Fluid pouch, system, and method for storing fluid from a tissue site

Abstract
The illustrative embodiments described herein are directed to an apparatus, system, and method for storing liquid from a tissue site. The apparatus may include a drape having an aperture, and a fluid pouch coupled to the drape such that the fluid pouch is in fluid communication with the aperture. In one embodiment, the fluid pouch is operable to transfer reduced pressure to the aperture such that the liquid from the tissue site is drawn into the fluid pouch. The fluid pouch may have a cavity that stores the liquid that is drawn from the tissue site. In another embodiment, the fluid pouch may include at least one baffle. The fluid pouch may also include a fluid channel at least partially defined by the at least one baffle. The fluid channel may be operable to store liquid from the tissue site when reduced pressure is applied through the fluid channel.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present application relates generally to medical treatment systems, and more particular, to a fluid pouch, system, and method for storing fluid from a tissue site.


2. Description of Related Art

Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but one particular application of reduced pressure involves treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including migration of epithelial and subcutaneous tissues, improved blood flow, and micro-deformation of tissue at the wound site. Together these benefits result in increased development of granulation tissue and faster healing times. Typically, reduced pressure is applied by a reduced pressure source to tissue through a porous pad or other manifold device. In many instances, wound exudate and other liquids from the tissue site are collected within a canister to prevent the liquids from reaching the reduced pressure source.


SUMMARY

The problems presented by existing reduced pressure systems are solved by the systems and methods of the illustrative embodiments described herein. In one embodiment, a system for storing fluid removed from a tissue site includes a reduced-pressure source operable to supply reduced pressure and a manifold adapted to distribute the reduced pressure. A drape is provided for covering the manifold, and the drape includes an aperture through which liquid from the tissue site is transferred. A flexible fluid pouch is provided in fluid communication with the aperture and is positioned adjacent the drape. The fluid pouch includes at least one baffle and a fluid channel at least partially defined by the at least one baffle. The fluid channel is operable to store liquid from the tissue site when the reduced pressure is applied through the fluid channel.


In another embodiment, an apparatus for storing liquid from a tissue site includes a drape having an aperture and a fluid pouch in fluid communication with the aperture. The fluid pouch includes at least one baffle and a fluid channel at least partially defined by the at least one baffle. The fluid channel is operable to store liquid from the tissue site when reduced pressure is applied through the fluid channel.


In still another embodiment, an apparatus for storing liquid from a tissue site is provided. The apparatus includes a drape having an aperture and an expandable fluid pouch coupled to the drape such that the fluid pouch is in fluid communication with the aperture. The fluid pouch is operable to transfer reduced pressure to the aperture such that the liquid from the tissue site is drawn into the fluid pouch. The fluid pouch includes a cavity that stores the liquid that is drawn from the tissue site.


In yet another embodiment, a method for storing liquid from a tissue site includes applying a drape and a fluid pouch to the tissue site, the drape having an aperture. The fluid pouch includes at least one baffle and a fluid channel at least partially defined by the at least one baffle. The fluid channel is operable to store liquid from the tissue site. The method further includes supplying a reduced pressure to the fluid pouch and storing the liquid in the fluid channel.


In another embodiment, a method of manufacturing an apparatus for storing liquid from a tissue site includes forming a flexible fluid pouch. The fluid pouch includes at least one baffle and a fluid channel at least partially defined by the at least one baffle. The fluid channel is operable to store liquid from the tissue site.


Other objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a partial cross-sectional view of a system for storing fluid from a tissue site in accordance with an illustrative embodiment;



FIG. 2 illustrates a cross-sectional bottom view of a cover and a fluid pouch of the system of FIG. 1 taken along line 2-2;



FIG. 3 illustrates a cross-sectional top view of a fluid pouch for storing fluid from a tissue site in accordance with an illustrative embodiment;



FIG. 4 illustrates a cross-sectional top view of the fluid pouch of FIG. 3 partially filled with liquid from the tissue site;



FIG. 5 illustrates a perspective view of a fluid pouch for storing fluid from a tissue site in accordance with an illustrative embodiment;



FIG. 6 illustrates a cross-sectional side view of a portion of the fluid pouch of FIG. 4 taken at 6-6;



FIG. 7 illustrates a cross-sectional side view of a portion of a fluid pouch for storing fluid from a tissue site in accordance with an illustrative embodiment;



FIG. 8 illustrates a cross-sectional side view of a portion of a fluid pouch for storing fluid from a tissue site in accordance with an illustrative embodiment;



FIG. 9 illustrates a cross-sectional side view of a fluid pouch for storing fluid from a tissue site in accordance with an illustrative embodiment;



FIG. 10 illustrates a cross-sectional view of a fluid pouch for storing fluid from a tissue site in accordance with an illustrative embodiment; and



FIG. 11 illustrates a partial cross-sectional view of a system for storing fluid from a tissue site in accordance with an illustrative embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following detailed description of several illustrative embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.


The term “reduced pressure” as used herein generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure associated with tissue at the tissue site. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure reduction applied to the tissue site may be significantly less than the pressure reduction normally associated with a complete vacuum. Reduced pressure may initially generate fluid flow in the area of the tissue site. As the hydrostatic pressure around the tissue site approaches the desired reduced pressure, the flow may subside, and the reduced pressure is then maintained. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Similarly, references to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.


