Fluid management system

Information

  • Patent Grant
  • 11554214
  • Patent Number
    11,554,214
  • Date Filed
    Tuesday, June 23, 2020
    3 years ago
  • Date Issued
    Tuesday, January 17, 2023
    a year ago
  • Inventors
  • Original Assignees
    • Meditrina, Inc. (Cupertino, CA, US)
  • Examiners
    • Zhang; Jenna
    Agents
    • Wilson Sonsini Goodrich & Rosati
Abstract
A surgical fluid management system includes a console and a cassette for delivering fluids to a surgical site. The console has a pump rotor and a pressure-sensing membrane. The cassette has a cassette housing, a flexible fluid delivery tube in the housing. The flexible fluid delivery tube has a lumen configured to interface with the pump rotor and to deliver a flow of fluid from a fluid source as the rotor is rotated. A pressure-transmitting membrane is located in a wall of the cassette housing and in fluid communication with said fluid delivery lumen. The pressure-transmitting membrane flexes outwardly in response to a positive pressure in the lumen and flexes inwardly in response to a negative pressure in the lumen. The pressure-transmitting membrane detachably adheres to or presses against the pressure-sensing membrane to cause the pressure-sensing membrane to move in response to pressure changes in the flexible fluid delivery tube.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to a surgical fluid management system and more particularly to a surgical fluid management system of the type used in endoscopic procedures.


Surgical fluid management systems typically deliver a fluid, such as saline, to a targeted working space or body cavity to provide access and visibility to the physician performing a procedure in the working space or body cavity. The fluid usually provides a pressure sufficient to “open” the space (i.e. create a working space for the procedure) as well as flushing blood and debris from the space. Typically, the surgical fluid management system includes a fluid bag as a source of fluid and a control system including a pump for delivering the fluid from the fluid bag to a surgical working space a preset fluid pressure.


Surgical fluid management systems are often inconvenient to use and difficult to monitor. Further, the control systems of such fluid management systems are often unable to accurately measure pressure in a working space when the patient and the fluid management console are at different elevations.


One challenge with present fluid management systems is the early detection of empty fluid bags. While fluid bags are usually changed at regular intervals and/or when observed to be low on fluid, such “manual” protocols are subject to human error.


It would therefore be beneficial to provide improved surgical fluid management systems that overcome at least some of these shortcomings. In particular, it would be desirable to provide surgical fluid management systems with an ability to monitor when the fluid in a bag has been exhausted. At least some of these objectives will be met by the inventions described below.


Listing of Background Art

US2016/0242844; US2018/0326144; US2019/0030235; and US2020/0030527, have common inventorship and describe surgical fluid management systems. US2020/0030527 describes a pressure-transmitting membrane located in a wall of a cassette housing in fluid communication with a fluid delivery lumen. FIGS. 1-5 of the present application are included in US2020/0030527. The full disclosure of US2020/0030527 is incorporated herein by reference.


SUMMARY OF THE INVENTION

In general, the fluid management system of the present invention include a disposable cassette carrying inflow and/or outflow tubing sections that are configured for releasably mating with a control unit and roller pump head(s). The fluid management systems can be adapted to automatically recognize the type of disposable cassette and the volume of fluid in an inflow source. During operation, the system can calculate pressure in the working space based on fluid pressure in the cassette tubing set, and provide for inflow and outflow control to maintain a desired pressure in the working space or adjust other operating parameters. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.


The present invention provides improved fluid management systems and methods for their use. In particular, the present invention provides a disposable tubing cassette, a console for detachably receiving the disposable tubing cassette, and methods for mounting and replacing the tubing cassette on the console. The disposable tubing cassette will usually include a first flexible tubing loop, where the tube is used for delivering fluid from a fluid source to a patient. A second tube may be used for removing fluid from the patient and delivering the fluid to a disposal receptacle. The fluid management systems may also be configured to alert the user when the cassette has been successfully loaded or, conversely, when the cassette has not been successfully loaded. Further capabilities include sensing conditions of the fluid, in particular, positive and negative pressures in a fluid in an inflow pathway of the cassette. Automatic locking capabilities may also be provided by a motor and control mechanism carried by the console.


In a first specific aspect of the present invention, a surgical fluid management system comprises a pump configured to deliver fluid to a patient from a replaceable fluid bag. A controller is operatively connected to the pump, and a sensor is operatively connected to the pump and configured to measure a fluid flow or pump parameter associated with the presence of fluid in the replaceable fluid bag. The controller is programmed or configured to detect when the fluid flow or pump parameter indicates that the replaceable fluid bag is empty or near empty.


In specific instances or examples of the present invention, the sensor measures a fluid flow parameter selected from pressure and flow rate. In alternative instances or examples of the present invention, the sensor measures a pump parameter selected from operating voltage, current consumption, and pump speed. In all cases, the sensor measures the parameter in a manner where a change in the measured parameter correlates with the availability of fluid in the replaceable and indicates when fluid bag is empty or near empty.


In further specific instances or examples of the present invention, the pump comprises a rotor with a peristaltic output producing compression pressure peaks and decompression pressure troughs. The sensor comprises a pressure sensor, and the fluid flow parameter comprises a difference between the compression pressure peak and the decompression pressure trough. A difference between the compression pressure peak and the decompression pressure trough which falls below a minimum threshold value indicates that the replaceable fluid bag is empty or near empty.


In other specific instances or examples of the present invention, the difference between the compression pressure peak and the decompression pressure trough begins to fall when fluid delivered by pump is mixed with air as occurs when the replaceable fluid bag empties.


In still more specific instances or examples of the present invention, the pump comprises a pressure-sensing membrane configured to interface with a cassette carrying flexible tubing and wherein the cassette comprises a pressure-transmitting membrane in the cassette housing in fluid communication with a lumen in the flexible tubing, and wherein the pressure sensor is configured to measure fluid pressure in the flexible tubing.


In another aspect of the present invention, a method for managing fluids during a medical procedure comprises attaching a replaceable fluid bag to a pump. The pump is operated to pump fluid from the replaceable fluid bag to a patient, and a fluid flow or pump parameter associated with the presence of fluid in the replaceable fluid bag is sensed. The fluid flow or pump parameter is monitored to determine when the parameter indicates that the replaceable fluid bag is empty or near empty.


The methods of the present invention may further comprise any one or more of alerting a user when the replaceable fluid bag is detected to be empty or near empty, automatically stopping the pump when the replaceable fluid bag is detected to be empty or near empty, and replacing the replaceable fluid bag when the replaceable fluid bag is detected to be empty or near empty.


In specific instances or examples of the methods of present invention, a fluid flow or pump parameter is sensed, typically comprising measuring a fluid flow parameter selected from pressure and flow rate. In alternative instances or examples of the methods of present invention, a fluid flow or pump parameter is sensed, typically comprising measuring a pump parameter selected from operating voltage, current consumption, and pump speed.


