1. Field of the Invention
The disclosure relates generally to cooling systems for computer systems and, more specifically, to a cooling system for reducing drag of fluid through a cooling fan of the cooling system.
2. Description of the Related Art
While the recent increase in the speed of microprocessors has significantly increased the processing capability of computers, this increase in speed has resulted in additional heat being generated by the processor and/or other components within a computer system. Many of these components, including the processor, are adversely affected by high temperatures; and thus, a need exists for dissipating the excess heat. Typically, a heat sink is thermally attached to an integrated circuit package containing the processor or other chip, and a cooling fan is used to force air over the heat sink.
One innovation for increasing cooling capacity has been to arrange multiple cooling fans in series, which results in the inlet of one fan being placed at the exhaust of another fan. This configurations increases the ability of the fans to overcome large pressure drops (i.e., resistance to flow or system impedance). Resistance to flow can created, for example, by mechanical structures such as a fan hub, fan impellers/blades, and fan struts that are located in front of or behind the cooling fan.
Problems can occur, however, with cooling systems that have multiple cooling fans in series upon one of the cooling fans failing or stalling. Upon such an occurrence, the stalled or failed cooling fan creates additional impedance for the working fan(s) in the cooling system. This additional impedance decreases air flow through the fans, which increases the potential that a component being cooled by the cooling system will become thermally degraded. There is, therefore, a need to improve multiple cooling fans in series such that if one of the multiple cooling fans stalls, a reduction of air flow through the cooling system is minimized.
Embodiments of the invention address deficiencies of the art of cooling system and provide a novel and non-obvious system for cooling a device in a computer system. The cooling system includes a plurality of cooling fans positioned in series. Each cooling fan includes a hub and at least one fan blade connected to the hub. The fan blade rotates relative to the hub about a substantially radially extending axis and between at least a first position and a second position. Drag to a flow of fluid through the cooling system by the fan blade in the second position is less than drag to the flow of fluid through the cooling system by the fan blade in the first position. Upon the hub rotating within the cooling fan, the fan blade is in the first position, and upon the hub stationary within the cooling fan, the fan blade is in the second position.
In another aspect of the cooling system, a biasing member is connected to the fan blade and the hub that biases the fan blade towards the second position. Also, the blade in the second position has a substantially zero coefficient of lift to a flow of fluid through the cooling system. Upon the blade having a symmetric profile, a cord line of the blade is substantially parallel to a freestream velocity of fluid through the cooling system and/or substantially parallel to a rotational axis of the cooling fan.
Additional aspects of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The aspects of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention. The embodiments illustrated herein are presently preferred, it being understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown, wherein:
Many different types of heat exchangers 26 capable of being used to cool a component of a computer system are known to those in the computer industry, and the present heat exchanger 26 is not limited to a particular type so capable. One type of heat exchanger 26, as illustrated, includes a heat sink 28 that is thermally connected to the processor 30 using, for example, a thermal paste. Fins 29 extend from the heat sink 28, and flow from the fans 10a, 10b is directed over surfaces on the fins 29 to cool the fins 29, which through a well-known mechanism, also cools the processor 30.
A closer view of one of the fans 10 according to the disclosure is illustrated in
Referring to
In the second position (
For a fan blade 14 having an asymmetric/cambered profile (i.e., a non-linear mean line), such as illustrated in
Many different devices can be used to move a fan blade 14 from the first position to the second position and from the second position to the first position, and the current cooling system is not limited as to a particular device so capable. For example, each fan blade 14 may be connected to the hub 12 with shafts that are rotated using servo-motors (not shown).
Another example of a device capable of moving the fan blades 14 between the first and second positions is described with reference to
Each fan blade 14 may include a respective biasing member 40. Alternatively, a plurality of the fan blades 14 may be connected through linkages (not shown) such that a single biasing member 40 moves all or a multiple number of the fan blades 14 between the first and second positions.
The fan blade 14 may be connected to the hub 12 at a pivot 42 such that biasing the fan blade 14 towards the second position rotates the fan blade 14 into the second position. Although not limited in this manner, the pivot 42 may be positioned proximate to a trailing edge of the fan blade 14.
The positioning device may also include stops 44, 46 for limiting the motion of the fan blade 14 between first position and the second position. For example, a first stop 44 may limit rotation of the fan blade 14 past the first position, and a second stop may limit rotation of the fan blade 15 past a second position. The use of stops 44, 46 to limit the relative motion of a particular device is well known, and the present fan 10 is not limited as to a particular type of stop 44, 46.
In operation, upon rotating the fan blade 14 in the direction shown by the arrow, force is exerted by the fluid against the fan blade 14 in a direction opposite the direction of rotation and against the force exerted by the biasing member 40. Upon the force created by the fluid against the fan blade 14 overcoming the force exerted by the biasing member 40 and any other force resistive to the fan blade 14 from moving, the fan blade 14 moves from the second position (
As the speed of rotation of the fan blade 14 is reduced, the force exerted against the fan blade 14 by the fluid also reduces. At a certain rotational speed of the fan blade 14, the force exerted by the fluid against the fan blade 14 is overcome by the force exerted against the fan blade 14 by the biasing member 40, and the fan blade 14 moves from the first position (
FIGS. 7 represents experimental results of the impedance of a cooling system having fans configured according to the prior art and of the presently disclosed cooling system.
The blades/impellers used during the testing were substantially symmetrical. By being positioned in a “straight” configuration, the blades/impellers were substantially parallel to the rotational axis of the fans, and thus, the blades/impellers were positioned to minimize drag. As shown by these figures, a 20% reduction in impedance was realized, and as great as a 33% increase in airflow was realized.