Claims
- 1. A fluid mover comprising: a housing having a first chamber and a second chamber open to the first chamber, each chamber having an inside surface, said housing having a fluid intake passage and a fluid exhaust passage open to the chambers, first and second rotors located in the chambers to draw fluid through the intake passage, into the chambers, and force fluid out of the chambers through the fluid exhaust passage, first and second shafts having longitudinal axes, means rotatably mounting the first and second shafts laterally spaced and parallel to each other on the housing for rotation about the longitudinal axes of the shafts, means to concurrently rotate the first and second shafts in opposite directions, each rotor having a plurality of pockets and protrusions, said rotors having semi-cylindrical concave surfaces providing said pockets, each of said concave surfaces having a longitudinal axis, the distance between the longitudinal axes of the first and second shafts and the longitudinal axis of each concave surface is approximately one half the distance between the longitudinal axes of the first and second shafts, each of said protrusions having a semi-cylindrical outer surface with a radius smaller than the radius of the pocket, a longitudinal axis, the distance between the longitudinal axes of the first and second shafts and the longitudinal axis of each protrusion is approximately one half the distance between the longitudinal axes of the first and second shafts, said outer surfaces of the protrusions having a non-contact relation with the inside surfaces of the chambers and a non-contact relation with the pockets of the adjacent rotor when the rotors are rotated in opposite directions, the protrusions cooperating with the concave surfaces providing the pockets of the adjacent rotor to move fluid through the chambers when the rotors are rotated in opposite directions, said first rotor mounted on the first shaft and the second rotor mounted on the second shaft, each rotor having outer arcuate surface segments, the arcuate surface segments of the rotors having the same arcuate lengths and diameters, said means to concurrently rotate the shafts and rotors in opposite directions comprise a first spur gear mounted on the first shaft and a second spur gear mounted on the second shaft, said spur gears having engaging teeth whereby the first and second spur gears concurrently rotate said shafts and rotors, said first and second spur gears having pitch diameters that are the same as the diameters of the arcuate surface segments of the rotors, said housing having first and second side walls on opposite sides of the chamber, first and second thrust bearings located adjacent opposite sides of the gears secured to the shafts, said first thrust bearing engagable with the first side wall, and axial biasing means engagable with the second thrust bearing and the housing operable to bias the first thrust bearing into engagement with the first side wall to maintain the rotors in axial spaced relation relative to the first and second side walls of the housing.
- 2. The fluid mover of claim 1 wherein: each rotor has a body, and said protrusions are integral portions of the body.
- 3. The fluid mover of claim 1 wherein: the fluid intake passage includes a fluid inlet having two passages open to the chambers to allow fluid to flow in general tangential directions into the chambers.
- 4. A fluid mover comprising: a housing having a first chamber and a second chamber open to the first chamber, each chamber having an inside surface, said housing having a fluid intake passage and a fluid exhaust passage open to the chambers, first and second rotors located in the chambers to draw fluid through the intake passage, into the chambers, and force fluid out of the chambers through the fluid exhaust passage, first and second shafts having longitudinal axes, means rotatably mounting the first and second shafts laterally spaced and parallel to each other on the housing for rotation about the longitudinal axes of the shafts, means to concurrently rotate the first and second shafts in opposite directions, each rotor having a plurality of pockets and protrusions, said rotors having semi-cylindrical concave surfaces providing said pockets, each of said concave surfaces having a longitudinal axis located parallel to the axes of the shafts and approximately at the midpoint between the axes of the shafts, each of said protrusions having a semi-cylindrical outer surface with a radius smaller than the radius of the pocket, a longitudinal axis located parallel to the axes of the shafts and approximately at the midpoint between the axes of the shafts, said outer surfaces of the protrusions having a non-contact relation with the inside surfaces of the chambers and a non-contact relation with the pockets of the adjacent rotor when the rotors are rotated in opposite directions, the protrusions cooperating with the concave surfaces providing the pockets of the adjacent rotor to move fluid through the chambers when the rotors are rotated in opposite directions, said first rotor mounted on the first shaft and the second rotor mounted on the second shaft, each rotor having outer arcuate surface segments, the arcuate surface segments of the rotors having the same arcuate lengths and diameters, said means to concurrently rotate the shafts and rotors in opposite directions comprise a first spur gear mounted on the first shaft and a second spur gear mounted on the second shaft, said spur gears having engaging teeth whereby the first and second spur gears concurrently rotate said shafts and rotors, said first and second spur gears having pitch diameters that are the same as the diameters of the arcuate surface segments of the rotors, said housing having first and second side walls on opposite sides of the chamber, each rotor has opposite end walls, first and second thrust bearings located adjacent opposite sides of the gears secured to each shaft, said first thrust bearings being engagable with the first side wall, and axial biasing means engagable with the second thrust bearings and the housing to bias the first thrust bearings into engagement with the first side wall to maintain the end walls of each rotor in axial spaced relation relative to the first and second side walls of the housing.
