This application is based on Japanese Patent Application Nos. 2004-87740 filed on Mar. 24, 2004 and 2005-4449 filed on Jan. 11, 2005, the disclosures of which are incorporated herein by reference.
The present invention relates to a fluid machine for converting energy of working fluid into mechanical rotational force. The fluid machine according to the present invention is an expansion and compression device to be used in a Rankine cycle for collecting heat energy, wherein the fluid machine has a pump mode operation for compressing and discharging the working fluid, and a motor mode operation for converting fluid pressure into kinetic energy to obtain the mechanical rotational force.
In a prior art fluid machine, for example shown in Japanese (Non-examined) Patent Publication S63-96449, heat energy is collected by Rankine cycle, wherein a compressor is also used as an expansion device for converting the collected heat energy into mechanical rotational force.
The applicant of the present invention has applied for a patent application in Japan under Japanese Patent Application No. 2003-141556, in which the scroll type fluid machine is proposed to perform compression and expansion of working fluid by rotating the fluid machine in a forward and backward direction. The fluid machine is used for an air conditioning apparatus for a motor vehicle, in which a refrigerating cycle is also used as a Rankine cycle for collecting waste heat from an engine.
The fluid machine has a pump mode function for compressing working fluid when it is driven by a driving force from an engine or an electric motor, or from both of them, and further a motor mode function for performing an expansion movement when it receives energy from the working fluid.
The compressor device of the fluid machine sucks gas-phase refrigerant into working chambers and compresses the same by decreasing the working chambers to discharge a compressed refrigerant when it receives a driving force from an outside energy source, whereas the expansion device increases the working chambers by introducing expanding the high-pressure gas in the working chamber to generate mechanical energy.
When the scroll type fluid machine is operated as the compression device, the working fluid is sucked from an outside portion of scroll wraps and compresses the working fluid. In this operation, an outside working chamber immediately starts its compression when the working chamber is closed. At the starting period of the compression, since there is a little pressure difference between the working chamber and the outside thereof, the working fluid is hardly leaked from the working chamber.
On the other hand, when the scroll type fluid machine is operated as the expansion device, the high pressure working fluid is introduced into an inside working chamber and expanded outwardly along the orbital movement of a movable scroll. When the working chamber reaches at its end stroke (comes to its outermost working chamber position), the pressure of the working fluid has still a certain high amount and therefore is likely to be leaked from the working chamber.
As above, when the scroll type fluid machine is used as the expansion device, it is important to keep a high sealing effect at outer portions of scroll wraps. It is preferable to extend, as long as possible, a seal element to be provided at a front end of the scroll wrap of a fixed scroll to increase the sealing effect. When the seal element is extended longer, then it becomes necessary to make a movable scroll larger so that an outer end portion of the seal element may not be brought out of contact from a bottom surface of the movable scroll.
This is because the outer end portion of the seal element may be damaged by the movable scroll, when the seal element becomes out of contact with the bottom surface of the moving scroll in accordance with a rotation (orbital movement) of the movable scroll and is brought into contact again with the movable scroll when it is further rotated.
It is, therefore, an object of the present invention, in view of the above mentioned problems, to provide a fluid machine which increases a sealing effect of scroll wraps, in particular a sealing effect at outer portions of the scroll wraps, when it is operated as an expansion device, while an increase of size and weight of the fluid machine is suppressed.
A scroll type fluid machine according to the present invention has a fixed scroll and a movable scroll operatively coupled with each other to form working chambers, wherein the movable scroll is rotated with an orbital movement so that the volume of the working chamber is increased or decreased in accordance with the orbital movement of the movable scroll. Each of the fixed and movable scrolls has a spiral scroll wraps and a seal element is provided at a front end of the scroll wrap, wherein each of front ends are opposed to each bottom surface of the scrolls.
According to a feature of the present invention, an outer end of the seal element for the fixed scroll is extended to a position close to an end of an inside spiral wall of the fixed scroll, and an outwardly extended portion is formed at an outer periphery of a disc-shaped base plate of the movable scroll, so that the bottom surface of the movable scroll is always kept in a sliding contact entirely with the seal element during the orbital movement of the movable scroll.