The term “tissue site” as used herein refers to a wound or defect located on or within any tissue, including but not limited to, bone tissue, adipose tissue, muscle tissue, neural tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments. The term “tissue site” may further refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it is desired to add or promote the growth of additional tissue. For example, reduced pressure tissue treatment may be used in certain tissue areas to grow additional tissue that may be harvested and transplanted to another tissue location.


Referring to FIG. 1, a reduced pressure treatment system 100 for applying a reduced pressure to a tissue site 105 of a patient according to an illustrative embodiment includes a reduced pressure source 110 and a reduced pressure dressing 115 that is positioned at the tissue site 105. In one embodiment, the reduced pressure dressing 115 may include a distribution manifold 120, a cover 125, and a fluid pouch 130, each of which is described in more detail below. The reduced pressure dressing 115 is fluidly connected the reduced pressure source 110 by a conduit 118. The conduit 118 may be any tube through which a gas, liquid, gel, or other fluid may flow. The possible embodiments of the conduit 118 are numerous, and non-limiting examples follow. In addition, the conduit 118 may be made from any material, and may be either flexible or inflexible.


The conduit 118 may include one or more paths or lumens through which fluid may flow. For example, the conduit 118 may include two or more lumens, one of which may be used to deliver reduced pressure to the tissue site and one of which may be used to determine the level of reduced pressure at the tissue site 105. Alternatively, one of the lumens may be used to deliver fluids, such as air, antibacterial agents, antiviral agents, cell-growth promotion agents, irrigation fluids, or other chemically active agents, to the tissue site 105. If fluid delivery is provided by one of the lumens, that particular lumen will likely be configured to bypass the fluid pouch 130.


The conduit 118 may fluidly communicate with the reduced pressure dressing 115 through a tubing adapter 145. The tubing adapter 145 permits the passage of fluid, such as air, from the manifold 120 to the conduit 118, and vice versa. In another embodiment, the reduced-pressure treatment system 100 does not include the tubing adaptor 145. In this embodiment, the conduit 118 may be inserted directly into a component of the dressing 115. The tubing adaptor 145 may be located anywhere relative to the dressing 115. For example, although FIG. 1 shows the tubing adaptor 145 as centrally located relative to the dressing 115, the tubing adaptor 145 may be located at a peripheral portion of the dressing 115.


In the embodiment illustrated in FIG. 1, the reduced pressure source 110 is an electrically-driven vacuum pump. In another implementation, the reduced pressure source 110 may instead be a manually-actuated or manually-charged pump that does not require electrical power. The reduced pressure source 110 instead may be any other type of reduced pressure pump, or alternatively a wall suction port such as those available in hospitals and other medical facilities. The reduced pressure source 110 may be housed within or used in conjunction with a reduced pressure treatment unit 119, which may also contain sensors, processing units, alarm indicators, memory, databases, soft ware, display units, and user interfaces 121 that further facilitate the application of reduced pressure treatment to the tissue site 105. In one example, a sensor or switch (not shown) may be disposed at or near the reduced pressure source 110 to determine a source pressure generated by the reduced pressure source 110. The sensor may communicate with a processing unit that monitors and controls the reduced pressure that is delivered by the reduced pressure source 110.


The reduced-pressure treatment system 100 may include a reduced pressure feedback system 155 operably associated with the other components of the reduced-pressure treatment system 100 to provide information to a user of the reduced-pressure treatment system 100 indicating a relative or absolute amount of pressure that is being delivered to the tissue site 105 or that is being generated by the reduced-pressure source 110. Examples of feedback systems include, without limitation, pop valves that activate when the reduced pressure rises above a selected value and deflection pop valves.


The reduced-pressure treatment system 100 may include a volume detection system 157 to detect the amount of fluid present in the fluid pouch 130, a blood detection system 159 to detect the presence of blood in exudate drawn from the tissue site 105 (including the exudate that is present in the fluid pouch 130), a temperature monitoring system 162 to monitor the temperature of the tissue site 105, an infection detection system 165 to detect the presence of infection at the tissue site 105, and/or a flow rate monitoring system 167 to monitor the flow rate of fluids drawn from tissue site 105. The infection detection system 165 may include a foam or other substance that changes color in the presence of bacteria. The foam or other substance may be operably associated with the dressing 115 or the conduit 118 such that the color changing material is exposed to exudate from the tissue site 105. In addition to the above-mentioned components and systems, the reduced-pressure treatment system 100 may include valves, regulators, switches, and other electrical, mechanical, and fluid components to facilitate administration of reduced-pressure treatment to the tissue site 105.


The distribution manifold 120 is adapted to be positioned at the tissue site 105, and the cover 125, or drape, is positioned over the distribution manifold 120 to maintain reduced pressure beneath the cover 125 at the tissue site 105. The distribution manifold 120 of the reduced pressure dressing 115 is adapted to contact the tissue site 105. The distribution manifold 120 may be partially or fully in contact with the tissue site 105 being treated by the reduced pressure dressing 115. When the tissue site 105 is a wound, the distribution manifold 120 may partially or fully fill the wound.


The distribution manifold 120 may be any size, shape, or thickness depending on a variety of factors, such as the type of treatment being implemented or the nature and size of the tissue site 105. For example, the size and shape of the distribution manifold 120 may be customized by a user to cover a particular portion of the tissue site 105, or to fill or partially fill the tissue site 105. The distribution manifold 120 may have, for example, a square shape, or may be shaped as a circle, oval, polygon, an irregular shape, or any other shape.


