This disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an example described below, more particularly provides a fluid metering device and associated method for use with well tools.
Various types of well tools can be operated in response to flowing a known volume of fluid into, out of or through the tool or an actuator for the tool. For example, a choke or sliding sleeve valve can be incrementally opened and/or closed by flowing a known volume of fluid into or out of an actuator. This can be done multiple times, if needed, to open or close the choke or valve by a desired amount.
Although some devices have been developed in the past for metering a known volume of fluid to operate a well tool, these devices have tended to be expensive and difficult to produce, in part due to the requirement for precision machined specialty components which make up the devices. As always, there is a need to lower costs and enhance production in this industry.
Therefore, it will be appreciated that improvements are needed in the art of fluid metering devices and methods for operating well tools.
In this specification, devices and methods are provided which solve at least one problem in the art. One example is described below in which a fluid metering device includes readily available components configured in a unique manner to achieve accurate and reliable operation of a downhole well tool. Another example is described below in which the well tool can still be operated, even if the fluid metering device malfunctions (for example, a piston therein being stuck), or if it becomes desirable to bypass the fluid metering device.
In one aspect, a unique method of operating a well tool is provided by this disclosure. The method includes the steps of: increasing pressure in a fluid line of a fluid metering device; closing a pilot-operated valve in response to the pressure increase; and discharging a predetermined volume of fluid from the metering device in response to the pressure increase and the valve closing.
In another unique aspect, a fluid metering device is provided for a well tool. The fluid metering device includes a piston separating chambers in the device, and a pilot-operated valve which selectively prevents fluid communication between the chambers in response to a predetermined pressure being applied to a fluid line of the metering device. The valve also permits fluid communication through the valve between the chambers in response to pressure in the fluid line being less than the predetermined pressure.
Also provided by this disclosure is a well tool which includes an actuator for operating the well tool, and the fluid metering device connected to the actuator. The metering device can be connected to an input of the actuator (for example, between the actuator and a pressure source). Alternatively, or in addition, the metering device can be connected to an output of the actuator.
These and other features, advantages and benefits will become apparent to one of ordinary skill in the art upon careful consideration of the detailed description of representative examples below and the accompanying drawings, in which similar elements are indicated in the various figures using the same reference numbers.
Representatively illustrated in
Of course, the well system 10 is just one example of a wide variety of different well systems which could take advantage of the principles of this disclosure. For example, it is not necessary for the wellbore 14 to be completely cased (since portions of the wellbore could be uncased or open hole), the tubular string 12 could be a drill string, test string, completion string, work string, injection string, or any other type of tubular string.
As depicted in
However, it should be clearly understood that the well tool 18 is merely an example of a wide variety of well tools which could make use of the principles of this disclosure. For example, the well tool 18 could instead be a packer, hanger, setting tool, sampler, tester, injector or any other type of well tool, and it is not necessary for the well tool to be interconnected in any tubular string.
In the example of
However, the pressure could be applied from other pressure sources. For example, the pressure source could be a downhole pump, a pressurized chamber, an annulus 30 formed between the tubular string 12 and the casing 16, an interior flow passage of the tubular string, etc. Any type of pressure source may be used in keeping with the principles of this disclosure.
Referring additionally now to
Also depicted in
The pressure source 40 could be any type of pressure source, as discussed above, and it may be connected to the fluid metering device 38 via the control line 28. Alternatively, the pressure source 40 could be directly connected to the fluid metering device 38, or it could be otherwise connected, if desired.
Pressure applied from the pressure source 40 to the metering device 38 causes a known volume of fluid 42 to be discharged from the metering device into the chamber 34 via a line 44. This, in turn, causes the piston 32 to displace downwardly as viewed in
Of course, the actuator 22 is merely one example of a wide variety of actuators which can utilize the principles of this disclosure. For example, the piston 32 is not necessarily annular-shaped, the actuator 22 could be a rotary or other type of actuator, etc.
Furthermore, it is not necessary for the metering device 38 to be used in conjunction with an actuator at all. Instead, the metering device 38 could be used to incrementally pressurize a chamber, to discharge fluid at a controlled rate, or to perform other functions without use of an actuator.
Referring additionally now to
The pressure source 40 applies pressure to the chamber 34 via the lines 28, 44 and this pressure is transmitted from the chamber 34 to the chamber 36 by the piston 32. The pressure is applied to the metering device 38 via the line 46, and in response, the metering device discharges a known volume of the fluid 42 via another line 48, thereby allowing the piston 32 to displace downwardly a certain distance.