According to another feature of the present invention, an outer shape of the movable scroll is formed with an envelope curve, which is relatively described on the bottom surface of the movable scroll by an outer edge of the seal element of the fixed scroll, when the movable scroll is rotated. With such an arrangement of the outer shape, the fluid machine can be made smaller in size and lighter in weight.
According to a further feature of the present invention, a thickness of the outwardly extended portion formed at the outer periphery of the disc-shaped base plate is made smaller than that of the disc-shaped base plate, so that the weight of the fluid machine can be smaller.
According to a further feature of the present invention, the disc-shaped base plate of the movable scroll has a diameter enough to always keep a bottom surface of the movable scroll in a sliding contact entirely with the seal element of the fixed scroll during the orbital movement of the movable scroll, and such an outer portion of the disc-shaped base plate, which does not come in contact with any portion of the seal element of the fixed scroll during the orbital movement of the movable scroll, is cut out.
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description made with reference to the accompanying drawings. In the drawings:
A first embodiment of the present invention will now be explained with reference to
In
A reference numeral 12 designates a receiver for dividing the refrigerant from the condenser 11 into a gas-phase refrigerant and a liquid-phase refrigerant. A reference numeral 13 is an expansion valve of a temperature-dependant type for expanding and decreasing the pressure of the liquid-phase refrigerant from the receiver 12, more particularly for decreasing the pressure of the refrigerant in an isenthalpic manner and controlling an opening degree of a passage for the refrigerant so that the degree of superheat of the refrigerant to be sucked into the fluid machine 10 will be maintained at a predetermined value when the fluid machine 10 is operating in the pump mode operation.
A reference numeral 14 designates a heat absorbing device (also referred to as an evaporator) for evaporating the refrigerant from the expansion valve 13 and thereby absorbing heat. The above fluid machine 10, the condenser 11, the receiver 12, the expansion valve 13 and the evaporator 14 constitute a refrigerating cycle for transmitting the heat from a low temperature side to a high temperature side.
A heating device 30 is disposed in a refrigerant passage connected between the fluid machine 10 and the condenser 11 and heats the refrigerant flowing through the refrigerant passage by heat-exchanging the refrigerant with engine cooling water flowing through the heating device 30. A switching valve 21 of a three-way valve is provided in a circuit for the engine cooling water, so that the flow of the cooling water through the heating device 30 is switched on and off. The switching valve 21 is operated by an electronic control unit (not shown).
A first by-pass passage 31 is connected between the receiver 12 and the heating device 30 so that the liquid-phase refrigerant will flow from the receiver 12 to an inlet side of the heating device 30 when a liquid pump 32 is operated. A check valve 31a is provided in this first by-pass passage so that only the flow of the refrigerant from the receiver 12 to the heating device 30 is allowed. The liquid pump 32 in this embodiment is an electrically driven pump, which is also operated by the electronic control unit (not shown).
A second by-pass passage 33 is connected between the outlet side (a low pressure port 111 described later) of the fluid machine 10 and the inlet side of the condenser 11 and a check valve 33a is disposed in this passage, so that the refrigerant is allowed to flow from the fluid machine 10 to the condenser 11, only when the fluid machine 10 is operated in the motor mode operation.
A check valve 14a is provided in the refrigerating cycle so that the refrigerant is allowed to flow from the outlet side of the evaporator 14 to the inlet side (the low pressure port 111) of the fluid machine 10 when the fluid machine 10 is operated in the pump mode operation. An ON-OFF valve 34 is of an electromagnetic type for opening and closing the passage for the refrigerant cycle, wherein the ON-OFF valve 34 is controlled by the electronic control unit (not shown).
