This disclosure relates to fluid management systems, such as blowout preventers, and related methods of controlling fluid flow at a wellbore.
During certain operations performed at a wellbore, formation fluid within an annular region that surrounds a pipe of a tubing string disposed within the wellbore may begin to flow uncontrollably in an uphole direction, thereby posing the risk of a blowout of the wellbore. Blowout preventers are designed to seal around a pipe during wellbore control situations in order to contain the pressure of the formation fluid within the wellbore and therefore avoid uncontrolled flow of the formation fluid from the wellbore. However, in some cases, a blowout preventer may fail to activate (for example, fail to close the wellbore) due to any number of system failures. In such situations, the safety of a rig at the wellbore is significantly compromised.
This disclosure relates to a blowout preventer including a mechanical activation system that is operable to close a pipe ram assembly around a drill pipe disposed within a wellbore to prevent uncontrolled, uphole-directed fluid flow from the wellbore around the drill pipe. The mechanical activation system is a contingency system that can be utilized in case a primary hydraulic activation system of the blowout preventer fails to close two cooperating pipe ram blocks of the pipe ram assembly around the drill pipe for any reason. For each pipe ram block, the mechanical activation system includes an activation shaft that is coupled to the pipe ram block and translatable to move the pipe ram block linearly, a drive shaft that is coupled to the activation shaft and rotatable to cause translation of the activation shaft along the drive shaft, a drive loop that is translatable along the drive shaft to rotate the drive shaft, and a pneumatic motor that is operable to activate the drive loop.
The drive shaft has a threaded exterior profile by which the drive loop engages the drive shaft to rotate the drive shaft. The threaded exterior profile of the drive shaft also engages a threaded interior profile of the activation shaft that causes the activation shaft to translate as the drive shaft rotates. Inwardly directed translation of the activation shafts causes the pipe ram blocks to close against each other around the drill pipe, whereas outwardly directed translation of the activation shafts causes the pipe ram blocks to move away from each other and from the drill pipe.
In one aspect, a fluid management system for controlling fluid flow at a wellbore includes a closing element formed complementary to a drill pipe disposed within the wellbore and an activation system. The activation system is configured to move the closing element into an activated position against the drill pipe to close the wellbore around the drill pipe for preventing fluid from flowing out of the wellbore. The activation system includes an activation shaft coupled to the closing element and a rotatable drive shaft configured to cause translation of the activation shaft to push the closing element into the activated position against the drill pipe.
Embodiments may provide one or more of the following features.
In some embodiments, the fluid management system further includes a drive loop coupled to the rotatable drive shaft and a pneumatic motor that controls the drive loop.
In some embodiments, the rotatable drive shaft is rotatable in a first direction to move the closing element into the activated position.
In some embodiments, the rotatable drive shaft is rotatable in a second direction to allow the closing element to move from the activated position to a deactivated position that is spaced apart from the drill pipe to expose the wellbore around the drill pipe, and the second direction is opposite to the first direction.
In some embodiments, the activation shaft includes an interior threaded profile, and the rotatable drive shaft includes an exterior threaded profile that is formed to engage the interior threaded profile of the activation shaft.
In some embodiments, interior threaded profile and the exterior threaded profile include square threads.
In some embodiments, the closing element is a first closing element, the activation shaft is a first activation shaft, the rotatable drive shaft is a first rotatable drive shaft, the activated position is a first activated position, the fluid management system further includes a second closing element that is configured to cooperate with the first closing element to close the wellbore around the drill pipe, and the activation system further includes a second activation shaft coupled to the second closing element and a second rotatable drive shaft configured to cause translation of the second activation shaft to push the second closing element into a second activated position against the drill pipe.
In some embodiments, the closing element includes a pipe ram block.
In some embodiments, the activation system includes a contingency activation system, and the fluid management system further includes a hydraulic activation system that is configured to move the closing element into the activated position against the drill pipe to close the wellbore around the drill pipe for preventing the fluid from flowing out of the wellbore.
In some embodiments, the fluid management system is configured to operate the contingency activation system to move the closing element into the activated position against the drill pipe upon failure of the hydraulic activation system.
