This application is directed to fluid cutting systems, such as waterjet cutting systems, and methods associated with such systems.
Waterjet systems produce high-velocity waterjets for accurately and precisely cutting various materials. Waterjet systems typically function by pressurizing water (or another suitable fluid) to a very high pressure (e.g., up to 90,000 pounds per square inch (psi) or more) by, for example, a high-pressure pump connected to an abrasive jet cutting head. The pressurized water is forced through an orifice at a very high speed (e.g., up to 2,500 feet per second or more). The orifice forms the waterjet. The orifice is typically a hard jewel (e.g., a synthetic sapphire, ruby, or diamond) held in an orifice mount. The resulting waterjet is discharged from the orifice at a velocity that approaches or exceeds the speed of sound. The liquid most frequently used to form the jet is water, and the high-velocity jet may be referred to as a “waterjet,” or a “water jet.”
Abrasives can be added to the waterjet to improve the cutting power of the waterjet. Adding abrasives to the waterjet produces an abrasive-laden waterjet referred to as an “abrasive waterjet” or an “abrasive jet.” To produce an abrasive jet, the waterjet passes through a mixing region in a nozzle. The abrasive, which is under atmospheric (ambient) pressure in an external hopper, is conveyed through a meeting orifice via a gravity feed from the hopper through an attached abrasive supply conduit to the nozzle. A quantity of abrasive regulated by the meeting orifice is entrained into the waterjet in the mixing region by the low-pressure region that surrounds the flowing liquid in accordance with the Venturi effect. Typical abrasives include garnet and aluminum oxide. The abrasives can have grit mesh sizes ranging between approximately #36 and approximately #320, as well as other smaller and larger sizes.
The resulting abrasive-laden waterjet is then discharged against a workpiece through a nozzle tip that is adjacent to the workpiece. The abrasive jet can be used to cut a wide variety of materials. For example, the abrasive jet can be used to cut hard materials (such as tool steel, aluminum, cast-iron armor plate, certain ceramics and bullet-proof glass) as well as soft materials (such as lead). A typical technique for cutting by an abrasive jet is to mount a workpiece to be cut in a suitable jig, or other means for securing the workpiece into position. The abrasive jet can be directed onto the workpiece to accomplish the desired cutting, generally under computer or robotic control. It is generally not necessary to keep the workpiece stationary and to manipulate the abrasive jet cutting tool. The workpiece can be manipulated under a stationary cutting jet, or both the abrasive jet and the workpiece can be manipulated to facilitate cutting.
This application describes various embodiments of fluid-jet or waterjet systems for cutting materials, including waterjet systems having multiple independently-controllable combinations of a bridge and one or more waterjet cutting heads. For example, fluid-jet systems as disclosed herein can be used with a variety of suitable working fluids or liquids to form the fluid jet. More specifically, jet systems configured in accordance with embodiments of the present disclosure can utilize working fluids such as water, aqueous solutions, paraffins, oils (e.g., mineral oils, vegetable oil, palm oil, etc.), glycol, liquid nitrogen, and other suitable jet cutting fluids. As such, the term “water jet” or “waterjet” as used herein may refer to a cutting jet formed by any working fluid associated with the corresponding abrasive jet system, and is not limited exclusively to water or aqueous solutions. In addition, although several embodiments of the present disclosure are described below with reference to water, other suitable working fluids can be used with any of the embodiments described herein. Moreover, as described in detail below, abrasives can be added to waterjet cutting systems configured in accordance with embodiments of the disclosure. Certain details are set forth in the following description and in
Many of the details, dimensions, angles and other features shown in the Figures are merely illustrative of particular embodiments. Accordingly, other embodiments can have other details, dimensions, angles and features. In addition, further embodiments can be practiced without several of the details described below.
In the Figures, identical reference numbers identify identical, or at least generally similar, elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refer to the Figure in which that element is first introduced. For example, element 100 is first introduced and discussed with reference to
In one embodiment, a waterjet system includes a table having two opposing sides and a fluid or water tank therebetween. The table has longitudinal guides (e.g., rails) positioned on the each side. The waterjet system also includes a first bridge movable along the longitudinal guides. The first bridge includes a first latitudinal guide (e.g., a rail) and carries a first waterjet cutting head movable along the first latitudinal guide. The waterjet system also includes a second bridge movable along the longitudinal guides. The second bridge includes a second latitudinal guide (e.g., a rail) and carries a second waterjet cutting head movable along the second latitudinal guide.