In an exemplary instance of the methods herein, the pump comprises a rotor with a peristaltic output producing compression pressure peaks and decompression pressure troughs. The sensor measures a pressure output of the pump, and the fluid flow parameter comprises a difference between a measured compression pressure peak from the pump and a measured decompression pressure trough from the pump. Detecting comprises detecting when a difference between the measured compression pressure peak and the measured decompression pressure trough falls below a minimum threshold value indicating that the replaceable fluid bag is empty or near empty.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a console or control unit of a fluid management system in partly phantom view that includes an inflow peristaltic pump and a detachable cassette that carries an inflow tubing loop adapted for engaging the peristaltic pump head or rotor, further showing a fixed base plate that carries the pump motor and rotor together with a sliding base plate to which the cassette is attached.



FIG. 2 illustrates a back side of the cassette of FIG. 1 further showing a flexible membrane of a sensing window in the fluid inflow path of the cassette adapted to interface with a pressure sensor membrane on the console of FIG. 1.



FIG. 3A is an enlarged schematic view of the flexible cassette membrane interfacing with a sensor membrane of a pressure sensor carried by the console in a first static condition, wherein both membranes carry magnets for detachable coupling of the membranes.



FIG. 3B is a schematic view of the membranes of FIG. 3A showing the flexible cassette membrane flexing outwardly relative to the cassette in response to positive fluid pressure in the fluid inflow path which flexes the sensor membrane and allows the sensor elements to calculate the positive pressure.



FIG. 3C is a view of the membranes of FIG. 3B showing the flexible cassette membrane flexing inwardly relative to the cassette in response to negative fluid pressure in the fluid inflow path which flexes the sensor membrane and allows the sensor elements to calculate the negative pressure.



FIG. 4 is an enlarged view of another variation of a flexible cassette membrane that interfaces with a sensor membrane, wherein the cassette membrane carries at least one suction cup element for detachable coupling of the cassette and sensor membranes.



FIG. 5A is an enlarged schematic view of another variation of flexible cassette membrane that interfaces with a sensor membrane that has a projecting feature that contacts a pressure or force sensor in a first static condition.



FIG. 5B is a view of the sensor membrane of FIG. 5A showing the flexible cassette membrane flexing outwardly relative to the cassette in response to positive fluid pressure in the fluid inflow which flexes the sensor membrane and the projecting feature or element into the force sensor allowing calculation of the positive pressure.



FIG. 5C is a view of the sensor membrane of FIG. 5A showing the flexible cassette membrane flexing inwardly relative to the cassette in response to negative fluid pressure which flexes the sensor membrane and the projecting feature or element away from the force sensor allowing calculation of the negative pressure.



FIG. 6 is a chart showing the amplitude of pressure waves in inflow tubing which can be sensed by the pressure sensing mechanisms described above to detect air in the tubing which indicates an empty saline bag or fluid source.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 illustrates a fluid management system 100 of the invention which includes a console or control unit 102 and a disposable tubing cassette 105 (FIGS. 1-2) that carries a single loop of an inflow tubing set for coupling to an inflow pump 115A further described below. The fluid management system 100 is used in endoscopic procedures, which can be a urology procedure, a gynecology procedure or an arthroscopic surgery, to provide inflows and outflows of a pressurized fluid to a working space or body cavity. The fluid can be delivered to provide and maintain a pre-set pressure level within the working space. The fluid pressure in the space is controlled by a controller 108 and control algorithms therein carried by the control unit 102 which can calculate the fluid pressure in the working space based on sensed pressure in a fluid inflow path at the control unit 102 and then vary the inflow and/or outflow to maintain a targeted pressure or a targeted pressure in combination with an inflow or outflow rate. An outflow pump mechanism is not shown in detail, which could be a second pump 115B (phantom view) in the control unit 102 or wall suction could be used.


Referring to FIGS. 1-2, the console or control unit 102 carries a first peristaltic pump 112 comprising pump head 115A with rollers and a motor 116 (see FIG. 1) wherein the pump provides inflows from a fluid source FS into a working space WS. Typically, the fluid inflows and outflows are provided through one or more channels in an endoscope and/or a treatment device 118. The control unit 102 includes a microprocessor or controller 108 for controlling the inflow pump and may further include an RF generator or other energy source for coupling to a treatment device 118 and/or a power source to powering a motor in the treatment device 118.


In FIG. 1, one variation of control unit 102 has a front surface 121 which can include a touch screen (not shown) that permits the operator to control system operations. For example, the touch screen 122 can allow the operator select a target pressure, flow rate and/or mode of operation. In one variation described further below, the touch screen 122 can indicate when the user positions the cassette 105 in the correct interface with the control unit 102, and thereafter the control unit can automatically activate a locking motor to engage and move the cassette 105 from a pre-locked position to a locked position to engage the pump heads as will be described below. In these steps, the touch screen 122 can display the pre-locked and locked positions. The touch screen 122 can then be touched to actuate the locking motor to unlock the cassette 105 following a procedure. In other variations, the cassette 105 can be manually inserted and pushed into a locked positioned. It has been found that significant manual force may be required to push the cassette 105 into a locked position, and the amount of force may vary depending on the orientation of the rollers in the pump heads 115A and 115B, and for this reason a motorized locking system may be preferred.


Referring to FIGS. 1-2, the cassette 105 includes a plastic molded housing or body 128 that carries a portion of a tubing set, and more particularly a flexible loop of inflow tubing 140. The tubing is typically a flexible polymer material having a diameter ranging between about ¼″ to ½″ and is adapted to cooperate with the first pump head 115A (see FIG. 1). The tubing loop portion 148 in the cassette 105 (see FIGS. 1-2) extends in a semicircular arc of at least 90° or at least 120° in the plane of the cassette, where the plane of the cassette is adapted to align with the first pump head 115A. As shown in FIG. 2, the plane of the tubing loop portion is perpendicular to the axis 150 of a shaft of the pump motor 116 and the pump head 115A.


Referring to FIG. 1, it can be seen as the tubing loop portion 148 within the cassette 105 is adapted to be inserted between the pump head 115A (rotor or roller assembly) and the arcuate structure or eyebrow 152 that interfaces with the tubing loop 148 and pump head 115A.


From FIG. 1, it can be understood how the cassette 105 is coupled with the control unit 102. The cassette 105 is initially pushed inward toward the front panel 121 of the control unit 102 as indicated by arrows AA. The tubing loop portion 148 of the inflow tubing is then loosely positioned in the space between eyebrow 152 and the pump head 115A.


It can be understood that after inserting the cassette 105 and tubing loop over the pump head 115A, it is necessary to compress the tubing loop portion 148 between the pump head 115A and the eyebrow 152 which is be accomplished by the downwards sliding movement of the sliding base plate 155 which carries eyebrow 152 and the cassette 105. The pump head 115A and motor 116 are attached to the fixed base plate 160 which is coupled to the front panel 121 of the control unit 102 (FIG. 1). As can be understood from FIG. 1, the sliding base plate 155 and eyebrow 152 together with the cassette 105 can be moved downward a locking distance indicated at LD which thus compresses the tubing loop portion 148 between the eyebrow 152 and the pump head 115A.