In another aspect, a method of controlling fluid flow at a wellbore includes providing a closing element of a fluid management system at the wellbore, the closing element being formed complementary to a drill pipe disposed within the wellbore. The method further includes rotating a drive shaft of an activation system of the fluid management system and translating an activation shaft of the activation system, the activation shaft being coupled to the drive shaft and to the closing element. The method further includes pushing the closing element into an activated position against the drill pipe to close the wellbore around the drill pipe for preventing fluid from flowing out of the wellbore.
Embodiments may provide one or more of the following features.
In some embodiments, the method further includes operating a pneumatic motor of the activation system to activate a drive loop of the activation system, the drive loop being coupled to the drive shaft.
In some embodiments, the method further includes rotating the drive shaft in a first direction to move the closing element into the activated position.
In some embodiments, the method further includes rotating the drive shaft in a second direction to allow the closing element to move from the activated position to a deactivated position that is spaced apart from the drill pipe to expose the wellbore around the drill pipe, wherein the second direction is opposite to the first direction.
In some embodiments, the activation shaft includes an interior threaded profile, and the drive shaft includes an exterior threaded profile that is formed to engage the interior threaded profile of the activation shaft.
In some embodiments, the interior threaded profile and the exterior threaded profile include square threads.
In some embodiments, the closing element is a first closing element, the activation shaft is a first activation shaft, the drive shaft is a first drive shaft, the activated position is a first activated position, and the method further includes providing a second closing element of the fluid management system, the second closing element being configured to cooperate with the first closing element to close the wellbore around the drill pipe. The method further includes rotating a second drive shaft of the activation system, translating a second activation shaft of the activation system, the second activation shaft being coupled to the second drive shaft and to the second closing element, and pushing the second closing element into a second activated position against the drill pipe to close the wellbore around the drill pipe for preventing fluid from flowing out of the wellbore
In some embodiments, the closing element includes a pipe ram block.
In some embodiments, the activation system is a contingency activation system, and the fluid management system further includes a hydraulic activation system that is configured to move the closing element into the activated position against the drill pipe to close the wellbore around the drill pipe for preventing the fluid from flowing out of the wellbore.
In some embodiments, the method further includes determining a failure of the hydraulic activation system and operating the contingency activation system to move the closing element into the activated position against the drill pipe upon failure of the hydraulic activation system.
The details of one or more embodiments are set forth in the accompanying drawings and description. Other features, aspects, and advantages of the embodiments will become apparent from the description, drawings, and claims.
The fluid management system 100 includes two pipe ram blocks 102 (for example, blind ram blocks) that are formed to seal against the exterior surface of the drill pipe 103, two rods 104 that extend respectively from the pipe ram blocks 102, two pistons 106 that are carried respectively by the rods 104, and a surrounding housing 108. The fluid management system 100 is configured such that the rods 104 can be shifted linearly to move the pipe ram blocks 102 between an open, deactivated position (as shown in
The housings 110 and 112, the fluid ports 120 and 122, the fluid channels 118 and 120, and the fluid chambers 114 together form a primary activation system 134 (for example, a hydraulic activation system) of the fluid management system 100 for closing the pipe ram blocks 102 against the drill pipe 103 to prevent formation fluid from flowing out of the wellbore 101 in an uphole direction. The primary activation system 134 is also operable to subsequently release the pipe ram blocks 102 from the drill pipe 103 to expose (for example, to open) the wellbore 101. For example, according to one or more signals received from a control system 124, hydraulic fluid can be delivered (refer to arrow 126) from a fluid receptacle 128 to the fluid port 122, where such hydraulic fluid flows to the outer regions 132 of the fluid chambers 114 and pushes the pistons 106 inwardly, as shown in
The primary activation system 134 is also operable, according to one or more signals received from the control system 124, to release the pipe ram blocks 102 from the drill pipe 103. For example, hydraulic fluid can be delivered (refer to arrow 136) from the fluid receptacle 138 to the fluid port 120, where such hydraulic fluid flows to the inner regions 130 of the fluid chambers 114 and pushes the pistons 106 outwardly, as shown in
In case the primary activation system 134 of the fluid management system 100 fails to close the pipe ram blocks 102 against the drill pipe 103 for any reason, the fluid management system 100 further includes a secondary activation system 140 (for example, a mechanical activation system) that is operable as a backup, contingency measure to close the pipe ram blocks 102 against the drill pipe 103 to prevent formation fluid from flowing out of the wellbore 101 in an uphole direction. The secondary activation system 140 is also operable to subsequently release the pipe ram blocks 102 from the drill pipe 103 to expose the wellbore 101. In some examples, the primary activation system 134 may fail due to a leak in one or both of the fluid channels 116, 118 or other hydraulic control lines. In some examples, the primary activation system 134 may fail due to a breakdown of one or more hydraulic control features.