- 5. A fluid mover comprising: a housing having a first chamber and a second chamber open to the first chamber, each chamber having an inside surface, said housing having a fluid intake passage, a fluid exhaust passage open to the chambers, and first and second side walls adjacent opposite sides of the chambers, rotor means located in the chambers to draw fluid through the intake passage, into the chambers, and force fluid out of the chambers through the fluid exhaust passage, a pair of parallel shafts having longitudinal axes, means rotatably mounting the shafts on the housing, said rotor means having a pair of rotors mounted on the shafts rotatably supported on the housing, means to concurrently rotate the shafts and rotors in opposite directions, means operatively associated with the shafts to maintain the rotors in axial spaced relation relative to the first and second side walls of the housing, each rotor having a plurality of pockets and protrusions, said protrusions being integral portions of the rotors and having a non-contact relation with the inside surfaces of the chambers and non-contact relation with the pockets of the rotors when the rotors are rotated, the protrusions cooperating with the pockets of the adjacent rotor to move fluid through the chambers when the rotors are rotated, each pocket having a concave surface with a generally semi-circular cross section, said concave surface having a longitudinal axis, the distance between the longitudinal axes of the first and second shafts and the longitudinal axis of each concave surface is approximately one half the distance between the longitudinal axes of the first and second shafts, each protrusion having a generally semi-cylindrical shaped outer surface with a radius smaller than the radius of the concave surface of the pocket, said semi-cylindrical outer surface of each protrusion having a longitudinal axis, the distance between the longitudinal axes of the first and second shafts and the longitudinal axis of each protrusion is approximately one half the distance between the longitudinal axis of the first and second shafts, each rotor having outer arcuate surface segments, the arcuate surface segments of the rotors having the same arcuate lengths and radii, said means to concurrently rotate the shafts and rotors comprising a first gear mounted on one shaft and a second gear mounted on the other shaft, said gears having engaging teeth whereby the first and second gears concurrently rotate said shafts and rotors in opposite directions, said first and second gears having pitch diameters that are the same as the diameters of the arcuate surface segments of the rotors, said housing having first and second side walls on opposite sides of the chamber, first and second thrust bearings located adjacent opposite sides of the gears secured to the shafts, said first thrust bearing engagable with the first side wall, and axial biasing means engagable with the second thrust bearing and the housing operable to bias the first thrust bearing into engagement with the first side wall to maintain the rotors in axial spaced relation relative to the first and second side walls of the housing.
- 6. The fluid mover of claim 5 wherein: the fluid intake passage includes a fluid inlet having two passages open to the chambers to allow fluid to flow in tangential directions into the chambers.
- 7. The fluid mover of claim 5 wherein: each rotor has two pockets open to opposite first portions of the rotor and two protrusions extended outwardly from opposite second portions of the rotor, said second portions of the rotor being located 90 degrees from the first portions of the rotor.