A locking motor (not visible) with a gear reduction mechanism rotates a gear 168 that is adapted to move the sliding base plate 155 the locking distance LD to thereby move the cassette 105 from a pre-locked position to a locked position. The locking motor can be activated by microswitch (not shown) in the console 102 or sliding base plate 155 that is activated when the cassette 105 is pushed inwardly against the sliding base plate 155.


Still referring to FIG. 1, it can be seen that the sliding base plate 155 carries a pressure sensor 170 with a pressure-sensing or sensor membrane 175 that is adapted to contact a flexible pressure-transmitting membrane 180 carried by the cassette 105 (see FIG. 2). In FIG. 2, it can be seen that the cassette membrane 180 is disposed on a side of a fluid chamber 182 in the cassette that communicates with fluid inflows or static fluid in the inflow tubing 140. As can be understood from FIG. 2, the flow path in the inflow tubing 140 extends through a housing 184 that carries the fluid chamber 182 and the cassette membrane 180 is adapted to flex inwardly and outwardly depending on pressure of the fluid in the chamber 182 and the lumen 186 of the inflow tubing 140. Thus, the flexible membrane 180 carried by the cassette 105 interfaces with the pressure sensor membrane 175 carried by the sliding base plate 155. Some similar pressure sensing mechanisms are known in the prior art. However, in this variation, the interface of the cassette membrane 180 and pressure sensor membrane 175 differ in that the membranes 175 and 180 are aligned in direct opposition to one another after the cassette 105 is pushed onto the pump head 115A and thereafter the membranes 175 and 180 remain in a non-sliding or fixed relationship as the sliding base plate 155 is moved to compress the tubing loop 148 against the pump head 115A.


By measuring fluid pressure with such a sensor mechanism in the control unit 102, the fluid pressure in the working space can be calculated, which is known in the prior art. Of particular interest in the present invention, the pressure sensing mechanism corresponding to the invention is configured to allow the pressure sensor 170 carried by the sliding base plate 155 to sense positive pressure in the fluid inflows as well as negative pressure. Prior art systems were designed only for sensing positive pressure in a fluid inflow.


In some surgical procedures such as gynecology, it is important to regulate or maintain “actual” fluid pressure in a working space WS within a narrow predetermined range or a not-to-exceed pressure. Further, it can be understood that the elevation of pump head 115A relative to the patient and the working space WS can make the fluid pressure in a working space different from the measured pressure in the cassette 105. In other words, the “actual” fluid pressure in a working space WS will differ from the pressure sensed at the control unit 102 simply based on the elevation difference between the control unit 102 and the working space WS. For example, in a gynecology procedure, the variance in the height of the control unit 102 relative to the working space WS can result in a sensed pressure at the control unit 102 that varies by up to 10% or more from the actual pressure in the working space WS. Over the time of a surgical procedure, such an inaccurate pressure measurement can be problematic and potentially cause injury to the patient by an overpressure in the working space WS.


Thus, in a typical procedure, after the patient is prepared for surgery and the working space WS is filled with fluid and the tubing sets have been purged of air, a difference in elevation of the treatment device 118 or working space WS relative to the console 102 can be calculated by a positive or negative pressure reading the pressure sensor 170 which interfaces with the cassette membrane 180.


In order for the sensor membrane 180 to measure negative pressures, or flex inwardly relative to the cassette, a mechanism is provided to detachably adhere the cassette membrane 180 to the sensor membrane 175. Now referring to FIG. 3A, in one variation, the sensor membrane 175 and the cassette membrane 180 each carried a magnet 185a, 185b (or a magnetic responsive material in one membrane that is attracted to a magnet in the other membrane). Thus, in FIG. 3B, it can be seen that a positive pressure in the fluid 188 against the cassette membrane 180 flexes the sensor membrane 175 and the increased pressure in fluid 190 in the sensor is read by the sensing elements 192. In FIG. 3C, it can be seen that if is negative pressure in the fluid 188 in the cassette inflow path, then the cassette membrane 180 will flex inwardly relative to the cassette wherein such a negative pressure influences the sensor membrane 175 which again can sensed by the sensing elements 192. Prior to the procedure, the sensing elements 192 can be zeroed-out to have a baseline value, and thereafter the elevation of the treatment device 118 and the working space WS relative to the console 102 can be determined by positive pressure as illustrated in FIG. 3B or by negative pressure as illustrated in FIG. 3C.



FIG. 3A-3C show a first magnet 185a in the sensor membrane 175 and a second magnet 185b in the cassette membrane 180, but it should be appreciated that a single magnet in one membrane and magnetic responsive material such as iron powder can be dispersed in the second membrane to insure that the membranes 175, 180 remain coupled to one another whether there is positive or negative pressure in the fluid 188 in the inflow path in the cassette 105.



FIG. 4 illustrates another variation which couples the sensor membrane 175′ with the cassette membrane 180′ which comprises at least one flexible suction cup element 196 that detachably couples together the exterior surfaces one 198a and 198b of the two membranes 175′ and 180′. It should be appreciated that other mechanisms are possible for detachably coupling the membranes, such as providing one membrane surface with microfabricated synthetic setae of the type developed to mimic setae on gecko's feet. As is well known, gecko setae are adapted to detachably contact and adhere to smooth surfaces. In another variation, the surface of the cassette membrane 180 may be covered with removable protective element, and the membrane surface can be provided with a slightly tacky adhesive similar to a Post-It in order to allow for detachably coupling of the two membranes 175, 180. In another variation, the cassette membrane may be covered by a removable protective element and the membrane surface can carry a viscous fluid or grease that is sufficient to maintain adherence between the two membranes during use.


Now turning to FIG. 5A-5C, another variation of sensing mechanism is shown wherein the sensor membrane 205 includes a projecting feature or element 208 that contacts a force sensor element 210 and wherein in a repose position, the sensor membrane 205 is flexed outwardly. Thereafter, following the locking of the cassette 105 and the sliding base plate 155 as described previously, the cassette membrane 215 will be flexed inwardly (relative to the cassette 105) in response to the outward bulging of the sensor membrane 205. Thus in FIG. 5B, it can be seen that positive pressures in the flow path and cassette can cause both membranes 205, 215 to flex in the direction of the force sensing element 210 and wherein the force sensor can determine the positive pressure. Referring to FIG. 5C, the opposite is also possible where a negative pressure in the fluid in the inflow path results in the membrane sensor membrane 205 flexing outwardly relative to the console 102 which then can be read by the force sensing element 210 to calculate the negative pressure.


The console 102 carries a controller 108 with a microprocessor that operates in accordance with algorithms to control inflows and outflows of a fluid to a working space to maintain a pre-set pressure level within the space. The console 102 can further include an RF generator or other energy source for coupling to a surgical instrument. The system optionally can monitor pressure in a space directly with a pressure sensor in a fluid communication with the space through an open channel in a device which then will allow the controller 108 to vary inflows and/or outflows to maintain the targeted pressure.