In this regard, and referring to
The drive shafts 144 have threaded exterior profiles 152 by which the drive loops 146 engage the drive shafts 144 to rotate the drive shafts 144. The threaded exterior profiles 152 of the drive shafts 144 also engage respective threaded interior profiles 154 of the activation shafts 142 that causes the activation shafts 142 to translate as the drive shafts 144 rotate. In some embodiments, the exterior and interior threaded profiles 152, 154 are provided as square threads. Use of such square threads in the fluid management system 100 has several advantages over other forms of threads. For example, as compared to other types of threads, square threads have better transmission efficiency due to less friction, allow for high efficiency due to a profile angle of zero, transmit power without any side thrust in either direction, and are designed for power screw designs. The exterior housing 112 defines two channels 150 around the activation shafts 142 that respectively ensure smooth linear movements of the activation shafts 142 along the drive shafts 144.
Rotation of the drive shafts 144 in a first rotational direction 156 results in inwardly directed translation of the activation shafts 142 to cause the pipe ram blocks 102 to close against each other around the drill pipe 103 to prevent formation fluid from flowing out of the wellbore 101. In contrast, rotation of the drive shafts 144 in a second, opposite rotational direction 158 results in outwardly directed translation of the activation shafts 142 to cause the pipe ram blocks 102 to move away from each other and from the drill pipe 103. For example, once the fluid flow of the wellbore 101 is put under control and the primary activation system 134 is repaired, the drive shafts 144 are rotated in the second rotational direction 158 to relieve the inwardly directed force from the pipe ram blocks 102 to allow the pipe ram blocks 102 to move back to the open position under hydraulic action of the primary activation system 134.
In some embodiments, the difference (for example, a length of travel) between a fully deactivated position of an activation shaft 142 (as shown in
The exterior housing 112, the pneumatic motors 148, the drive loops 146, the drive shafts 144, and the activation shafts 142 together form the secondary activation system 140 of the fluid management system 100 for closing the pipe ram blocks 102 against the drill pipe 103 to prevent formation fluid from flowing out of the wellbore 101 in an uncontrolled manner. The pneumatic motors 148 can be activated manually or according to one or more signals received from the control system 124 in a safe manner near the wellbore 101 without causing undesirable ignition of hydrocarbon oil or gas in the event of uncontrolled fluid flow or fluid leak. In some embodiments, components of the secondary activation system 140 may be installed to a fluid management system that is substantially similar in construction and function to the fluid management system 100, but that does not initially include any contingency well closure mechanism.
While the fluid management system 100 has been described and illustrated with respect to certain dimensions, sizes, shapes, arrangements, materials, and methods 200, in some embodiments, a fluid management system that is otherwise substantially similar in construction and function to the fluid management system 100 may include one or more different dimensions, sizes, shapes, arrangements, and materials or may be utilized according to different methods.
Accordingly, other embodiments are also within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4325534 | Roark | Apr 1982 | A |
4413642 | Smith et al. | Nov 1983 | A |
4467996 | Baugh | Aug 1984 | A |
5505426 | Whitby | Apr 1996 | A |
5875841 | Wright et al. | Mar 1999 | A |
7000888 | Wright | Feb 2006 | B2 |
7374146 | Whitby | May 2008 | B2 |
8376051 | McGrath et al. | Feb 2013 | B2 |
9551200 | Read et al. | Jan 2017 | B2 |
20040031940 | Biester | Feb 2004 | A1 |
20090194290 | Parks et al. | Aug 2009 | A1 |
20170058628 | Wijk et al. | Mar 2017 | A1 |
20190049017 | McAdam et al. | Feb 2019 | A1 |
Entry |
---|
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2021/015219, dated Apr. 15, 2021, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20210230960 A1 | Jul 2021 | US |