Various suitable metering device, pressure source and actuator configurations are described in U.S. Pat. No. 6,585,051. The entire disclosure of this prior patent is incorporated herein by this reference for all purposes.
Referring additionally now to
A fluid line 58 is connected to the chambers 52, 54 via a relief valve 60, a check valve 62 and another relief valve 64. In addition, a normally open pilot-operated valve 66 is interconnected in a line 68 which provides a flowpath for fluid communication between the chambers 52, 54.
The valve 66 is piloted by pressure in the fluid line 58. That is, when pressure in the fluid line 58 is below a certain pressure (such as, 500 psi), the valve 66 is open as depicted in
The relief valve 60 is connected between the line 58 and the chamber 52 on one side of the valve 66. The check valve 62 and relief valve 64 are connected between the line 58 and the chamber 54 on an opposite side of the valve 66.
The relief valve 60 remains closed unless pressure in the line 58 is at or above a certain pressure (such as, 1000 psi), which causes the valve to open. The relief valve 64 is set to a higher opening pressure (such as, 9000 psi). The check valve 62 prevents flow from the line 58 to the chamber 54, but permits flow from the chamber 54 to the line 58.
When used in the configuration of
Referring now to
Note that in
When the piston 50 is fully displaced to the right, a certain predetermined volume of the fluid 42 will be discharged from the metering device 38 via the line 68. Pressure in the line 58 can then be released, or at least reduced.
Referring now to
This process can be repeated as many times as desired to repeatedly discharge the known volume of the fluid 42 from the metering device 38. It will be appreciated that such repeated discharges of fluid 42 can be used to incrementally displace the piston 32 of the actuator 22 to thereby incrementally displace the closure 24 of the flow control device 20. Of course, the discharge of fluid 42 from the metering device 38 may be used for other purposes in keeping with the principles of this disclosure.
Referring now to
In the contingency procedure, pressure in the line 58 is increased above the pressure required to open the relief valve 60, until sufficient pressure is applied to open the other relief valve 64. With the relief valve 64 open, the fluid 42 can flow from the line 58 to the chamber 54 via the valve 64. The fluid 42 can then be discharged from the metering device 38 via the line 68.
Although, using this contingency procedure, a known volume of the fluid 42 may not be discharged, at least the actuator 22 can be operated using the discharged fluid (for example, to fully open or close the flow control device 20). This capability could be very important in an emergency situation, or if it is desired to maintain a degree of operability of the well tool 18 until the tubular string 12 can be retrieved from the well for maintenance.
Referring now to
In this manner, the piston 32 of the actuator 22 can be incrementally displaced in one direction by repeatedly applying pressure to the line 58, and the piston can be displaced fully and continuously in the opposite direction by flowing the fluid 42 through the metering device 38 from the line 68 to the line 58.
It may now be fully appreciated that the above disclosure provides improvements to the art of fluid metering in subterranean wells. The metering device 38 uniquely permits repeated discharges of known volumes of fluid 42, allows the fluid to be flowed in a reverse direction relatively unimpeded, and provides for a contingency operation in the event of a malfunction of the metering device, or if it is otherwise desired to bypass the metering device. Furthermore, the metering device 38 can be constructed using readily available components (such as, relief valves, pilot-operated valve, check valve, etc.), although these components can be specially constructed, if desired.
The above disclosure describes a method of actuating a well tool 18, with the method including the steps of: increasing pressure in a fluid line 58 of a fluid metering device 38; closing a pilot-operated valve 66 in response to the pressure increase; and discharging a predetermined volume of fluid 42 from the metering device 38 in response to the pressure increase and the valve closing.
The valve closing may include isolating first and second chambers 52, 54 from each other. The metering device 38 may include a piston 50 which separates the first and second chambers 52, 54.
The pressure increasing step may include increasing pressure in the first chamber 52. The fluid discharging step may include discharging the predetermined volume of fluid 42 from the second chamber 54.
The pressure increasing step may include opening a first relief valve 60 in response to pressure in the fluid line 58 being at least a first predetermined pressure. The pilot-operated valve 66 closing step is preferably performed prior to the first relief valve 60 opening step.
The method may include the step of increasing pressure in the fluid line 58 to at least a second predetermined pressure greater than the first predetermined pressure, thereby applying at least the second predetermined pressure to an actuator 22 of the well tool 18. The step of increasing pressure in the fluid line 58 to at least a second predetermined pressure may include opening a second relief valve 64.
