
20080262527 | Eder et al. | Oct 2008 | A1 |
20080269668 | Keenan et al. | Oct 2008 | A1 |
20080269687 | Chong | Oct 2008 | A1 |
20080306476 | Hennings et al. | Dec 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20080319358 | Lai | Dec 2008 | A1 |
20090012434 | Anderson | Jan 2009 | A1 |
20090018522 | Weintraub et al. | Jan 2009 | A1 |
20090024192 | Mulholland | Jan 2009 | A1 |
20090048544 | Rybyanets | Feb 2009 | A1 |
20090088823 | Barak et al. | Apr 2009 | A1 |
20090093864 | Anderson | Apr 2009 | A1 |
20090118722 | Ebbers et al. | May 2009 | A1 |
20090124973 | D'Agostino | May 2009 | A1 |
20090125013 | Sypniewski et al. | May 2009 | A1 |
20090156958 | Mehta et al. | Jun 2009 | A1 |
20090171255 | Rybyanets et al. | Jul 2009 | A1 |
20090192441 | Gelbart et al. | Jul 2009 | A1 |
20090198189 | Simons et al. | Aug 2009 | A1 |
20090221938 | Rosenberg et al. | Sep 2009 | A1 |
20090240188 | Hyde | Sep 2009 | A1 |
20090248004 | Altshuler et al. | Oct 2009 | A1 |
20090270789 | Maxymiv | Oct 2009 | A1 |
20090275879 | Deem et al. | Nov 2009 | A1 |
20090275899 | Deem et al. | Nov 2009 | A1 |
20090275967 | Stokes et al. | Nov 2009 | A1 |
20090326439 | Chomas | Dec 2009 | A1 |
20090326441 | Iliescu | Dec 2009 | A1 |
20090326461 | Gresham | Dec 2009 | A1 |
20100004536 | Rosenberg | Jan 2010 | A1 |
20100016761 | Rosenberg | Jan 2010 | A1 |
20100017750 | Rosenberg et al. | Jan 2010 | A1 |
20100022999 | Gollnick et al. | Jan 2010 | A1 |
20100030262 | McLean et al. | Feb 2010 | A1 |
20100049178 | Deem et al. | Feb 2010 | A1 |
20100057056 | Gurtner et al. | Mar 2010 | A1 |
20100081881 | Murray | Apr 2010 | A1 |
20100137799 | Imai | Jun 2010 | A1 |
20100210915 | Caldwell et al. | Aug 2010 | A1 |
20100228182 | Clark, III et al. | Sep 2010 | A1 |
20100228207 | Ballakur | Sep 2010 | A1 |
20100331875 | Sonoda et al. | Dec 2010 | A1 |
20110028898 | Clark et al. | Feb 2011 | A1 |
20110295230 | O'Dea | Dec 2011 | A1 |
20120022504 | Epshtein et al. | Jan 2012 | A1 |
20120116375 | Hennings | May 2012 | A1 |
20120136280 | Rosenberg et al. | May 2012 | A1 |
20120136282 | Rosenberg et al. | May 2012 | A1 |
20120165725 | Chomas et al. | Jun 2012 | A1 |
20120197242 | Rosenberg | Aug 2012 | A1 |
20120277587 | Adanny et al. | Nov 2012 | A1 |
20120316547 | Hennings et al. | Dec 2012 | A1 |
20130023855 | Hennings et al. | Jan 2013 | A1 |
20130096596 | Schafer | Apr 2013 | A1 |
20130197315 | Foley | Aug 2013 | A1 |
20130197427 | Merchant | Aug 2013 | A1 |
20130296744 | Taskinen et al. | Nov 2013 | A1 |
20140025050 | Anderson | Jan 2014 | A1 |
20140031803 | Epshtein et al. | Jan 2014 | A1 |
20140107742 | Mehta | Apr 2014 | A1 |
20140228834 | Adanny et al. | Aug 2014 | A1 |
20140249609 | Zarsky et al. | Sep 2014 | A1 |
20140257272 | Clark, III et al. | Sep 2014 | A1 |
20140276693 | Altshuler et al. | Sep 2014 | A1 |
20140277025 | Clark, III et al. | Sep 2014 | A1 |
20140277047 | Clark, III et al. | Sep 2014 | A1 |
20140277048 | Clark, III et al. | Sep 2014 | A1 |
20140316393 | Levinson | Oct 2014 | A1 |
20150064165 | Perry et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