- 8. A fluid mover comprising: a housing having a first chamber and a second chamber open to the first chamber, each chamber having an inside surface, said housing having a fluid intake passage, a fluid exhaust passage open to the chambers, and side walls adjacent opposite sides of the chambers, rotor means located in the chambers to draw fluid through the intake passage, into the chambers, and force fluid out of the chambers through the fluid exhaust passage, a pair of parallel shafts rotatably mounted on the housing, said rotor means having a pair of rotors mounted on the shafts rotatably supported on the housing, means to concurrently rotate the shafts and rotors, means operatively associated with the shafts to maintain the rotors in axial spaced relation relative to the side walls of the housing, each rotor having a plurality of pockets and protrusions, said protrusions being integral portions of the rotors and having a non-contact relation with the inside surfaces of the chambers and non-contact relation with the pockets of the rotors when the rotors are rotated, the protrusions cooperating with the pockets of the adjacent rotor to move fluid through the chambers when the rotors are rotated, each pocket having a concave surface with a generally semi-circular cross section, each protrusion having a generally semi-cylindrical shaped outer surface with a radius smaller than the radius of the concave surface of the pocket, each rotor having outer arcuate surface segments, the arcuate surface segments of the rotors having the same arcuate lengths and radii, said means to concurrently rotate the shafts and rotors comprising a first gear mounted on one shaft and a second gear mounted on the other shaft, said gears having engaging teeth whereby the first and second gears concurrently rotate said shafts and rotors in opposite directions, said first and second gears having pitch diameters that are the same as the diameters of the arcuate surface segments of the rotors, each rotor has opposite end walls, said means to maintain the rotors in axial spaced relation relative to the side walls of the housing comprising first and second thrust bearings located adjacent opposite sides of the gears secured to each shaft, said first thrust bearings being engagable with the first side wall, and axial biasing means engagable with the second thrust bearings and the housing to bias the first thrust bearings into engagement with the first side wall to maintain the end walls of the rotors in spaced relation to the first and second side walls of the housing.
- 9. A fluid mover comprising: a housing having a first chamber and a second chamber open to the first chamber, each chamber having an inside surface, said housing having a fluid intake passage, a fluid exhaust passage open to the chambers, and first and second side walls adjacent opposite sides of the chambers, rotor means located in the chambers operable to draw fluid through the intake passage, into the chambers, and force fluid out of the chambers through the fluid exhaust passage, a pair of parallel shafts, roller bearings rotatably mounting the shafts on the housing, said rotor means having a pair of rotors mounted on the shafts, each rotor having opposite end walls, gear means to concurrently rotate the shafts and rotors, first and second thrust bearings located adjacent opposite sides of the gear means, said first thrust bearings being engagable with the first side wall, and axial biasing means engagable with the second thrust bearings and the housing to bias the first thrust bearing into engagement with the first side wall to maintain the opposite end walls of the rotors in axial spaced relation relative to the first and second side walls of the housing, each rotor having a plurality of pockets and protrusions, said protrusions being integral portions of the rotors and having a non-contact relation with the inside surfaces of the chambers and non-contact relation with the pockets of the rotors when the rotors are rotated, the protrusions cooperating with the pockets of the adjacent rotor to move fluid through the chambers when the rotors are rotated, each pocket having a concave surface with a generally semi-circular cross section, each protrusion having a generally semi-cylindrical shaped outer surface with a radius smaller than the radius of the concave surface of the pocket, each rotor having outer arcuate surface segments, the arcuate surface segments of the rotors having the same arcuate lengths and radii.
- 10. The fluid mover of claim 9 wherein: the fluid intake passage includes a fluid inlet having two passages open to the chambers to allow fluid to flow in tangential directions into the chambers.
- 11. The fluid mover of claim 9 wherein: said gear means have pitch diameters that are the same as the diameters of the arcuate surface segments of the rotors.
- 12. The fluid mover of claim 9 wherein: each rotor has two pockets open to opposite first portions of the rotor and two protrusions extended outwardly from opposite second portions of the rotor, said second portions of the rotor being located 90 degrees from the first portions of the rotor.
CROSS REFERENCE TO RELATED APPLICATION
This application is a division of U.S. patent application Ser. No. 09/504,199 filed Feb. 15, 2000, now U.S. Pat. No. 6,241,498. Application Ser. No. 09/504,199 is a division of U.S. Application Ser. No. 09/118,625 filed Jul. 17, 1998, now U.S. Pat. No. 6,138,646. Application Ser. No. 09/118,625 claims the priority date of U.S. Provisional Application Ser. No. 60/053,148 filed Jul. 18, 1997.
US Referenced Citations (24)
Foreign Referenced Citations (3)
Number |
Date |
Country |
193063 |
Nov 1957 |
AT |
619576 |
Jan 1927 |
FR |
644016 |
May 1928 |
FR |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/053148 |
Jul 1997 |
US |