In another aspect of the invention, the controller 108 is adapted to sense when the fluid source FS is empty. As described above, typically the fluid source FS comprises a bag of saline solution which is coupled to the inflow tubing 140 including tubing loop 148 with lumen 186 therein (see FIG. 2) which extends through the cassette 105 and to the treatment device 118 or the treatment site. It can be understood that the three rollers of the pump head 115A (see FIG. 1) will create large pressure waves in saline in the lumen 186 of the inflow tubing 140 during use. In one variation of a fluid management system, the pressure waves will have a peak pressure (referred to as a “compression pressure peak” in the claims) between about 200 mmHg to 300 mmHg during compression of the tubing as each roller engages and disengages the tubing loop 148 in the cassette 105 to thereby pump saline to the treatment device or site (see FIG. 6). When the roller decompresses the tubing 140, the pressure drops to zero or close to zero (referred to as a “compression pressure trough” in the claims). In FIG. 6, a typical pressure wave amplitude is indicated at PA1. It can be understood that when the fluid source FS or saline bag is empty or close to empty, air from the interior of the saline bag will enter the lumen 186 of the inflow tubing 140 which communicates with the pressure transmitting membrane 180 in the cassette 105 which is sensed by the pressure receiving membrane 175 in the console 103. When the lumen 186 of the inflow tubing 140 is filled with fluid, it can be understood that the amplitude of the pressure waves (peak to peak pressure difference) will be consistent except it may vary depending on the selected inflow rate which corresponds to pump speed or RPM.


When the saline bag comprising the fluid source is empty, the pump head 115A will start to pump a combination of air and saline into the tubing 140. In this situation, the peak pressures shown in FIG. 6 will be altered (lowered relative to the compression pressure peak before the bag was near empty) significantly since the combination of air and saline in the lumen 186 is compressible as the rollers of the pump head 115A compressed and decompress the tubing 140.


As can be understood from the disclosure above, the pressure sensing mechanism consisting of the membranes 175 and 180 will continuously monitor the pressure peaks and valley to determine treatment site pressure by averaging the pressures over a short time interval. In another variation of the invention, the same pressure sensing mechanisms can be used in a detection algorithm to detect an empty saline bag. In one variation of detection algorithm, the typical pressure amplitudes can be stored in a look-up library in the controller 108 for different selected fluid inflow rates. Alternatively, using machine learning, the control system may determine the expected compression pressure peaks and decompression pressure troughs as a function of fluid flow and/or other operational parameters during use and/or over time. Still further alternatively, the control system can be configured to measure the differential pressure amplitude at the start of a fluid delivery procedure and/or whenever a fluid bag is replaced to establish a baseline for that delivery (measured pressure may vary due tubing configurations, bag placement, etc.), where a subsequent drop below the initial differential pressure amplitude indicates that the bag is empty or near empty.


During use, the detection algorithm can sense the maximum and minimum pressures for each engagement of the rollers with the tubing 140 to determine the amplitude (peak to peak) of pressure waves. Then, the algorithm can continuously sample such amplitudes over a time interval, for example, from 0.5 second to 5 seconds. Referring to FIG. 6, a pressure wave amplitude indicated at PA2 is lower than a threshold amplitude for a given flow rate which will indicate that there is air in the system and an empty saline bag. The controller 108 then can provide a signal to alert the operator that the saline bag is empty and/or can automatically turn off the pump.


In another variation, the amplitude of the pressure waves can be factored by or inferred from a motor parameter such as RPM, voltage, current load, or the like, to provide an operating parameter for comparison to a threshold parameter that indicates air in tubing 140. Normal and “bag empty” operational ranges for any one or combination of such parameters can be pre-determined and stored in a look-up table and/or determined by machine learning algorithms as with the pressure determinations described above. By this means, the fluid management system 100 can reliably detect an empty saline bag with a controller algorithm and no additional hardware.


Although particular embodiments of the present invention have been described above in detail, it will be understood that this description is merely for purposes of illustration and the above description of the invention is not exhaustive. Specific features of the invention are shown in some drawings and not in others, and this is for convenience only and any feature may be combined with another in accordance with the invention. A number of variations and alternatives will be apparent to one having ordinary skills in the art. Such alternatives and variations are intended to be included within the scope of the claims. Particular features that are presented in dependent claims can be combined and fall within the scope of the invention. The invention also encompasses embodiments as if dependent claims were alternatively written in a multiple dependent claim format with reference to other independent claims.

Claims
  • 1. A surgical fluid management system comprising: a pump configured to deliver fluid to a patient from a replaceable fluid bag;a controller operatively connected to the pump; anda pressure sensor operatively connected to the pump and configured to measure a fluid pressure parameter associated with the presence of fluid in the replaceable fluid bag;wherein the controller is programmed or configured to detect when the fluid pressure parameter indicates that the replaceable fluid bag is empty or near empty; andwherein the pump comprises a rotor with a peristaltic output producing compression pressure peaks and decompression pressure troughs, wherein the fluid pressure parameter comprises a difference between a measured compression pressure peak and a measured decompression pressure trough, and wherein the controller is configured to indicate that the replaceable fluid bag is empty or near empty when the difference between the measured compression pressure peak and the measured decompression pressure trough falls below a minimum threshold value.
  • 2. The surgical fluid management system of claim 1, wherein the pump comprises a pressure-sensing membrane configured to interface with a cassette including a cassette housing carrying a flexible tubing and wherein the cassette comprises a pressure-transmitting membrane in the cassette housing in fluid communication with a lumen in the flexible tubing, and wherein the pressure sensor is configured to measure fluid pressure in the flexible tubing.
  • 3. A method for managing fluids during a medical procedure, said method comprising: attaching a replaceable fluid bag to a pump, wherein the pump comprises a rotor with a peristaltic output producing compression pressure peaks and decompression pressure troughs;operating the pump to pump fluid from the replaceable fluid bag to a patient;sensing a pressure parameter associated with the presence of fluid in the replaceable fluid bag, wherein the sensed pressure parameter comprises a difference between a measured compression pressure peak from the pump and a measured decompression pressure trough from the pump; anddetecting when the difference between the measured compression pressure peak and the measured decompression pressure trough falls below a minimum threshold value indicating that the replaceable fluid bag is empty or near empty.
  • 4. The method of managing fluids as in claim 3, further comprising alerting a user when the replaceable fluid bag is detected to be empty or near empty.
  • 5. The method of managing fluids as in claim 3, further comprising automatically stopping the pump when the replaceable fluid bag is detected to be empty or near empty.
  • 6. The method of managing fluids as in claim 3, further comprising replacing the replaceable fluid bag when the replaceable fluid bag is detected to be empty or near empty.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of provisional application No. 62/866,876, filed on Jun. 26, 2019, the full disclosure of which is incorporated herein by reference.