A water pump 22 circulates the engine cooling water, and a radiator 23 is a heat exchanger for heat-exchanging the heat of the engine cooling water with the ambient air to cool down the engine cooling water. Although the water pump 22 in this embodiment is a mechanical type pump driven by a driving power from the engine 20, an electrically driven pump can be used instead of the mechanical type pump 22. A by-pass passage for by-passing the radiator 23 and a valve for controlling an amount of the engine cooling water flowing through the radiator 23 are omitted in
Now, the fluid machine 10 will be explained with reference to
The electric rotating device 200 comprises a stator 210 and a rotor 220 rotating within a space of the stator 210, wherein a winding is wound on the stator 210 and a permanent magnet is fixed to the rotor 220. When the electric power is supplied to the stator 210, the rotor 220 will be rotated to operate as an electric motor so that it drives the expansion-and-compressor device 100, whereas it will operate as an electric power generator when a rotational force is applied to the rotor 220.
The electromagnetic clutch 300 comprises a pulley 310 to be connected to the engine 20 via a V-belt, an electromagnetic coil 320 and a friction plate 330 which will be displaced by an electromagnetic force generated at the electromagnetic coil 320 when it is energized. The coil 320 will be energized when the rotational force from the engine 20 will be transmitted to the fluid machine 10, and the supply of the electric power to the coil 320 will be cut off when the transmission of the rotational force shall be cut off.
The expansion-and-compressor device 100 has the same construction to a well known scroll type compressor, and comprises a middle housing 101 fixed to a stator housing 230 of the electric rotating device 200, a fixed scroll 102 connected to the middle housing 101, and a movable scroll 103 disposed in a space defined by the middle housing 101 and the fixed housing 102. The movable scroll 103 is rotated in the space with an orbit motion to form multiple working chambers V. The device 100 further comprises a high pressure chamber 104, passages 105 and 106 operatively communicating the working chamber V with the high pressure chamber 104, and a valve mechanism 107 for controlling an opening and closing of the passage 106.
The fixed scroll 102 comprises a base plate 102a and a spiral scroll wrap 102b protruding from the base plate 102a towards the middle housing 101, whereas the movable scroll 103 likewise has a base plate 103a and a spiral scroll wrap 103b protruding from the base plate 103a towards the fixed scroll 102, wherein wall portions of the spiral scroll wraps 102b and 103b are contacted with each other to form the working chambers V. When the movable scroll 103 is rotated, the space of the working chamber V will be expanded or decreased. The details of the fixed and movable scrolls 102 and 103 will be further explained later.
A shaft 108 is rotationally supported by the middle housing 101 and provided with an internal gear 403, which is a part of the transmission device 400. The shaft 108 is further provided with an eccentric shaft 108a which is eccentric from a rotational axis of the shaft 108 to operate as a crank arm and operatively connected to the movable scroll 103 over a bush 103d and a bearing 103c.
Since the bush 103d can be slightly displaced with respect to the eccentric shaft 108a, the movable scroll 103 is displaced, by reaction force of the compression, in a direction to increase a contact pressure between the scroll wraps 102b and 103b.
A reference numeral 109 designates an antirotation mechanism for preventing the rotation of the movable scroll 103 and allowing the orbital motion thereof. When the shaft 108 is rotated by one revolution, the movable scroll 103 is moved around the shaft 108 with the orbital motion, and the volume of the working chamber V will be decreased as the working chamber is moved from the outer position to the inner position. The mechanism 109 here comprises a ring and a pair of pins.
The passage 105 operates as an outlet port for pumping out the pressurized refrigerant by communicating the working chamber V, which will reach its minimum volume during the pump mode operation, with the high pressure chamber 104, whereas the passage 106 operates an inlet port for introducing high-temperature and high-pressure refrigerant, namely superheated steam of the refrigerant, from the high pressure chamber 104 into the working chamber V, the volume of which becomes at its minimum value during the motor mode operation.
The high pressure chamber 104 has a function of equalizing the pressure of the refrigerant by smoothing pulsation of the pumped out refrigerant. The high pressure port 110 is formed in a housing forming the high pressure chamber 104 and the port 110 is connected to the heating device 30 and the heat radiating device 11.
The low pressure port 111 is formed in the stator housing 230 for communicating a space defined by the stator housing 230 and the fixed scroll 102 with the evaporator 14 and the second by-pass passage 33.
A discharge valve 107a and a valve stopper 107b are fixed to the base plate 102a of the fixed scroll 102 by a bolt 107c, wherein the valve 107a is a check valve of a reed valve type for preventing the pumped out refrigerant from flowing back to the working chamber V from the high pressure chamber 104, and the stopper 107b is a plate for limiting the movement of the reed valve 107a.