In one illustrative embodiment, the distribution manifold 120 is a foam material that distributes reduced pressure to the tissue site 105 when the distribution manifold 120 is in contact with or near the tissue site 105. The foam material may be either hydrophobic or hydrophilic. In one non-limiting example, the distribution manifold 120 is an open-cell, reticulated polyurethane foam such as GranuFoam® dressing available from Kinetic Concepts, Inc. of San Antonio, Tex. If an open-cell foam is used, the porosity may vary, but is preferably about 400 to 600 microns. The flow channels allow fluid communication throughout the portion of the manifold 120 having open cells. The cells and flow channels may be uniform in shape and size, or may include patterned or random variations in shape and size. Variations in shape and size of the cells of manifold result in variations in the flow channels, and such characteristics may be used to alter the flow characteristics of fluid through the manifold 120.


In the example in which the distribution manifold 120 is made from a hydrophilic material, the distribution manifold 120 also functions to wick fluid away from the tissue site 105, while continuing to provide reduced pressure to the tissue site 105 as a manifold. The wicking properties of the distribution manifold 120 draw fluid away from the tissue site 105 by capillary flow or other wicking mechanisms. An example of a hydrophilic foam is a polyvinyl alcohol, open-cell foam such as V.A.C. WhiteFoam® dressing available from Kinetic Concepts, Inc. of San Antonio, Tex. Other hydrophilic foams may include those made from polyether. Other foams that may exhibit hydrophilic characteristics include hydrophobic foams that have been treated or coated to provide hydrophilicity.


The distribution manifold 120 may further promote granulation at the tissue site 105 when a reduced pressure is applied through the reduced pressure dressing 115. For example, any or all of the surfaces of the distribution manifold 120 may have an uneven, coarse, or jagged profile that causes microstrains and stresses at the tissue site 105 when reduced pressure is applied through the distribution manifold 120. These microstrains and stresses have been shown to increase new tissue growth.


In one embodiment, the distribution manifold 120 may be constructed from bioresorbable materials that do not have to be removed from a patient's body following use of the reduced pressure dressing 115. Suitable bioresorbable materials may include, without limitation, a polymeric blend of polylactic acid (PLA) and polyglycolic acid (PGA). The polymeric blend may also include without limitation polycarbonates, polyfumarates, and capralactones. The distribution manifold 120 may further serve as a scaffold for new cell-growth, or a scaffold material may be used in conjunction with the distribution manifold 120 to promote cell-growth. A scaffold is a substance or structure used to enhance or promote the growth of cells or formation of tissue, such as a three-dimensional porous structure that provides a template for cell growth. Illustrative examples of scaffold materials include calcium phosphate, collagen, PLA/PGA, coral hydroxy apatites, carbonates, or processed allograft materials.


Referring still to FIG. 1, but also to FIG. 2, the cover 125 covers at least a portion of the manifold 120. As used herein, the term “cover” includes partially or fully covering. Also, a first object that covers a second object may directly or indirectly touch the second object, or may not touch the second object at all. The manifold 120 may be secured to the tissue site 105 using the cover 125. The possible embodiments of the cover 125 are numerous, and non-limiting examples follow. While the cover 125 may be impermeable or semi-permeable, in one example the cover 125 is capable of maintaining a reduced pressure at the tissue site 105 after installation of the cover 125 over the manifold 120. The cover 125 may be a flexible drape or film made from a silicone based compound, acrylic, polyurethane, hydrogel or hydrogel-forming material, or any other biocompatible material that includes the impermeability or permeability characteristics desired for the tissue site 105. The cover 125 may be formed of a hydrophobic material to prevent moisture absorption by the cover 125.


In the embodiment illustrated in FIG. 2, the cover 125 has a square shape. However, the cover 125 may have any shape, such as an elliptical, elongated, irregular, polygonal, or human-customized shape. The cover 125 may be provided in “sheet” form, or in a pourable or sprayable form that is applied over the manifold 120 after placement of the manifold 120 in contact with the tissue site 105. The cover 125 may include a device that is placed over the manifold 120 and the tissue site 105 to provide sealing functionality, including but not limited to, a suction cup, a molded cast, and a bell jar.


In one embodiment, the cover 125 is configured to provide a sealed connection with the tissue surrounding the manifold 120 and the tissue site 105. The sealed connection may be provided by an adhesive layer positioned along a perimeter of the cover 125, or on any portion of the cover 125, to secure the cover 125 to the manifold 120 or the tissue surrounding the tissue site 105. The adhesive may be pre-positioned on the cover 125 or may be sprayed or otherwise applied to the cover 125 immediately prior to installing the cover 125. Prior to the application of the cover 125 to the tissue site 105, the adhesive may also be covered by an adhesive support layer or removable backing. The adhesive support layer may provide rigidity to the drape prior to application and may also aid in the actual application of the cover 125 onto the tissue site 105. The adhesive support layer may be peeled off or otherwise removed before applying the cover 125 to the tissue site 105.