US Referenced Citations (372)
Number Name Date Kind
3903891 Brayshaw Sep 1975 A
4428748 Peyman et al. Jan 1984 A
4949718 Neuwirth et al. Aug 1990 A
4979948 Geddes et al. Dec 1990 A
4989583 Hood Feb 1991 A
5045056 Behl Sep 1991 A
5078717 Parins et al. Jan 1992 A
5084044 Quint Jan 1992 A
5085659 Rydell et al. Feb 1992 A
5191883 Lennox et al. Mar 1993 A
5197963 Parins Mar 1993 A
5242390 Goldrath Sep 1993 A
5248312 Langberg Sep 1993 A
5269794 Rexroth Dec 1993 A
5277201 Stern et al. Jan 1994 A
5282799 Rydell Feb 1994 A
5324254 Phillips Jun 1994 A
5344435 Turner et al. Sep 1994 A
5374261 Yoon Dec 1994 A
5401272 Perkins Mar 1995 A
5401274 Kusunoki Mar 1995 A
5429136 Milo et al. Jul 1995 A
5441498 Perkins Aug 1995 A
5443470 Stern et al. Aug 1995 A
5456689 Kresch et al. Oct 1995 A
5483994 Maurer Jan 1996 A
5496314 Eggers Mar 1996 A
5501681 Neuwirth et al. Mar 1996 A
5505730 Edwards Apr 1996 A
5507725 Savage et al. Apr 1996 A
5558672 Edwards et al. Sep 1996 A
5562703 Desai Oct 1996 A
5562720 Stern et al. Oct 1996 A
5575788 Baker et al. Nov 1996 A
5584872 Lafontaine et al. Dec 1996 A
5592727 Glowa et al. Jan 1997 A
5622647 Kerr et al. Apr 1997 A
5647848 Jorgensen Jul 1997 A
5653684 Laptewicz et al. Aug 1997 A
5653692 Masterson et al. Aug 1997 A
5662647 Crow et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5681308 Edwards et al. Oct 1997 A
5697281 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5713942 Stern et al. Feb 1998 A
5733298 Berman et al. Mar 1998 A
5769846 Edwards et al. Jun 1998 A
5769880 Truckai et al. Jun 1998 A
5779662 Berman Jul 1998 A
5800493 Stevens et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5827273 Edwards Oct 1998 A
5833644 Zadno-Azizi et al. Nov 1998 A
5843020 Tu et al. Dec 1998 A
5846239 Swanson et al. Dec 1998 A
5860974 Abele et al. Jan 1999 A
5866082 Hatton et al. Feb 1999 A
5876340 Tu et al. Mar 1999 A
5879347 Saadat et al. Mar 1999 A
5891094 Masterson et al. Apr 1999 A
5891134 Goble et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5902251 Vanhooydonk May 1999 A
5904651 Swanson et al. May 1999 A
5925038 Panescu et al. Jul 1999 A
5954714 Saadat et al. Sep 1999 A
5958782 Bentsen et al. Sep 1999 A
5964755 Edwards Oct 1999 A
5976129 Desai Nov 1999 A
5980515 Tu Nov 1999 A
5997534 Tu et al. Dec 1999 A
6024743 Edwards Feb 2000 A
6026331 Feldberg et al. Feb 2000 A
6041260 Stern et al. Mar 2000 A
6053909 Shadduck Apr 2000 A
6057689 Saadat May 2000 A
6086581 Reynolds et al. Jul 2000 A
6091993 Bouchier et al. Jul 2000 A
6113597 Eggers et al. Sep 2000 A
6136014 Sirimanne et al. Oct 2000 A
6139570 Saadat et al. Oct 2000 A
6146378 Mikus et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6214003 Morgan et al. Apr 2001 B1
6228078 Eggers et al. May 2001 B1
6254599 Lesh et al. Jul 2001 B1
6283962 Tu et al. Sep 2001 B1
6296639 Truckai et al. Oct 2001 B1
6302904 Wallsten et al. Oct 2001 B1
6315776 Edwards et al. Nov 2001 B1
6366818 Bolmsjo Apr 2002 B1
6387088 Shattuck et al. May 2002 B1
6395012 Yoon et al. May 2002 B1
6409722 Hoey et al. Jun 2002 B1
6416508 Eggers et al. Jul 2002 B1
6416511 Lesh et al. Jul 2002 B1
6443947 Marko et al. Sep 2002 B1
6491690 Goble et al. Dec 2002 B1
6508815 Strul et al. Jan 2003 B1
6551310 Ganz et al. Apr 2003 B1
6565561 Goble et al. May 2003 B1
6589237 Woloszko et al. Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6607545 Kammerer et al. Aug 2003 B2
6622731 Daniel et al. Sep 2003 B2
6635054 Fjield et al. Oct 2003 B2
6635055 Cronin Oct 2003 B1
6663626 Truckai et al. Dec 2003 B2
6673071 Vandusseldorp et al. Jan 2004 B2
6699241 Rappaport et al. Mar 2004 B2
6726684 Woloszko et al. Apr 2004 B1
6736811 Panescu et al. May 2004 B2
6746447 Davison et al. Jun 2004 B2
6758847 Maguire Jul 2004 B2
6780178 Palanker et al. Aug 2004 B2
6802839 Behl Oct 2004 B2
6813520 Truckai et al. Nov 2004 B2
6814730 Li Nov 2004 B2
6832996 Woloszko et al. Dec 2004 B2
6837887 Woloszko et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6840935 Lee Jan 2005 B2
6872205 Lesh et al. Mar 2005 B2
6896674 Woloszko et al. May 2005 B1
6905497 Truckai et al. Jun 2005 B2
6923805 Lafontaine et al. Aug 2005 B1
6929642 Xiao et al. Aug 2005 B2
6949096 Davison et al. Sep 2005 B2
6951569 Nohilly et al. Oct 2005 B2
6954977 Maguire et al. Oct 2005 B2
6960203 Xiao et al. Nov 2005 B2
7074217 Strul et al. Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7087052 Sampson et al. Aug 2006 B2
7108696 Daniel et al. Sep 2006 B2
7118590 Cronin Oct 2006 B1
7150747 McDonald et al. Dec 2006 B1
7175734 Stewart et al. Feb 2007 B2
7179255 Lettice et al. Feb 2007 B2
7186234 Dahla et al. Mar 2007 B2
7192430 Truckai et al. Mar 2007 B2
7238185 Palanker et al. Jul 2007 B2
7270658 Woloszko et al. Sep 2007 B2
7276063 Davison et al. Oct 2007 B2
7278994 Goble et al. Oct 2007 B2
7294126 Sampson et al. Nov 2007 B2
7297143 Woloszko et al. Nov 2007 B2
7326201 Fjield et al. Feb 2008 B2
7331957 Woloszko et al. Feb 2008 B2
RE40156 Sharps et al. Mar 2008 E
7371231 Rioux et al. May 2008 B2
7371235 Thompson et al. May 2008 B2
7381208 Van et al. Jun 2008 B2