1232837 | Feb 1988 | CA |
1239092 | Jul 1988 | CA |
1159908 | Sep 1997 | CN |
1484520 | Mar 2004 | CN |
1823687 | Aug 2006 | CN |
200720159899 | Dec 2007 | CN |
201131982 | Oct 2008 | CN |
101795641 | Aug 2010 | CN |
3838530 | May 1990 | DE |
4426421 | Feb 1996 | DE |
148116 | Jul 1985 | EP |
0224934 | Dec 1986 | EP |
0278074 | Jan 1987 | EP |
0327490 | Feb 1989 | EP |
0384831 | Feb 1990 | EP |
0953432 | Mar 1999 | EP |
2643252 | Feb 1989 | FR |
1216813 | Dec 1970 | GB |
1577551 | Feb 1976 | GB |
2327614 | Mar 1999 | GB |
57-139358 | Aug 1982 | JP |
2126848 | May 1990 | JP |
2180275 | Jul 1990 | JP |
5215591 | Aug 1993 | JP |
2000-190976 | Jul 2000 | JP |
2001516625 | Oct 2001 | JP |
2002-017742 | Jan 2002 | JP |
2002-528220 | Sep 2002 | JP |
2004-283420 | Oct 2004 | JP |
2005087519 | Apr 2005 | JP |
WO 198002365 | Nov 1980 | WO |
WO 198905159 | Jun 1989 | WO |
WO198905160 | Jun 1989 | WO |
WO198909593 | Oct 1989 | WO |
WO199001971 | Mar 1990 | WO |
WO199209238 | Jun 1992 | WO |
WO199515118 | Jun 1995 | WO |
WO 9729701 | Aug 1997 | WO |
WO9913936 | Mar 1999 | WO |
WO9942138 | Aug 1999 | WO |
WO 0025692 | May 2000 | WO |
WO 200036982 | Jun 2000 | WO |
WO 03030984 | Apr 2003 | WO |
WO 03041597 | May 2003 | WO |
WO2003047689 | Jun 2003 | WO |
WO2004000116 | Dec 2003 | WO |
WO2004069153 | Aug 2004 | WO |
WO2005009865 | Feb 2005 | WO |
WO2005105282 | Nov 2005 | WO |
WO2005105818 | Nov 2005 | WO |
WO2006053588 | May 2006 | WO |
WO2007035177 | Mar 2007 | WO |
WO2007052662 | May 2007 | WO |
WO2007102161 | Sep 2007 | WO |
WO2008055243 | May 2008 | WO |
WO2008139303 | Nov 2008 | WO |
WO2010020021 | Feb 2010 | WO |
WO2011017663 | Feb 2011 | WO |
WO2012087506 | Jun 2012 | WO |
WO2013059263 | Apr 2013 | WO |
WO 2014009875 | Jan 2014 | WO |
WO 2014009826 | Mar 2014 | WO |
WO 2014060977 | Apr 2014 | WO |
WO 2014097288 | Jun 2014 | WO |
WO 2014108888 | Jul 2014 | WO |
WO 2014141229 | Sep 2014 | WO |
Entry |
---|
Green, Jeremy B. et al. Therapeutic approaches to cellulite. Seminars in Cutaneous Medicine and Surgery, vol. 34, Sep. 2015, pp. 140-143. |
Green, Jeremy B. et al. Cellfina observations: pearls and pitfalls, Seminars in Cutaneouse Medicine and Surgery, vol. 34, Sep. 2015, pp. 144-146. |
Kaminer, Michael S. et al. Multicenter Pivotal Study of Vacuum-Assisted Precise Tissue Release for the Treatment of Cellulite. American Society for Dermatologic Surgery, Inc. Sermatol Surg 2015:41:336-347 (2015). |
Albrecht, T., et al., Guidelines for the Use of Contrast Agents in Ultrasound, Ultraschall in Med 2004, Jan. 2004, nn. 249-256, vol. 25. |
Bindal, Dr. V. V., et al., Environmental Health Criteria for Ultrasound, International Programme on Chemical Safety, 1982, on. 1-153, World Health Organization. |
Boyer, J. et al., Undermining in Cutaneous Surgery, Dermatol Surg 27:1, Jan. 2001, pp. 75-78, Blackwell Science, Inc. |
Brown, Ph.D., S., Director of Plastic Surgery Research, UT Southwestern Medical Center, Dallas, USA, What Happens After Treatment With the UltroShape Device, UltraShape Ltd., Tel Aviv, Israel (2005). |