A spool 107d is a valve for opening and closing the inlet port 106, an electromagnetic valve 107e is a control valve for controlling pressure in a back pressure chamber 107f by opening and closing a passage between back pressure chamber 107f and the high pressure chamber 104 or the space communicated with the low pressure port 111. A spring 107g is disposed in the back pressure chamber 107f to urge the spool 107d in a direction to close the inlet port 106, and an orifice 107h having a certain flow resistance is formed in the passage connecting the high pressure chamber 104 with the back pressure chamber 107f.
When the electromagnetic valve 107e is opened, the back pressure chamber 107f is communicated to the space defined by the stator housing 230 (the lower pressure side), then the pressure in the back pressure chamber 107f will be decreased lower than that in the high pressure chamber 104 and finally the spool 107d will be moved against the spring force of the spring 107g in a direction to open the inlet port 106. Since the pressure drop at the orifice 107h is so high that an amount of the refrigerant flowing from the high pressure chamber 104 into the back pressure chamber 107f is negligible small.
On the other hand, when the electromagnetic valve 107e is closed, the pressure in the back pressure chamber 107f becomes equal to that in the high pressure-chamber 104 and then the spool 107d will be moved in the direction to close the inlet port 106. As above, the spool 107d, the electromagnetic valve 107e, the back pressure chamber 107f and the orifice 107h constitute a pilot-type electric valve for opening and closing the inlet port 106.
The transmission device 400 comprises the ring shape internal gear 403 (ring gear), a planetary carrier 402 having multiple (e.g. three) pinion gears 402a being engaged with the ring gear 403, and a sun gear 401 being engaged with the pinion gears 402a.
The sun gear 401 is integrally formed with the rotor 220 of the electric rotating device 200 and the planetary carrier 402 is integrally fixed to a shaft 331 to which a friction plate 330 is connected. And the ring gear 403 is integrally formed with shaft 108.
A one-way clutch 500 transmits a rotational force from the pulley 310 to the shaft 331, a bearing 332 rotationally supports the shaft 331, a bearing 404 rotationally supports the sun gear 401, namely the rotor 220 with respect to the shaft 331, a bearing 405 rotationally supports the shaft 331 (the planetary carrier 402) with respect to the shaft 108, and a bearing 108b rotationally supports the shaft 108 with respect to the middle housing 101.
A rip seal 333 is a seal for preventing the refrigerant from flowing out through a gap between the shaft 331 and the stator housing 230.
The characteristic portion of the present invention is explained with reference the drawings.
As shown in
A chip seal 112 (a seal element) is provided in a spiral groove formed at a front end of the spiral scroll wrap 102b. When the movable scroll 103 is assembled to the fixed scroll 102, the spiral scroll wrap 103b is housed in the spiral space 102c of the fixed scroll 102, to form working chambers V. The chip seal 112 of the fixed scroll 102 is brought into a sliding contact with a bottom surface of a spiral space 103e likewise formed in the movable scroll 103, whereas a chip seal 113 provided at a front end of the spiral wrap 103b is brought into a sliding contact with a bottom surface of the spiral space 102c of the fixed scroll 102. As above, the working chambers V are hermetically sealed.
The scroll wrap 102b has an inside wall and an outside wall, each of which is formed with the involute curve. In
In the conventional fixed scroll 102, as shown in
In the fixed scroll 102 according to the first embodiment, as shown in
As shown in
As shown in
If the conventional movable scroll 103 shown in
Accordingly, in the conventional fixed scroll 102, as shown in
According to the first embodiment of the present invention, therefore, a flanged portion H (an outwardly extended portion) is formed at an outer periphery of the disc-shaped base plate 103a, as shown in
As shown in
A driving center of the movable scroll 103 to be connected to the shaft 108a is arranged at such a point, at which a rotational imbalance can be minimized. According to the embodiment, a thickness of the flanged portion H is made smaller than that of the other portion of the base plate 103a to keep the rotational imbalance at a minimized amount and also to make the movable scroll 103 lighter in its weight, as shown in
An almost disc-shaped base plate 103a is formed with a thick portion, having a diameter “D2” (in
Now, an operation of the fluid machine as described above will be explained.