In one embodiment, the cover 125 has an aperture 127. Liquid, such as exudate, from the tissue site 105 may pass through the cover 125 via the aperture 127. In some instances, the liquid may also contain solid particles. Although the aperture 127 is shown to have a circular cross-sectional shape in FIG. 2, the aperture 127 may have any cross-sectional shape, such as an elliptical, elongated slit, irregular, polygonal, or human-customized cross-sectional shape. In addition, the aperture 127 is shown to be substantially centered on the cover 125. However, the aperture 127 may be located anywhere on the cover 125, including the peripheral portions of the cover 125.


The dressing 115 also includes the fluid pouch 130, which may be used to store liquid, such as exudate, from the tissue site 105. The fluid pouch 130 may be coupled to the cover 125 such that the fluid pouch 130 is in fluid communication with the aperture 127. In one embodiment, liquid from the tissue site 105 may pass through the aperture 127 and into the fluid pouch 130 as a result of reduced pressure being applied to the dressing 115. A one-way valve may be located at or near the inlet to the fluid pouch 130 so that fluid in the fluid pouch 130 is restrained from entering the aperture 127. As used herein, the term “coupled” includes coupling via a separate object, and also includes direct coupling. In the case of direct coupling, the two coupled objects touch each other in some way. The term “coupled” also encompasses two or more components that are continuous with one another by virtue of each of the components being formed from the same piece of material. Also, the term “coupled” includes chemical coupling, such as via a chemical bond. The term “coupled” may also include mechanical, thermal, or electrical coupling. The term “coupled” may also include fluidly coupled, in which case a first object that is coupled to a second object is in fluid communication with that second object.


In another embodiment, the fluid pouch 130 may be positioned adjacent or in contact with the cover 125. The term “adjacent” as used herein refers to the positional relationship of two or more objects. Two objects that are adjacent includes two objects that are close to one another and that may, but do not necessarily have to, contact one another. An object that is adjacent to another object may be immediately adjacent with no intervening structure between the two objects, or alternatively, may include two objects that have intervening structures or objects between the two objects.


The fluid pouch 130 may include baffles, which help define fluid channels, for directing fluid flow as will be described further below. Numerous illustrative embodiments of the fluid pouch 130 are possible and a number of illustrative embodiments follow.


In an embodiment, such as that illustrated in FIG. 1, the fluid pouch 130 includes a first sheet 132 and a second sheet 133. In another example, the first sheet 132 and the second sheet 133 may be a first wall and a second wall, respectively. In this embodiment, a perimeter portion of the first sheet 132 may be coupled to a perimeter portion of the second sheet 133. An example of the width of the perimeter portion of either or both of the first sheet 132 and the second sheet 133 is represented by indicator 131 (shown in FIG. 2). However, the perimeter portion 131 may be any size that is able to facilitate the coupling between the first sheet 132 and the second sheet 133. Areas 136 and 138 represent the areas at which the first sheet 132 is coupled to the second sheet 133, as shown in the schematic view of FIG. 1. In one embodiment, non-peripheral portions of the first sheet 132 may also be coupled to non-peripheral portions of the second sheet 133. In another embodiment, at least a portion of each of the first sheet 132 and the second sheet 133 are formed from a single piece of continuous material; in this embodiment, all of the first sheet 132 and the second sheet 133 may be formed from a single piece of continuous material. The first sheet 132 may be coupled to the cover 125.


In one embodiment, either or both of the first sheet 132 and the second sheet 133 is transparent. The transparency of either or both of the first sheet 132 and the second sheet 133 exposes the amount of liquid from the tissue site 105 that is stored in the fluid pouch 130. Thus, a person is made aware of the remaining liquid capacity of the fluid pouch 130 and the possible need to replace or empty the fluid pouch 130.


In another embodiment, the fluid pouch 130 is an expandable fluid pouch that expands as liquid from the tissue site 105 fills the fluid pouch 130. In one non-limiting example, the fluid pouch 130 may expand in either or both of the directions indicated by bi-directional arrow 149 as liquid from the tissue site 105 fills the fluid pouch 130. However, the fluid pouch 130 may expand in other directions as well. The edges of the fluid pouch 130 may also have a pleated construction to facilitate the expansion of the fluid pouch 130.


The fluid pouch 130 may be made from any material, such as a flexible, stretchable, expandable, and/or rigid material. Non-limiting examples of the materials from which the fluid pouch 130 may be made include polymer films of various thicknesses including polyurethane, polypropylene, PVC, polyethylene, and/or polyamides, as well as coated fabrics or laminations of any one or combination of the above.


In one embodiment, a method for storing liquid from the tissue site 105 may include applying the manifold 120 to the tissue site 105 and at least partially covering the manifold 120 with the cover 125. In another embodiment, the cover 125 may be applied directly to the tissue site 105 without the manifold 120. In another embodiment, the method may include applying the cover 125 and a fluid pouch to the tissue site; in this embodiment, either or both of the cover 125 and the fluid pouch may or may not directly touch the tissue site. In another embodiment, the method may also include coupling a fluid pouch as in any of the illustrative embodiment disclosed herein to the cover 125 such that the fluid pouch is in fluid communication with the aperture 127. The method may also include supplying a reduced pressure from the reduced-pressure source 110. The reduced pressure may be supplied to the tissue site 105, the manifold 120, and/or the fluid pouch 130. The reduced pressure may also cause liquid, such as exudate, from the tissue site 105 to enter the fluid pouch 130. The liquid may be stored in the fluid pouch 130.