Cartensen, E.L., Allerton Conference for Ultrasonics in Biophysics and Bioengineering: Cavitation, Ultrasound in Med. & Biol., 1987, on. 687-688, vol. 13, Perzamon Journals Ltd. |
Chang, Peter P., et al., Thresholds for Inertial Cavitation in Albunex Suspensions Under Pulsed Ultrasound Conditions, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Jan. 200 I, pp. 161-170, vol. 48, No. I. |
Chen, Wen-Shiang, Ultrasound Contrast Agent Behavior near the Fragmentation Threshold, 2000 IEEE Ultrasonics Symposium, 2000, pp. 1935-1938. |
Dijkmans, P.A., et al., Microbubbles and Ultrasound: From Diagnosis to Therapy, Eur J Echocardiography, 2004, pp. 245-256, vol. 5, Elsevier Ltd., The Netherlands. |
Feril, L.B., et al., Enhanced Ultrasound-Induced Apoptosis and Cell Lysis by a Hypnotic Medium, International Journal of Radiation Biology, Feb. 2004, PO. 165-175, vol. 2, Taylor & Francis Ltd., United Kingdom. |
Feril, Jr., Loreto B., et al., Biological Effects of Low Intensity Ultrasound: The Mechanism Involved, and its Implications on Therapy and on Biosafety of Ultrasound, J. Radial. Res., 2004, nn. 479-489, vol. 45. |
Forsberg, Ph.D., F., et al., On the Usefulness of the Mechanical Index Displayed on Clinical Ultrasound Scanners for Predicting Contrast Microbubble Destruction, J Ultrasound Med, 2005, pp. 443-450, vol. 24, American Institute of Ultrasound in Medicine. |
Hanscom, D.R., Infringement Search Report prepared for K. Angela Macfarlane, Esq., Chief Technology Counsel, The Foundry, Nov. 15, 2005. |
Hexsel, D. et al, Side-By-Side Comparison of Areas with and without Cellulite Depressions Using Magnetic Resonance Imaging, American Society for Dermatologic Surgery, Inc., 2009, pp. 1-7,Wiley Periodicals, Inc. |
Hexsel, M.D., Doris Maria, et al., Subcision: a Treatment for Cellulite, International journal of Dermatology 2000, on. 539-544, vol. 39. |
Holland, Christy K., et al., In Vitro Detection of Cavitation Induced by a Diagnostic Ultrasound System, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Jan. 1992, pp. 95-101, vol. 39, No. I. |
Farlex “Chamber” <URL: http://www.thefreedictionary.com/chamber>, retrieved Jun. 16, 2013, 4pages. |
Internet Web Site—www.icin.nllread/project 21, The Interuniversity Cardiology Institute of the Netherlands, 3 pgs., visited Dec. 22, 2005. |
Internet Web Site—www.turnwoodinternational.comiCellulite.htm, Acthyderm Treating Cellulite, Aug. 5, 2005, 4pgs., visited Jan. 12, 2006. |
Khan, M. et al., Treatment of cellulite—Part I. Pathophysiology, J Am Acad Dermatol, 2009, vol. 62, No. 3, pp. 361-370. |
Khan, M. et al., Treatment of cellulite—Part II. Advances and controversies, JAm Acad Dermatol, 2009, vol. 62, No. 3, pp. 373-384. |
Lawrence, M.D., N., et al., The Efficacy of External Ultrasound-Assisted Liposuction: A Randomized Controlled Trial, Dermatol SuII!, Apr. 2000, nn. 329-332, vol. 26, Blackwell Science, Inc. |
Letters to the Editor on the Thermal Motions of Small Bubbles, Ultrasound in Med. & Biol., 1984, pp. L377-L379, Pergamon Press Ltd., U.S.A. |