Also described by the above disclosure is a fluid metering device 38 for a well tool 18. The metering device 38 includes a piston 50 separating first and second chambers 52, 54 and a pilot-operated valve 66 which selectively prevents fluid communication between the first and second chambers 52, 54 in response to at least a first predetermined pressure being applied to a fluid line 58 of the metering device 38. The valve 66 permits fluid communication through the valve 66 between the first and second chambers 52, 54 in response to pressure in the fluid line 58 being less than the first predetermined pressure.
The valve 66 may permit fluid flow from the first chamber 52 to the second chamber 54 through the valve 66, and fluid flow from the second chamber 54 to the first chamber 52 through the valve 66, in response to less than the first predetermined pressure being applied to the fluid line 58.
The metering device 38 may discharge a predetermined volume of fluid 42 in response to at least a second predetermined pressure being applied to the fluid line 58, with the second predetermined pressure being greater than or equal to the first predetermined pressure.
The metering device 38 may include a first relief valve 60 which selectively permits fluid flow from the fluid line 58 to the first chamber 52 in response to at least the second predetermined pressure being applied to the fluid line 58. The first relief valve 60 also prevents fluid communication through the first relief valve 60 between the fluid line 58 and the first chamber 52 in response to pressure in the fluid line 58 being less than the second predetermined pressure.
The metering device 38 may also include a second relief valve 64 which selectively permits fluid flow from the fluid line 58 to the second chamber 54 in response to at least a third predetermined pressure being applied to the fluid line 58. The second relief valve 64 also prevents fluid communication through the second relief valve 64 between the fluid line 58 and the second chamber 54 in response to pressure in the fluid line 58 being less than the third predetermined pressure, with the third predetermined pressure being greater than the second predetermined pressure.
The metering device 38 may also include a check valve 62 which permits fluid flow from the second chamber 54 to the fluid line 58 through the check valve 62, and which prevents fluid flow from the fluid line 58 to the second chamber 54 through the check valve 62.
The piston 50 may displace and discharge a predetermined volume of fluid 42 from the second chamber 54 in response to at least a second predetermined pressure being applied to the fluid line 58, with the second predetermined pressure being greater than the first predetermined pressure.
The above disclosure also describes a well tool 18 which includes an actuator 22 for operating the well tool 18, and a fluid metering device 38 connected to the actuator 22. The fluid metering device 38 includes a piston 50 separating first and second chambers 52, 54, and a pilot-operated valve 66 which selectively prevents fluid communication between the first and second chambers 52, 54 in response to at least a predetermined pressure being applied to a fluid line 58 of the metering device 38, and which permits fluid communication through the valve 66 between the first and second chambers 52, 54 in response to pressure in the fluid line 58 being less than the predetermined pressure.
It is to be understood that the various embodiments described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which are not limited to any specific details of these embodiments.
In the above description of the representative embodiments of the disclosure, directional terms, such as “above,” “below,” “upper,” “lower,” etc., are used for convenience in referring to the accompanying drawings.
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to these specific embodiments, and such changes are within the scope of the principles of the present disclosure. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2770308 | Saurenman | Nov 1956 | A |
3763885 | Sussman | Oct 1973 | A |
4132205 | Merritt | Jan 1979 | A |
4180239 | Valukis | Dec 1979 | A |
5238070 | Schultz et al. | Aug 1993 | A |
5564501 | Strattan et al. | Oct 1996 | A |
5746413 | Goloff | May 1998 | A |
5897095 | Hickey | Apr 1999 | A |
5906220 | Thompson | May 1999 | A |
6276458 | Malone et al. | Aug 2001 | B1 |
6470970 | Purkis et al. | Oct 2002 | B1 |
6536530 | Schultz et al. | Mar 2003 | B2 |
6585051 | Purkis et al. | Jul 2003 | B2 |
7013980 | Purkis et al. | Mar 2006 | B2 |
20060254763 | Tips et al. | Nov 2006 | A1 |
20080173454 | Smithson et al. | Jul 2008 | A1 |
20100038092 | Powell et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
2270468 | Dec 1975 | FR |
1135895 | Dec 1968 | GB |
1345867 | Feb 1974 | GB |
2335216 | Sep 1999 | GB |
Number | Date | Country | |
---|---|---|---|
20100212910 A1 | Aug 2010 | US |