7387628 Behl et al. Jun 2008 B1
7390330 Harp Jun 2008 B2
7407502 Strul et al. Aug 2008 B2
7419500 Marko et al. Sep 2008 B2
7452358 Stern et al. Nov 2008 B2
7462178 Woloszko et al. Dec 2008 B2
7500973 Vancelette et al. Mar 2009 B2
7512445 Truckai et al. Mar 2009 B2
7530979 Ganz et al. May 2009 B2
7549987 Shadduck Jun 2009 B2
7556628 Utley et al. Jul 2009 B2
7566333 Van et al. Jul 2009 B2
7572251 Davison et al. Aug 2009 B1
7604633 Truckai et al. Oct 2009 B2
7625368 Schechter et al. Dec 2009 B2
7674259 Shadduck Mar 2010 B2
7678106 Lee Mar 2010 B2
7708733 Sanders et al. May 2010 B2
7717909 Strul et al. May 2010 B2
7736362 Eberl et al. Jun 2010 B2
7744595 Truckai et al. Jun 2010 B2
7749159 Crowley et al. Jul 2010 B2
7824398 Woloszko et al. Nov 2010 B2
7824405 Woloszko et al. Nov 2010 B2
7846160 Payne et al. Dec 2010 B2
7879034 Woloszko et al. Feb 2011 B2
7918795 Grossman Apr 2011 B2
7985188 Felts et al. Jul 2011 B2
8012153 Woloszko et al. Sep 2011 B2
8016843 Escaf Sep 2011 B2
8197476 Truckai Jun 2012 B2
8197477 Truckai Jun 2012 B2
8323280 Germain et al. Dec 2012 B2
8372068 Truckai Feb 2013 B2
8382753 Truckai Feb 2013 B2
8486096 Robertson et al. Jul 2013 B2
8500732 Truckai et al. Aug 2013 B2
8540708 Truckai et al. Sep 2013 B2
8657174 Yates et al. Feb 2014 B2
8690873 Truckai et al. Apr 2014 B2
8728003 Taylor et al. May 2014 B2
8821486 Toth et al. Sep 2014 B2
8998901 Truckai et al. Apr 2015 B2
9204918 Germain et al. Dec 2015 B2
9277954 Germain et al. Mar 2016 B2
9427249 Robertson et al. Aug 2016 B2
9472382 Jacofsky Oct 2016 B2
9510850 Robertson et al. Dec 2016 B2
9510897 Truckai Dec 2016 B2
9585675 Germain et al. Mar 2017 B1
9592085 Germain et al. Mar 2017 B2
9603656 Germain et al. Mar 2017 B1
9649125 Truckai May 2017 B2
9651423 Zhang May 2017 B1
9662163 Toth et al. May 2017 B2
9855675 Germain et al. Jan 2018 B1
9901394 Shadduck et al. Feb 2018 B2
9999466 Germain et al. Jun 2018 B2
10004556 Orczy-Timko et al. Jun 2018 B2
10052149 Germain et al. Aug 2018 B2
10213246 Toth et al. Feb 2019 B2
10492856 Orczy-Timko Dec 2019 B2
10517578 Truckai Dec 2019 B2
10595889 Germain et al. Mar 2020 B2
10617461 Toth et al. Apr 2020 B2
10662939 Orczy-Timko et al. May 2020 B2
10912606 Truckai et al. Feb 2021 B2
11259787 Truckai Mar 2022 B2
20010004444 Haser et al. Jun 2001 A1
20020058933 Christopherson et al. May 2002 A1
20020062142 Knowlton May 2002 A1
20020068934 Edwards et al. Jun 2002 A1
20020082635 Kammerer et al. Jun 2002 A1
20020183742 Carmel et al. Dec 2002 A1
20030060813 Loeb et al. Mar 2003 A1
20030065321 Carmel et al. Apr 2003 A1
20030153905 Edwards et al. Aug 2003 A1
20030153908 Goble et al. Aug 2003 A1
20030171743 Tasto et al. Sep 2003 A1
20030176816 Maguire et al. Sep 2003 A1
20030216725 Woloszko et al. Nov 2003 A1
20030236487 Knowlton et al. Dec 2003 A1
20040002702 Xiao et al. Jan 2004 A1
20040010249 Truckai et al. Jan 2004 A1
20040087936 Stern et al. May 2004 A1
20040092980 Cesarini et al. May 2004 A1
20040215180 Starkebaum et al. Oct 2004 A1
20040215182 Lee Oct 2004 A1
20040215296 Ganz et al. Oct 2004 A1
20040230190 Dahla et al. Nov 2004 A1
20050075630 Truckai et al. Apr 2005 A1
20050145009 Vanderveen Jul 2005 A1
20050165389 Swain et al. Jul 2005 A1
20050182397 Ryan Aug 2005 A1
20050187546 Bek et al. Aug 2005 A1
20050192652 Cioanta et al. Sep 2005 A1
20050240176 Oral et al. Oct 2005 A1
20050251131 Lesh Nov 2005 A1
20060009756 Francischelli et al. Jan 2006 A1
20060052771 Sartor et al. Mar 2006 A1
20060084158 Viol Apr 2006 A1
20060084969 Truckai et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060189971 Tasto et al. Aug 2006 A1
20060189976 Karni et al. Aug 2006 A1
20060200040 Weikel, Jr. et al. Sep 2006 A1
20060224154 Shadduck et al. Oct 2006 A1
20060259025 Dahla Nov 2006 A1
20070021743 Rioux et al. Jan 2007 A1
20070027447 Theroux et al. Feb 2007 A1
20070083192 Welch Apr 2007 A1
20070161981 Sanders et al. Jul 2007 A1
20070213704 Truckai et al. Sep 2007 A1
20070276430 Lee et al. Nov 2007 A1
20070282323 Woloszko et al. Dec 2007 A1
20070287996 Rioux Dec 2007 A1
20070288075 Dowlatshahi Dec 2007 A1
20070293853 Truckai et al. Dec 2007 A1
20080045859 Fritsch et al. Feb 2008 A1
20080058797 Rioux Mar 2008 A1
20080091061 Kumar et al. Apr 2008 A1
20080097242 Cai Apr 2008 A1
20080097425 Truckai Apr 2008 A1
20080125765 Berenshteyn et al. May 2008 A1
20080125770 Kleyman May 2008 A1
20080154238 McGuckin Jun 2008 A1
20080183132 Davies et al. Jul 2008 A1
20080208189 Van et al. Aug 2008 A1
20080221567 Sixto et al. Sep 2008 A1
20080249518 Warnking et al. Oct 2008 A1
20080249533 Godin Oct 2008 A1
20080281317 Gobel et al. Nov 2008 A1
20090048593 Ganz et al. Feb 2009 A1
20090054888 Cronin Feb 2009 A1
20090054892 Rioux et al. Feb 2009 A1
20090076494 Azure Mar 2009 A1
20090105703 Shadduck Apr 2009 A1
20090131927 Kastelein et al. May 2009 A1
20090149846 Hoey et al. Jun 2009 A1
20090163908 MacLean et al. Jun 2009 A1
20090209956 Marion Aug 2009 A1
20090234348 Bruszewski et al. Sep 2009 A1
20090259150 Ostrovsky et al. Oct 2009 A1
20090270899 Carusillo et al. Oct 2009 A1