Michaelson, Solomon M., et al., Fundamental and Applied Aspects of Nonionizing Radiation, Rochester International Conference on Environmental Toxicity, 75h, 1974, pp. 275-299, Plenum Press, New York and London. |
Miller, Douglas 1., A Review of the Ultrasonic Bioeffects of Microsonation, Gas-Body Activiation, and Related Cavitation-Like Phenomena, Ultrasound in Med. & Biol., 1987, pp. 443-470, vol. 13, Pergamon Journals Ltd. |
Miller, Douglas 1., et al., Further Investigations of ATP Release From Human Erythrocytes Exposed to Ultrasonically Activated Gas-Filled Pores, Ultrasound in Med. & Biol., 1983, pp. 297-307, vol. 9, No. 3, Pergamon Press Ltd., Great Britain. |
Miller, Douglas L., et al., On the Oscillation Mode of Gas-filled Micropores, 1. Acoust. Soc. Am., 1985, pp. 946-953, vol. 77 (3). |
Miller, Douglas L., Gas Body Activation, Ultrasonics, Nov. 1984, pp. 261-269, vol. 22, No. 6, Butterworth & Co. Ltd. |
Miller, Douglas L., Microstreaming Shear As a Mechanism of Cell Death in Elodea Leaves Exposed to Ultrasound, Ultrasound in Med. & Biol., 1985, op. 285-292, vol. II, No. 2, Pergamon Press, U.S.A. |
Miller, Morton W., et al., A Review of In Vitro Bioeffects of Inertial Ultrasonic Cavitation From a Mechanistic Perspective, Ultrasound in Med. & Biol., 1996, nn. 1131-1154, vol. 22, No. 9. |
Nyborg, Dr. Wesley L., Physical Mechanisms for Biological Effects of Ultrasound, HEW Publicaton (FDA) 78/8062, Sep. 1977, pp. 1-59, U.S. Department of Health, Education, and Welfare, Rockville, Maryland. |
Orentreich, D. et al., Subcutaneous Incisionless (Subcision) Surgery for the Correction of Depressed Scars and Wrinkles, Dermatol Surg, 1995:21,1995, pp. 543-549, Esevier Science Inc. |
Patent Search, CTX System Microbubble Cavitation, Nov. 11, 2005. |
Carstensen et al, Biological Effects of Acoustic Cavitation, University of Rochester, Rochester, New York, May 13-16, 1985. |
Rohrich,R.J., et al., Comparative Lipoplasty Analysis of in Vivo-Treated Adipose Tissue, Plastic and Reconstructive Surgery, May 2000, 105(6), pp. 2152-2158. |
Sasaki, Gordon H. MD, Comparison of Results of Wire Subcision Peformed Alone, With Fills, and/or With Adjacent Surgical Procedures, Aesthetic Surgery Journal, vol. 28, No. 6, Nov./Dec. 2008, p. 619-626. |
Scheinfeld, M.D., J.D. Faad, N.S., Liposuction Techniques: External Ultrasound-Assisted, eMedicine.com, Inc., 2005. |
Villarraga, M.D., H.R., et al., Destruction of Contrast Microbubbles During Ultrasound Imaging at Conventional Power Output, Journal of the American Society of Echocardiography, Oct. 1997, pp. 783-791. |
Vivino, Alfred A., et al., Stable Cavitation at low Ultrasonic Intensities Induces Cell Death and Inhibits H-TdR Incorporation by Con-A-Stimulated Murine Lymphocytes In Vitro, Ultrasound in Med. & Biol., 1985, pp. 751-759, vol. II, No. 5, Pergamon Press Ltd. |
Weaver, James C. Electroporation; a general phenomenon for manipulating cells and tissues. J Cell Biochem. Apr. 1993; 51(4):426-35. |
Number | Date | Country | |
---|---|---|---|
20160249946 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12787377 | May 2010 | US |
Child | 15151370 | US |