The waterjet system also includes a first controller operably coupled to the first bridge and the first waterjet cutting head. The first controller controls the first bridge and the first waterjet cutting head. The waterjet system also includes a second controller operably coupled to the second bridge and the second waterjet cutting head. The second controller controls the second bridge and the second waterjet cutting head independently of the control of the first bridge and the first waterjet cutting head by the first controller.
In another embodiment, a method of operating a waterjet system includes controlling a first bridge longitudinally movable along a waterjet cutting table and a first waterjet cutting head latitudinally movable along the first bridge. The method further includes controlling a second bridge longitudinally movable along the waterjet cutting table and a second waterjet cutting head latitudinally movable along the second bridge. The control of the first bridge and the first waterjet cutting head is independent of the control of the second bridge and the second waterjet cutting head.
In a further embodiment, a method for modifying a waterjet system includes operably coupling a second bridge and a second waterjet cutting head to a waterjet system that already has a first bridge and a first waterjet cutting head that are controlled by a first controller. The method further includes operably coupling the second bridge and the second waterjet cutting head to a second controller. The second controller is configured to control the second bridge and the second waterjet cutting head independently of the control of the first bridge and the first waterjet cutting head by the first controller.
Waterjet Systems and Associated Methods
The waterjet system 100 has two longitudinal guides 108 (e.g., rails) positioned on the first sides 104 (only a first longitudinal guide 108a is illustrated in
The waterjet system 100 also includes a first high-pressure fluid or water source 116 (e.g., a pump) operably coupled to the first waterjet cutting head 110. The first high-pressure water source 116 provides high-pressure water (or other suitable fluid) to the first waterjet cutting head 110. The first waterjet cutting head 110 receives the high-pressure water and forms a first waterjet for use in cutting operations. The first waterjet cutting head 110 can mix abrasives from the first abrasive container 118 to form a first abrasive jet for use in cutting operations. The waterjet system 100 can also include high-pressure pump components (e.g., tubing, lines, etc., not shown in
The waterjet system 100 also includes a first controller 114 operably coupled (e.g., wirelessly or by wiring) to the first bridge 112 and the first waterjet cutting head 110. The first controller 114 can be a computer having a processor, memory (e.g., ROM, RAM) storage media (e.g., hard drive, flash drive, etc.) user input devices (e.g., keyboard, mouse, touch-screen, etc.), output devices (e.g., displays), input/output devices (e.g., network card, serial bus, etc.), an operating system (e.g., a Microsoft Windows operating system), and application programs and data. The first controller 114 can include layout software for generating and/or importing Computer-Aided Design (CAD) drawings or other suitable drawings or information from which cutting operations can be derived. The first controller 114 also includes control software for controlling the first bridge 112 and the first waterjet cutting head 110.
The control software can generate first control instructions for controlling the first bridge 112 and the first waterjet cutting head 110 based on CAD drawings. The first controller 114 controls movement of the first bridge 112 in the longitudinal direction, movement of the first waterjet cutting head 110 in the latitudinal direction, as well as other aspects of the first waterjet cutting head 110 (e.g., Z-axis movement, turning the waterjet/abrasive jet on and off, water pressure, etc.).
The waterjet system 100 also includes a second bridge 122 (alternatively referred to as a second Y-bridge 122). The second bridge 122 is also longitudinally movable (e.g., by a traction drive system) along the two longitudinal guides 108. The second bridge 122 has a second latitudinal guide 125 (e.g., a rail) that is generally parallel to the latitudinal axis 107. The second bridge 122 carries a second waterjet cutting head 120 that is latitudinally movable (e.g., by a traction drive system) along the second latitudinal guide 125. The second waterjet cutting head 120 is also movable in the vertical dimension. The second bridge 122 also carries a second abrasive container 128 that can contain abrasives. The second waterjet cutting head 120 receives high-pressure water from a second high-pressure fluid or water source 126 (e.g., a second pump) to which the second waterjet cutting head 120 is operably coupled and forms a second waterjet for use in cutting operations. The second waterjet cutting head 120 can mix abrasives from the second abrasive container 128 to form a second abrasive jet for use in cutting operations.