In another embodiment, a method of manufacturing an apparatus for storing liquid from the tissue site 105 may include forming a fluid pouch as in any of the illustrative embodiments disclosed herein, including the fluid pouch 130. In another embodiment, the method may also include providing the cover 125 and coupling the fluid pouch 130 to the cover 125 such that the fluid pouch 130 is in fluid communication with the aperture 127. In another embodiment, the method may also include providing the manifold 120, and covering at least a portion of the manifold 120 with the cover 125.


Referring to FIG. 3, a fluid pouch 330, which is a non-limiting example of the fluid pouch 130 in FIG. 1, is shown according to an illustrative embodiment. The fluid pouch 330 includes a plurality of baffles 370 that partially defines a fluid channel 375. Reduced pressure from a reduced-pressure source, such as reduced-pressure source 110 in FIG. 1, as well as liquid from the tissue site 105, may move along the fluid channel 375 in a direction indicated by arrows 378. The baffles 370 may direct the flow of liquid through the fluid channel 375. The fluid channel 375 may also store the liquid from the tissue site 105. The baffles 370, as well as the fluid channel 375 formed therefrom, may help prevent liquid from a tissue site from traveling past the fluid pouch 330 and into other components in a reduced-pressure treatment system, such as the tubing adaptor 145 or the delivery tube 135 in FIG. 1.


All of the baffles 370 are substantially parallel to one another to form a plurality of fluid channel portions 390-396 of fluid channel 375. Each of the fluid channel portions 390-396 are in fluid communication with an adjacent fluid channel portion. Such fluid communication is facilitated by gaps 382 between the baffles 370 and a wall of the fluid pouch 330.


The fluid pouch 330 may include any number of baffles and any number of fluid channel portions. For example, the number of baffles and fluid channel portions may be varied to increase or decrease the liquid storage capacity of the fluid pouch 330. The length of the fluid channel 375 or the fluid channel portions 390-396 may also be increased or decreased to vary the liquid storage capacity of the fluid pouch 330.


All of the fluid channel portions 390-396 may be substantially parallel to one another to form a plurality of rows. The fluid pouch 330 includes such a row-like structure. At least two of the fluid channel portions 390-396 are at least partially defined by a same baffle, including any one of baffles 370. For example, both of fluid channel portions 390 and 391 are partially defined by the same baffle because one side of the shared baffle defines a wall of the fluid channel portion 390 and an opposite side of the shared baffle defines a wall of the fluid channel portion 391. Similarly, each of fluid channel portions 393 and 394 are partially defined by the same baffle because one side of the shared baffle defines a wall of the fluid channel portion 393 and an opposite side of the shared baffle defines a wall of the fluid channel portion 394.


For any two fluid channel portions that share a same baffle, a direction of fluid flow in a first of the fluid channel portions may be in an opposite direction than a direction of fluid flow for a second of the fluid channel portions. For example, fluid channel portions 390 and 391, which are partially defined by a same baffle, have fluid flow directions that are opposite from one another, as indicated by arrows 378. Similarly, fluid channel portions 393 and 394, which are partially defined by a same baffle, have fluid flow directions that are opposite from one another, as indicated by arrows 378.


The fluid pouch 330 also includes an inlet 398 and an outlet 399. Liquid from the tissue site 105 enters the fluid channel 375 via the inlet 398. In one embodiment, a reduced-pressure source causes a gas, such as air, to enter the inlet 398, pass through the fluid channel 375, and exit the outlet 399 to cause a reduced pressure to be transferred though the fluid channel 375 and applied to a tissue site. As a result of this reduced pressure, liquid from the tissue site may pass through an aperture in a drape and enter the fluid pouch 330 via the inlet 398. The inlet 398 may also include a one-way valve that allows gas and/or liquid to enter the fluid pouch 330, but does not allow gas and/or liquid to exit the fluid pouch 330 via the inlet 398. In addition, the outlet 399 may include a one-way valve that allows gas to exit the fluid pouch 300, but does not allow gas to enter the fluid pouch 330 via the outlet 399. The outlet 399 may include a liquid-air separator, such as a hydrophobic filter or oleophobic filter, to prevent liquids from exiting the fluid pouch 330.


In one embodiment, the fluid pouch 330 may also include a tube that fluidly couples the aperture (e.g., aperture 127 in FIG. 2) in a drape to the inlet 398. Thus, liquid from the tissue site may pass through the aperture, through the tube, and into the inlet 398. The fluid pouch may also include a tube that fluid couples the outlet 399 to either or both of the tubing adaptor 145 or the conduit 118 in FIG. 1. Providing such tubes may allow the fluid pouch to have any orientation relative to other components in the reduced-pressure treatment system, such as reduced-pressure treatment system 100 in FIG. 1.


The fluid channel 375 may also store liquid from the tissue site, including any liquid that enters the fluid channel 375 via the inlet 398. In one embodiment, the fluid pouch 330 includes an absorbent material 372 in the fluid channel 375. The absorbent material 372 stores, or immobilizes, the liquid from a tissue site.


The absorbent material 372 may be any substance capable of storing a liquid, such as exudate. For example, the absorbent material 372 may form a chemical bond with exudate from the tissue site. Non-limiting examples of the absorbent material 372 include super absorbent fiber/particulates, hydrofibre, sodium carboxymethyl cellulose, and/or alginates. In addition, the fluid channel 375 may include any amount of absorbent material 372. For example, the amount of absorbent material 372 may be varied to increase or decrease the liquid storage capacity of the fluid pouch 330. The presence of the absorbent material 372 may also help to minimize fluid loss or reflux.