20090306654 Garbagnati Dec 2009 A1
20100004595 Nguyen et al. Jan 2010 A1
20100036372 Truckai et al. Feb 2010 A1
20100036488 De, Jr. et al. Feb 2010 A1
20100042095 Bigley et al. Feb 2010 A1
20100042097 Newton et al. Feb 2010 A1
20100049190 Long et al. Feb 2010 A1
20100094289 Taylor et al. Apr 2010 A1
20100121319 Chu et al. May 2010 A1
20100125269 Emmons et al. May 2010 A1
20100137855 Berjano et al. Jun 2010 A1
20100137857 Shroff et al. Jun 2010 A1
20100152725 Pearson et al. Jun 2010 A1
20100185191 Carr et al. Jul 2010 A1
20100198214 Layton, Jr. et al. Aug 2010 A1
20100204688 Hoey et al. Aug 2010 A1
20100217245 Prescott Aug 2010 A1
20100217256 Strul et al. Aug 2010 A1
20100228239 Freed Sep 2010 A1
20100228245 Sampson et al. Sep 2010 A1
20100234867 Himes Sep 2010 A1
20100286680 Kleyman Nov 2010 A1
20100286688 Hughett, Sr. et al. Nov 2010 A1
20110004205 Chu et al. Jan 2011 A1
20110046513 Hibner Feb 2011 A1
20110060391 Unetich et al. Mar 2011 A1
20110112524 Stern et al. May 2011 A1
20110196401 Robertson et al. Aug 2011 A1
20110196403 Robertson et al. Aug 2011 A1
20110282340 Toth et al. Nov 2011 A1
20110306968 Beckman et al. Dec 2011 A1
20120041434 Truckai Feb 2012 A1
20120330292 Shadduck et al. Dec 2012 A1
20130090642 Shadduck et al. Apr 2013 A1
20130103021 Germain et al. Apr 2013 A1
20130172870 Germain et al. Jul 2013 A1
20130231652 Germain et al. Sep 2013 A1
20130237780 Beasley et al. Sep 2013 A1
20130267937 Shadduck et al. Oct 2013 A1
20130289558 Reid, Jr. et al. Oct 2013 A1
20130296847 Germain et al. Nov 2013 A1
20130331833 Bloom Dec 2013 A1
20140336632 Toth et al. Nov 2014 A1
20140336643 Orczy-Timko et al. Nov 2014 A1
20140358077 Oruklu Dec 2014 A1
20150119795 Germain et al. Apr 2015 A1
20150119916 Dietz et al. Apr 2015 A1
20150173827 Bloom et al. Jun 2015 A1
20150182281 Truckai et al. Jul 2015 A1
20160066982 Marczyk et al. Mar 2016 A1
20160095615 Orczy-Timko et al. Apr 2016 A1
20160113706 Truckai et al. Apr 2016 A1
20160120443 Margalit May 2016 A1
20160157916 Germain et al. Jun 2016 A1
20160287779 Orczy-Timko Oct 2016 A1
20160346036 Orczy-Timko et al. Dec 2016 A1
20170231681 Toth et al. Aug 2017 A1
20170258519 Germain et al. Sep 2017 A1
20170303990 Benamou et al. Oct 2017 A1
20170348493 Wells et al. Dec 2017 A1
20180001009 Crawford et al. Jan 2018 A1
20180010599 Hernandez Martinez Jan 2018 A1
20180147003 Shadduck et al. May 2018 A1
20180326144 Truckai Nov 2018 A1
20180369477 Ding et al. Dec 2018 A1
20190030235 Orczy-Timko et al. Jan 2019 A1
20190192218 Orczy-Timko et al. Jun 2019 A1
20200030527 Toth et al. Jan 2020 A1
20200222104 Toth et al. Jul 2020 A1
20200330085 Truckai Oct 2020 A1
20210038279 Toth et al. Feb 2021 A1
20210346087 Truckai et al. Nov 2021 A1
20220142697 Toth et al. May 2022 A9
20220151674 Sharma May 2022 A1
Foreign Referenced Citations (19)
Number Date Country
1977194 Jun 2007 CN
101015474 Aug 2007 CN
101198288 Jun 2008 CN
1236440 Sep 2002 EP
1595507 Nov 2005 EP
2349044 Aug 2011 EP
2493407 Sep 2012 EP
2981222 Feb 2016 EP
2005501597 Jan 2005 JP
WO-0053112 Sep 2000 WO
WO-2005122938 Dec 2005 WO
WO-2006001455 Jan 2006 WO
WO-2008083407 Jul 2008 WO
WO-2010048007 Apr 2010 WO
WO-2011053599 May 2011 WO
WO-2011060301 May 2011 WO
WO-2014165715 Oct 2014 WO
WO-2017127760 Jul 2017 WO
WO-2017185097 Oct 2017 WO
Non-Patent Literature Citations (90)
Entry
Notice of Allowance dated Oct. 19, 2020 for U.S. Appl. No. 14/657,684.
Notice of Allowance dated Oct. 20, 2021 for U.S. Appl. No. 16/706,179.
Notice of Allowance dated Nov. 27, 2020 for U.S. Appl. No. 14/657,684.
Office action dated Jan. 29, 2021 for U.S. Appl. No. 15/880,958.
Office action dated May 6, 2021 for U.S. Appl. No. 16/247,404.
Allen-Bradley. AC Braking Basics. Rockwell Automation. Feb. 2001.4 pages. URL: http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/drives-wp004_-en-p.pdf.
Allen-Bradley. What Is Regeneration? Braking / Regeneration Manual: Regeneration Overview. Revision 1.0. Rockwell Automation. Accessed Apr. 24, 2017. 6 pages. URL: https://www.ab.com/support/abdrives/documentation/techpapers/RegenOverview01.pdf.
Co-pending U.S. Appl. No. 16/706,179, filed Dec. 6, 2019.
Co-pending U.S. Appl. No. 16/819,386, filed Mar. 16, 2020.
European search report and opinion dated Nov. 18, 2016 for EP Application No. 14778196.7.
European search report and search opinion dated Apr. 16, 2013 for EP Application No. 09822443.
European search report and search opinion dated Jul. 10, 2013 for EP Application No. 10827399.
International search report and written opinion dated Feb. 2, 2011 for PCT/US2010/056591.
International Search Report and Written Opinion dated May 31, 2017 for International PCT Patent Application No. PCT/US2017/014456.
International Search Report and Written Opinion dated Jul. 7, 2017 for International PCT Patent Application No. PCT/US2017/029201.
International Search Report and Written Opinion dated Nov. 3, 2017 for International PCT Patent Application No. PCT/US2017/039326.
International search report and written opinion dated Dec. 10, 2009 for PCT/US2009/060703.