The waterjet system 100 also includes a second controller 124 operably coupled (by, e.g., wiring, not shown in
The second controller 124 controls the second bridge 122 and the second waterjet cutting head 120 independently of the first controller 114. The control of the second bridge 122 and the second waterjet cutting head 120 by the second controller is independent of control of the first bridge 112 and the first waterjet cutting head 110 by the first controller 114. For example, the first controller 114 can be programmed using a first instruction set to control the first bridge 112 and the first waterjet cutting head 110 and the second controller 124 can be programmed using a second instruction set, distinct from the first instruction set, to control the second bridge 122 and the second waterjet cutting head 120. The second instruction set can be identical to or different from the first instruction set.
Examples of how the first bridge 112 and the first waterjet cutting head 110 can operate independently of the second bridge 122 and the second waterjet cutting head 120 include at least the following. The first bridge 112 can move along the longitudinal guides 108 in a first longitudinal direction and the second bridge 122 can simultaneously move along the longitudinal guides 108 in the opposite second longitudinal direction. The first bridge 112 and the second bridge 122 can simultaneously move in the same longitudinal direction, but the first waterjet cutting head 110 can move along the first latitudinal guide 115 in a first latitudinal direction and the second waterjet cutting head 120 can simultaneously move along the second latitudinal guide 125 in the opposing second latitudinal direction. The first bridge 112 and first waterjet cutting head 110 can remain stationary while either or both of the second bridge 122 and the second waterjet cutting head 120 moves. The first waterjet cutting head 110 can be configured to reduce taper and the second waterjet cutting head 120 can be configured to cut large angles from vertical (e.g., up to 60 degrees). The first waterjet cutting head 110 can cut a first workpiece according to a first instruction set from the first controller 114 and the second waterjet cutting head 120 can cut a second workpiece, different from the first workpiece, according to a second instruction set from the second controller 124. These examples are illustrative and not limiting. Those of skill in the art will understand various ways by which the first bridge 112 and the first waterjet cutting head 110 exhibit independence from the second bridge 122 and the second waterjet cutting head 120.
Boundaries can be defined (by, e.g., an operator) for one or both of the first 112 and second 122 bridges such that the two bridges do not collide during operation. In some embodiments, the first 112 and second 122 bridges include sensors that detect imminent or occurring collisions (e.g., collisions such as the two bridges colliding with each other, or either bridge colliding with an end of the table 102) and send signals to the first controller 114 and the second controller 124 that cause either or both of the first bridge 112 and the second bridge 122 to stop, thereby averting a collision or attempting to avert a collision.
The waterjet system can utilize the process 200 to cut multiple parts simultaneously. For example, the waterjet system can cut the multiple parts identically or in different fashions (e.g., the first and second waterjet cutting heads can produce different parts). As another example, the waterjet system could control the first bridge and the first waterjet cutting head to cut a first portion of a workpiece and also independently control the second bridge and the second waterjet cutting head to cut a second portion of the workpiece (which may or may not overlap with the first portion). As another example, the waterjet system could control both bridges and both waterjet cutting heads to cut the same workpiece, and then idle the first bridge and first waterjet cutting head in favor of the second bridge and second waterjet cutting head (e.g., the second waterjet cutting head can make a final cut or otherwise finalize processing the workpiece).
Those skilled in the art will appreciate that the steps shown in any of
Waterjet systems having multiple independently-controllable bridges, each carrying one or more independently-controllable waterjet cutting heads, and methods associated with such waterjet systems can provide certain advantages over conventional waterjet systems, such as those using ball screw drive systems. For example, a waterjet system having a single existing bridge and a single existing waterjet cutting head can be modified to include an additional bridge and an additional waterjet cutting head that can be controlled independently of the existing bridge and existing waterjet cutting head. Such a modified waterjet system can undertake two independent cutting operations, which can increase productivity without necessitating the purchase of an additional waterjet system.
Other advantages can also be provided by such waterjet systems and associated methods. For example, adding a second bridge adds the performance of a second waterjet system with minimal floor space impact, which can be advantageous in space-limited environments. As another example, each bridge and waterjet cutting head combination can be controlled by a separate instance of the same control software, thereby obviating the need for an operator to learn a different control system.