Referring to FIG. 4, the fluid pouch 330 is shown according to another illustrative embodiment. In particular, FIG. 4 shows the fluid pouch 330 having liquid 412 from a tissue site stored in the fluid channel 375. The fluid channel 375 is partially filled with the liquid 412 from the tissue site.


Reduced pressure that is introduced into the fluid channel 375 via the outlet 399 causes the liquid 412 to enter the fluid channel 375 via the inlet 398. The liquid 412 at least partially occupies fluid channel portions 390-393, while fluid channel portions 394-396 contain little or none of the liquid 412.


In another embodiment, the absorbent material 372 may occlude the fluid channel 375 when all of the absorbent material 372 in the fluid channel 375 is saturated with the liquid 412. Occluding the fluid channel 375 in this manner prevents reduced pressure from being transferred through the fluid pouch 330, and may possibly prevent spillage or overflow of the liquid 412 from the fluid pouch 330.


In another embodiment, the fluid pouch 330 may have multiple fluid channels that may or may not be in fluid communication with one another. In addition, the fluid pouch 330 may have more than one inlet and/or outlet. In the embodiment in which the fluid pouch 330 has more than one fluid channel, each of the fluid channels may have a respective inlet and/or outlet.


Referring to FIG. 5, a fluid pouch 530 is shown according to an illustrative embodiment. In contrast to the fluid pouch 330 in FIGS. 3 and 4, the fluid pouch 530 has a circular shape. In other embodiments, the fluid pouch may also have any other shape, such as an elliptical, polygonal, irregular, or user-customized shape.


A baffle 572 of fluid pouch 530 is a spiraling baffle that emanates from a central portion of the fluid pouch 530. In addition, a fluid channel 575 emanates from a central inlet 598 to form a spiraling fluid channel that is at least partially defined by the spiraling baffle 572. The central inlet 598 is functionally analogous to the inlet 398 in FIGS. 3 and 4. The central inlet 598 may be adjacent, abutting, or otherwise in fluid communication with an aperture in a drape, such as the aperture 127 in the cover 125 in FIG. 1, such that liquid from a tissue site passes through the aperture and enters the fluid channel 575 of the fluid pouch 530 via the central inlet 598. A coupling member might also be used in coupling the inlet 598 and the aperture.


Although no absorbent material, such as absorbent material 372, is shown in the fluid pouch 530, the fluid channel 575 may include an absorbent material as described in any of the illustrative embodiments herein. Also, the number of revolutions of the fluid channel 575 around the central inlet 598 may be varied to increase or decrease the liquid storage capacity of the fluid pouch 530.


Outlet 599 is functionally analogous to the outlet 399 in FIGS. 3 and 4. The outlet 599 may be located at an end of the fluid channel 575 in a periphery portion of the fluid pouch 530. In one embodiment, a reduced-pressure source causes a gas, such as air, to enter the central inlet 598, pass through the fluid channel 575, and exit the outlet 599 to cause a reduced pressure to be transferred though the fluid channel 575 and applied to a tissue site. As a result of this reduced pressure, liquid from the tissue site may pass through an aperture in a drape and enter the fluid pouch 530 via the central inlet 598. In one embodiment, the position of the central inlet 598 and the outlet 599 may be reversed such that the outlet 599 is at a central portion of the fluid pouch 530 and the central inlet 598 is at a peripheral portion of the fluid pouch 530.


Referring to FIG. 6, a cross-sectional view of the fluid pouch 330 taken along line 6-6 in FIG. 4 is shown. In particular, FIG. 6 shows fluid channel portions 392 and 393, each of which includes absorbent material 372. The fluid channel portion 392 includes a covered portion 651 that is covered by a saturated absorbent material 615. The saturated absorbent material 615 is the absorbent material 372, such as that shown in FIGS. 3 and 4, which is saturated with liquid, such as exudate, from a tissue site. The fluid channel portion 392 also includes an uncovered portion 653 that is uncovered by an absorbent material. The fluid channel portion 393 includes a covered portion 655 that is covered by the absorbent material 372 and an uncovered portion 657 that is uncovered by the absorbent material 372. The thickness of the absorbent material 372 on the covered portions 651 and 655 may be varied to increase or decrease the storage capacity of the fluid pouch.


The fluid channel portions 392 and 393 are formed by coupling portions of sheet 633 to sheet 632. The sheet 632 is substantially flat and the sheet 633 includes curved portions over the fluid channel portions 392 and 393. In one embodiment, the absorbent material 372 covers at least a portion of the sheet 632. The sheet 633 may be uncovered by the absorbent material 372. In addition, an inner portion of the sheet 633 is adhered to an inner portion of the sheet 632 to form the baffle 370. An inner portion of the sheet 633 may be adhered to an inner portion of the sheet 632 in a variety of ways. For example, an inner portion of the sheet 633 may be welded, glued, sewed, pinned, snapped, or otherwise bonded onto an inner portion of the sheet 632. In the example in which an inner portion of the sheet 633 is welded onto an inner portion of the sheet 632, the welding may be achieved using heat, ultrasonics, radio frequencies, a solvent, and/or other welding methods.