(Air Conditioning Operation)
The air conditioning mode is an operational mode, in which a cooling operation is performed at the evaporator 14 and the heat of the refrigerant is radiated at the condenser 11. In this embodiment, the thermal energy (the cooling energy) generated by the expansion-and-compressor device 100 is utilized for the cooling and defrosting operation for the vehicle with the heat absorbing effect at the evaporator 14. It is, however, also possible to utilize the thermal energy (the heating energy) at the condenser 11 for a heating operation for the vehicle.
In this air conditioning mode, the liquid pump 32 is stopped and the ON-OFF valve 34 is opened so that the refrigerating cycle is operated by the expansion-and-compressor device 100. Furthermore, the engine cooling water bypasses the heating device 30 by the operation of the switching valve 21. The refrigerant flows from the expansion-and-compressor device 100, the heating device 30, the condenser 11, the receiver 12, the expansion valve 13, the evaporator 14 and back to expansion-and-compressor device 100. Since the hot engine cooling water does not flow through the heating device 30, the refrigerant flowing therethrough is not heated, wherein the heating device 30 operates just as a passage for the refrigerant.
The low-pressure refrigerant depressurized at the expansion valve 13 is evaporated by absorbing the heat from the air, which will be blown into the passenger compartment of the vehicle. The vaporized gas-phase refrigerant is sucked into and compressed by the expansion-and-compressor device 100, and then the compressed high temperature refrigerant is cooled down and condensed at the condenser 11.
Although Freon (HFC134a) is used as the refrigerant (working fluid) in this embodiment, any other refrigerant which will be liquidized at a higher pressure side can be used (not limited to HFC134a).
(Waste Heat Collecting Mode)
This is an operational mode in which the air-conditioning operation is stopped, namely the expansion-and-compressor device 100 as the compressor device is stopped, and instead the waste heat from the engine 20 is collected and converted to mechanical energy, wherein the expansion-and-compressor device is operated as the expansion device 100.
In this operational mode, the liquid pump 32 is operated, the ON-OFF valve 34 is closed and the device 100 is operated as the expansion device (motor mode operation). And the engine cooling water from the engine 20 is circulated through the heating device 30 by means of the switching valve 21.
The refrigerant flows in this operational mode from the receiver 12 through the first by-pass passage 31, the heating device 30, the expansion device 100, the second by-pass passage 33, the heat radiating device 11, and back to the receiver 12. The flow of the refrigerant in the heat radiating device 11 is different from that for the pump mode operation.
As above, the superheated steam heated by the heating device 30 flows into the expansion device 100 and expanded therein so that the enthalpy of the refrigerant will be decreased in an isentropic manner. Accordingly, the electric power corresponding to an amount of decrease of the enthalpy will be charged into the battery.
The refrigerant from the expansion device 100 will be cooled down and condensed at the heat radiating device 11 and charged in the receiver 12. Then the liquid-phase refrigerant will be sucked from the receiver 12 by the liquid pump 32 and pumped out to the heating device 30. The liquid pump 32 pumps out the liquid-phase refrigerant at such a pressure that superheated steam at the heating device 30 may not flow in a backward direction.
As explained above, the first embodiment of the present invention has the following advantages.
(1) The sealing performance at the outer portions of the scroll wraps can be increased, and thereby the efficiency of the expansion-and-compressor device 100 is improved, in particular when the device 100 is operated as the expansion device.
The above advantage is achieved by extending the chip seal 112 to the end portion A of the inside spiral wall of the fixed scroll 102 and by outwardly extending the outer periphery of the movable scroll 103, so that the chip seal 112 is always kept in the sliding contact with the surface of the moving scroll 103 during the orbital movement of the movable scroll 103.
(2) The possible increase of the size and weight of the fluid machine 10 can be further suppressed.
The advantage is achieved by forming the outer shape of the movable scroll, in particular the outer shape of the outwardly extended portion (the flanged portion), with the envelope curve which is relatively described by an outer edge of the chip seal 112 of the fixed scroll 102.