International search report and written opinion dated Dec. 14, 2010 for PCT/US2010/054150.
International Search Report dated Jul. 6, 2016 for PCT/US16/25509.
International Search Report dated Sep. 10, 2014 for PCT/US2014/032895.
Notice of allowance dated Jan. 9, 2014 for U.S. Appl. No. 13/938,032.
Notice of Allowance dated Jan. 27, 2017 for U.S. Appl. No. 13/236,471.
Notice of Allowance dated Jan. 27, 2017 for U.S. Appl. No. 14/508,856.
Notice of allowance dated Feb. 25, 2015 for U.S. Appl. No. 13/975,139.
Notice of allowance dated Mar. 5, 2012 for U.S. Appl. No. 13/281,846.
Notice of allowance dated Mar. 5, 2012 for U.S. Appl. No. 13/281,856.
Notice of allowance dated Mar. 29, 2013 for U.S. Appl. No. 12/605,546.
Notice of Allowance dated Apr. 24, 2018 for U.S. Appl. No. 15/410,723.
Notice of allowance dated May 9, 2014 for U.S. Appl. No. 12/944,466.
Notice of allowance dated May 24, 2013 for U.S. Appl. No. 12/605,929.
Notice of Allowance dated Aug. 2, 2016 for U.S. Appl. No. 13/281,805.
Notice of Allowance dated Aug. 6, 2019 for U.S. Appl. No. 15/008,341.
Notice of allowance dated Aug. 17, 2016 for U.S. Appl. No. 13/281,805.
Notice of allowance dated Sep. 10, 2019 for U.S. Appl. No. 15/488,270.
Notice of allowance dated Oct. 19, 2018 for U.S. Appl. No. 14/341,121.
Notice of allowance dated Nov. 15, 2012 for U.S. Appl. No. 12/541,043.
Notice of allowance dated Nov. 15, 2012 for U.S. Appl. No. 12/541,050.
Notice of allowance dated Nov. 15, 2018 for U.S. Appl. No. 14/341,121.
Notice of allowance dated Dec. 2, 2014 for U.S. Appl. No. 13/975,139.
Notice of Allowance dated Dec. 11, 2019 for U.S. Appl. No. 15/583,712.
Notice of allowance dated Dec. 14, 2017 for U.S. Appl. No. 13/857,068.
Office action dated Jan. 2, 2019 for U.S. Appl. No. 15/008,341.
Office action dated Jan. 28, 2013 for U.S. Appl. No. 12/605,546.
Office action dated Feb. 4, 2016 for U.S. Appl. No. 13/857,068.
Office action dated Feb. 19, 2019 for U.S. Appl. No. 15/488,270.
Office action dated Mar. 12, 2012 for U.S. Appl. No. 12/541,043.
Office action dated Mar. 12, 2012 for U.S. Appl. No. 12/541,050.
Office Action dated Mar. 14, 2017 for U.S. Appl. No. 15/410,723.
Office Action dated Mar. 31, 2016 for U.S. Appl. No. 13/281,805.
Office Action dated Apr. 5, 2017 for U.S. Appl. No. 13/857,068.
Office action dated Apr. 16, 2020 for U.S. Appl. No. 14/657,684.
Office Action dated Apr. 18, 2017 for U.S. Appl. No. 14/657,684.
Office Action dated Apr. 22, 2016 for U.S. Appl. No. 14/657,684.
Office action dated Apr. 24, 2014 for U.S. Appl. No. 13/975,139.
Office action dated May 2, 2019 for U.S. Appl. No. 14/657,684.
Office Action dated May 9, 2017 for U.S. Appl. No. 15/410,723.
Office action dated May 22, 2015 for U.S. Appl. No. 14/657,684.
Office action dated May 29, 2019 for U.S. Appl. No. 15/583,712.
Office action dated Jun. 5, 2015 for U.S. Appl. No. 13/857,068.
Office action dated Jun. 8, 2020 for U.S. Appl. No. 15/880,958.
Office action dated Jun. 15, 2018 for U.S. Appl. No. 14/864,379.
Office action dated Jun. 18, 2012 for U.S. Appl. No. 12/605,546.
Office action dated Jun. 28, 2018 for U.S. Appl. No. 14/341,121.
Office Action dated Jun. 29, 2016 for U.S. Appl. No. 14/508,856.
Office Action dated Jul. 5, 2016 for U.S. Appl. No. 13/236,471.
Office action dated Jul. 12, 2018 for U.S. Appl. No. 14/657,684.
Office action dated Jul. 23, 2015 for U.S. Appl. No. 13/281,805.
Office Action dated Sep. 7, 2016 for U.S. Appl. No. 13/857,068.
Office action dated Sep. 22, 2014 for U.S. Appl. No. 13/281,805.
Office action dated Sep. 24, 2015 for U.S. Appl. No. 13/236,471.
Office action dated Sep. 28, 2012 for U.S. Appl. No. 12/541,043.
Office action dated Sep. 28, 2012 for U.S. Appl. No. 12/541,050.
Office action dated Sep. 28, 2012 for U.S. Appl. No. 12/605,929.
Office action dated Oct. 9, 2014 for U.S. Appl. No. 13/857,068.
Office action dated Oct. 24, 2014 for U.S. Appl. No. 13/975,139.
Office action dated Nov. 1, 2018 for U.S. Appl. No. 15/583,712.
Office Action dated Nov. 2, 2016 for U.S. Appl. No. 14/657,684.
Office action dated Nov. 6, 2013 for U.S. Appl. No. 13/938,032.
Office action dated Nov. 27, 2017 for U.S. Appl. No. 14/341,121.
Office action dated Dec. 4, 2014 for U.S. Appl. No. 13/236,471.
Office action dated Dec. 5, 2017 for U.S. Appl. No. 14/864,379.
Office action dated Dec. 6, 2011 for U.S. Appl. No. 13/281,846.
Office action dated Dec. 16, 2014 for U.S. Appl. No. 13/281,805.
Office action dated Dec. 22, 2011 for U.S. Appl. No. 13/281,856.
Notice of Allowance dated Jan. 26, 2022 for U.S. Appl. No. 16/706,179.
Office action dated Jan. 25, 2022 for U.S. Appl. No. 16/222,757.
Office action dated Apr. 28, 2022 for U.S. Appl. No. 16/435,323.
Office action dated May 2, 2022 for U.S. Appl. No. 16/247,404.
Office Action dated Jun. 10, 2022 for U.S. Appl. No. 16/819,386.
Office action dated Jul. 25, 2022 for U.S. Appl. No. 16/222,757.
Related Publications (1)
Number Date Country
20200405953 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
62866876 Jun 2019 US