In one embodiment, the fluid channel portion 392 includes a passageway 618 through which reduced pressure is transferable when the absorbent material 615 is saturated with liquid from the tissue site. In this embodiment, the passageway 618 is present in the fluid channel portion 392 when the absorbent material 615 is partially or fully saturated with liquid. By maintaining the passageway 618 when the absorbent material 615 is saturated with liquid, reduced pressure from a reduced-pressure source may continue to be transferred to a tissue site via the fluid pouch.


Referring to FIG. 7, a cross-sectional view of fluid channel portions 792 and 793 of a fluid pouch is shown according to an illustrative embodiment. The fluid channel portions 792 and 793 include absorbent material 772, which covers a portion of the sheet 732. In contrast to the sheet 632 in FIG. 6, the sheet 732 is curved at the fluid channel portions 792 and 793. Thus, the walls of each of the fluid channel portions 792 and 793 formed by each of the sheets 732 and 733 are curved.


Referring to FIG. 8, a cross-sectional view of fluid channel portions 892 and 893 of a fluid pouch is shown according to an illustrative embodiment. In FIG. 8, the inner surfaces of both sheets 832 and 833 are covered with the absorbent material 872. In this embodiment, an entire inner surface of the fluid channel may be covered with the absorbent material 872. The thickness of the absorbent material 872 on the inner surface of the fluid channel may be varied to increase or decrease the storage capacity of the fluid pouch.


Referring to FIG. 9, a fluid pouch 930 is shown according to an illustrative embodiment. The fluid pouch 930 does not contain baffles. The fluid pouch 930 is operable to transfer reduced pressure to an aperture, such as aperture 127 in FIG. 1, such that the liquid from a tissue site is drawn into the fluid pouch 930. The aperture would be proximate inlet 998. A gas, such as air, may be drawn from the fluid pouch 930 via outlet 999 such that reduced pressure is transferred to a tissue site via the aperture. The movement of gas that may be drawn by a reduced-pressure source is represented by arrow 949. The fluid pouch 930 has a cavity 980 that stores the liquid that is drawn from the tissue site.


In one embodiment, no absorbent material is contained in the cavity 980. In another embodiment, the cavity 980 includes absorbent material 982. The absorbent material 982 is analogous to the absorbent material 372 in FIG. 3, and may be composed of a same or similar material. As the liquid from a tissue site passes through the inlet 998 and enters the cavity 980, the absorbent material 982 may absorb and store the liquid. The movement of liquid from the tissue site into the inlet 998 is represented by arrow 950. The fluid pouch 930, and particularly cavity 980, may expand as liquid fills the cavity 980.


The fluid pouch 930 may be formed with an envelope 984 that at least partially encloses the cavity 980. In one embodiment, the envelope 984 fully encloses the cavity 980. The envelope 984 may be composed of any of a variety of materials. In one embodiment, the envelope 984 may be composed of a same or similar material as fluid pouch 130 in FIG. 1.


In one embodiment, the envelope 984 may be a manifolding envelope that may be composed of a material that is operable to distribute and/or transfer a liquid, including exudate from a tissue site. For example, the envelope 984 may be composed of an open-cell foam. In this example, the open-cell foam may be reticulated or non-reticulated, and may be hydrophobic or hydrophilic. In another example, the envelope 984 may be made from a non-woven material, including a non-woven material manufactured by Libeltex, Dupont, Freudenberg, or Ahlstrom. In another example, the envelope 984 may be composed of a three dimensional material, including Supracor® fusion bonded honeycomb or XD spacer fabric manufactured by Baltex. In another example, the envelope 984 may be composed of a molded matrix.


The envelope 984 may be composed of layers 986 and 988. In the embodiment in which the envelope 984 is a manifolding envelope, the layers 986 and 988 may be manifolding layers. A perimeter of the layer 986 may be bonded to a perimeter of the layer 988 at bonding sites 990 and 991. Any bonding method may be used, including those previously mentioned for welding.


Turning now to FIG. 10, a fluid pouch 930 is shown according to an illustrative embodiment. The fluid pouch 930 includes a manifolding envelope 1084 that distributes liquid 1092 from a tissue site along at least a portion of the perimeter of the cavity 980. The absorbent material 982 absorbs the liquid 1092, which is stored in the cavity 980. The movement of the liquid 1092 through the absorbent material 982 in the cavity 980 is represented by arrows 1062.


In addition, the manifolding envelope 1084 distributes liquid 1092 along a perimeter of the cavity 980 in a direction indicated by arrows 1060. Without the manifolding envelope 1084, in some circumstances the absorbent material 982 may swell in the immediate area of liquid entry into the cavity 980, and possibly cause a restriction in flow before much of the absorbent material 982 is used. The manifolding envelope 1084 helps to ensure that a greater portion of the absorbent material 982 is exposed to the liquid 1092, thereby facilitating larger and more efficient liquid storage.


Referring to FIG. 11, a reduced-pressure treatment system 1100 is shown according to an illustrative embodiment. Manifold 120 has been applied to the tissue site 105, and the cover 125 covers the manifold 120. The reduced-pressure treatment system 1100 also includes fluid pouch 1130.