As another example, such waterjet systems can reduce production down times or setup times, as an operator may not need to stop all cutting to load or unload material. With multiple bridges and waterjet cutting heads, one bridge and waterjet cutting head can be idled (not forming a waterjet/abrasive jet) while the other(s) remain operation, thereby allowing an operator to load or unload material in the vicinity of the idled bridge and waterjet cutting head. As another example, if one bridge and waterjet cutting head combination is down or requires maintenance, the other bridge and waterjet cutting head combination can still be used. Accordingly, multiple independently-controllable waterjet cutting heads provide a desired redundancy.
Moreover, parts for the existing bridge and waterjet cutting head combination (e.g., consumable parts such as seals, valves, abrasive-jet nozzles, mixing tubes, orifices, high-pressure hose or high-pressure pump components) can be used with the second bridge and waterjet cutting head combination. As another example, a first waterjet cutting head can cut a workpiece (e.g., soft materials such as rubber) with a water-only jet stream and a second waterjet cutting head can cut (e.g., simultaneously) another workpiece (e.g., harder or thicker materials such as steel) with an abrasive jet stream.
The techniques described herein can be used in other beam cutting technologies, such as laser and plasma for example. More specifically, a laser cutting system can have a table with longitudinal guides along which multiple bridges are longitudinally movable. Each bridge can have a latitudinal guide and carry a laser cutting head that is latitudinally movable along the bridge. Each bridge and associated laser cutting head can be controlled independently of each other bridge and associated laser cutting head. As another example, a plasma cutting system can have a table with longitudinal guides along which multiple bridges are longitudinally movable. Each bridge can have a latitudinal guide and carry a plasma cutting head that is latitudinally movable along the bridge. Each bridge and associated plasma cutting head can be controlled independently of each other bridge and associated plasma cutting head. Those of skill in the art will understand from this disclosure that the disclosed techniques are applicable to other beam cutting technologies.
From the foregoing, it will be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope. Those skilled in the art will recognize that numerous liquids other than water can be used, and the recitation of a jet as including water should not necessarily be interpreted as a limitation. For example, fluids other than water can also be employed to cut materials that cannot be in contact with water. A customary term for the process of cutting with a fluid is “waterjet cutting” and the like, but the term “waterjet cutting” is not intended to exclude cutting by jets of fluid other than water or cutting by jets of fluid mixed with abrasives. As an example of another modification, although two independently controllable waterjet cutting heads have been described, more than two (e.g., three, four, or more) independently controllable waterjet cutting heads may be used. As another example, each bridge may carry multiple cutting waterjet cutting heads. As another example, multiple pumps may be used for each waterjet cutting head. As another example, the bridges are described as longitudinally movable along the table, but a waterjet system may be configured such that the bridges are latitudinally movable along the waterjet system table (with each waterjet cutting head longitudinally movable along the respective bridge).
As another example, although the first 114 and second 124 controllers are described as each being a separate computer with reference to
This application claims the benefit of U.S. Provisional Patent Application No. 61/316,341, entitled “WATERJET SYSTEMS INCLUDING MULTIPLE INDEPENDENTLY-CONTROLLABLE BRIDGES AND WATERJET CUTTING HEADS, AND ASSOCIATED METHODS” filed Mar. 22, 2010, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3424357 | Huffman et al. | Jan 1969 | A |
4495845 | Sherby | Jan 1985 | A |
4920495 | Pilkington | Apr 1990 | A |
5806390 | Pomerleau et al. | Sep 1998 | A |
6430787 | Becan et al. | Aug 2002 | B1 |
8534787 | Yafe | Sep 2013 | B2 |
20080110311 | Stangherlin | May 2008 | A1 |
20090064832 | Caretta et al. | Mar 2009 | A1 |
20090272409 | Petit | Nov 2009 | A1 |
20100066786 | Yafe | Mar 2010 | A1 |
Entry |
---|
Carinox S.A. Purchases Third Waterjet Cutting Machine from Flow International Corporation, Dec. 18, 2003, scanned into the PTO application. |
Non-Final Office Action for U.S. Appl. No. 12/083,133, filed May 20, 2008, mailed Jun. 20, 2012, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20110232442 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61316341 | Mar 2010 | US |