(3) A possible pressure loss, when sucking the working fluid into the compressor device 100 or when discharging the working fluid from the expansion device 100, can be suppressed to a smaller value.
This is achieved by increasing the fluid passage behind the movable scroll 103. This is because the diameter of the thick base plate 103a of the movable scroll is made smaller than that of the conventional movable scroll.
(4) The rotational weight imbalance during the orbital movement of the movable scroll 103 can be reduced and further the increase of the size and weight of the fluid machine 10 can be suppressed.
This is because that the driving center of the movable scroll 103 to be connected to the shaft 108a is arranged at such a point, at which the rotational imbalance is minimized.
(5) The increase of the weight of the fluid machine 10 can be also suppressed.
This is achieved by forming the flanged portion H at the outer periphery of the movable scroll 103, the thickness of which is smaller than the base plate 103a.
As already explained, according to the first embodiment shown in
According to the second embodiment, a hatched area “I” of the movable scroll 103 is formed with the thick portion, as shown in
With such an arrangement, the scroll wrap 103b can be more strongly supported by the base plate 103a, and at the same time the weight saving can be likewise achieved.
According to the third embodiment, the thick portion of the base plate 103a is made to be identical to that of conventional movable scroll, so that the diameter of the thick portion 103a is made to be “D1”, as shown in
According to the fourth embodiment, the base plate 103a of the movable scroll 103 is formed from a disc-shaped thick portion having a diameter “D3”, which is larger than the diameter “D1” of the conventional movable scroll, so that a bottom surface of the movable scroll 103 has a sufficient area to always keep the sliding contact with the chip seal 112 of the fixed scroll 102. According to the fourth embodiment, however, a hatched portion “S” is cut out from the base plate 103a, since the hatched portion “S” is not necessary to keep the sliding contact between the bottom surface of base plate 103a and the chip seal 112 of the fixed scroll 102.
In the above first to third embodiments, the outer shape of the base plate (namely, the outer shape of the flanged portion) is preferably formed by the envelope curve, which is described by the scroll wrap 102b in response to the orbital movement of the movable scroll 103, so that all portions of the chip seal 112 provided on the fixed scroll 102 is kept in contact with the bottom surface of the movable scroll 103. The outer shape of the base plate (the flanged portion) is, however, not necessarily formed by the envelope curve.
Furthermore, in the above embodiments, the chip seal 112 is extended to the end portion A of the inside spiral wall. The chip seal can be further extended or extended to a half way.
The transmission device 400 of the planetary gear train can be replaced by any kinds of other transmission devices, such as CVT (Continuous Variable Transmission), or a toroidal-type transmission without using belts, and the like.
Although the collected waste heat energy from the engine is converted into the electric power by the expansion-and-compressor device 100 and charged in the battery in the above embodiment, the collected energy can be converted into mechanical energy, for example, into kinetic energy by a flywheel, or into elastic potential energy by springs.
The fluid machine should not be limited to a use for motor vehicles.
Number | Date | Country | Kind |
---|---|---|---|
2004-087740 | Mar 2004 | JP | national |
2005-004449 | Jan 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5127809 | Amata et al. | Jul 1992 | A |
5722257 | Ishii et al. | Mar 1998 | A |
5775888 | Sakamoto et al. | Jul 1998 | A |
5938417 | Takao et al. | Aug 1999 | A |
6234400 | Guyer | May 2001 | B1 |
6321564 | Yamanaka et al. | Nov 2001 | B1 |
6464479 | Saunders | Oct 2002 | B1 |
20020057976 | Kimura et al. | May 2002 | A1 |
20030115877 | Bara et al. | Jun 2003 | A1 |
20040184923 | Iwanami et al. | Sep 2004 | A1 |
20040231331 | Iwanami et al. | Nov 2004 | A1 |
20040250556 | Sienel | Dec 2004 | A1 |
20050193734 | Iwanami et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
A-S63-096449 | Apr 1988 | JP |
03088984 | Apr 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20050214148 A1 | Sep 2005 | US |