The reduced-pressure treatment system 1100 includes a connection tube 1112. The cover 125 is coupled to the fluid pouch 1130 via the connection tube 1112 such that the connection tube 1112 facilitates fluid communication between the aperture 127 and the fluid pouch 1130. One end of the connection tube 1112 is fluidly coupled to the aperture 127, and another end of the connection tube 1112 is fluidly coupled to an inlet of a fluid pouch 1130. In one embodiment, the connection tube 1112 allows the fluid pouch 1130 to be remotely located from the manifold 120 and/or the cover 125. Fluid may exit the fluid pouch 1130 via an outlet connector 1135, which is functionally analogous to the tubing adaptor 145 in FIG. 1.


In one example, the fluid pouch 1130 may be located on a patient's skin at a site that is adjacent or remote from the manifold 120 and/or the cover 125. In this example, the fluid pouch 1130 may be adhered to the patient's skin and/or clothing using adhesive layer 1142 and/or a mechanical connection (e.g., strap). In another example, the fluid pouch 1120 may be connected to or mated with any object that is remote from the manifold 120 and/or the cover 125. For example, the fluid pouch may mate with a hospital bed, wheel chair, and/or walking boot. The fluid pouch 1130 may be adhered to an object or person using any means of adherence.


It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without departing from the spirit thereof.

Claims
  • 1. A fluid storage dressing, the dressing comprising: a cover having a substantially silicone base and at least one aperture, the cover configured to be disposed over a tissue site;a manifolding layer configured to be disposed over the cover and in fluid communication with the at least one aperture;an absorbent material configured to be disposed over and in fluid communication with the manifolding layer; anda sheet configured to be coupled to the cover, the sheet forming at least a portion of a pouch having the manifolding layer and the absorbent material disposed therein.
  • 2. The fluid storage dressing of claim 1, further comprising an annular adhesive layer configured to be disposed between the cover and the tissue site.
  • 3. The fluid storage dressing of claim 2, wherein the liquid-air separator is one of a hydrophobic filter and an oleophobic filter.
  • 4. The fluid storage dressing of claim 1, further comprising a liquid-air separator positioned between an outlet of the fluid storage dressing and a reduced-pressure source.
  • 5. The fluid storage dressing of claim 1, wherein the absorbent material immobilizes liquid from the tissue site.
  • 6. The fluid storage dressing of claim 1, wherein at least one of the cover and the sheet are transparent.
  • 7. The fluid storage dressing of claim 1, wherein the fluid storage dressing is configured to be adhered to a remote tissue site via an adhesive layer.
  • 8. A method of manufacturing a fluid storage dressing, the method comprising: providing a cover having a substantially silicone base and at least one aperture, the cover configured to be disposed over a tissue site;disposing a manifolding layer over the cover and in fluid communication with the at least one aperture;disposing an absorbent material over and in fluid communication with the manifolding layer; andcoupling a sheet to the cover, the sheet forming at least a portion of a pouch having the manifolding layer and the absorbent material disposed therein.
  • 9. The method of claim 8, wherein the method further comprises coupling an annular adhesive layer to the cover.
RELATED APPLICATIONS

This application is a continuation U.S. patent application Ser. No. 14/229,457, filed Mar. 28, 2014, which is a continuation of U.S. patent application Ser. No. 12/617,792, filed Nov. 13, 2009, which claims the benefit of U.S. Provisional Application No. 61/114,827, filed Nov. 14, 2008, each of which is hereby incorporated by reference.

US Referenced Citations (193)
Number Name Date Kind
1355846 Rannells Oct 1920 A
2547758 Keeling Apr 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
2910763 Lauterbach Nov 1959 A
2969057 Simmons Jan 1961 A
3066672 Crosby, Jr. et al. Dec 1962 A
3367332 Groves Feb 1968 A
3376868 Mondiadis Apr 1968 A
3520300 Flower, Jr. Jul 1970 A
3568675 Harvey Mar 1971 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3742952 Magers et al. Jul 1973 A
3774611 Tussey et al. Nov 1973 A
3779243 Tussey et al. Dec 1973 A
3826254 Mellor Jul 1974 A
3867939 Moore et al. Feb 1975 A
4080970 Miller Mar 1978 A
4096853 Weigand Jun 1978 A
4139004 Gonzalez, Jr. Feb 1979 A
4141361 Snyder Feb 1979 A
4149541 Gammons et al. Apr 1979 A
4165748 Johnson Aug 1979 A
4184510 Murry et al. Jan 1980 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4256109 Nichols Mar 1981 A
4261363 Russo Apr 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4373519 Errede et al. Feb 1983 A
4382441 Svedman May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4419097 Rowland Dec 1983 A
4465485 Kashmer et al. Aug 1984 A
4475909 Eisenberg Oct 1984 A
4480638 Schmid Nov 1984 A
4525166 Leclerc Jun 1985 A
4525374 Vaillancourt Jun 1985 A
4529402 Weilbacher et al. Jul 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4605399 Weston et al. Aug 1986 A
4608041 Nielsen Aug 1986 A
4640688 Hauser Feb 1987 A
4655754 Richmond et al. Apr 1987 A
4664652 Weilbacher May 1987 A
4664662 Webster May 1987 A
4710165 McNeil et al. Dec 1987 A
4733659 Edenbaum et al. Mar 1988 A
4743232 Kruger May 1988 A
4758220 Sundblom et al. Jul 1988 A
D298279 Lee et al. Oct 1988 S
4787888 Fox Nov 1988 A
4826494 Richmond et al. May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4863449 Therriault et al. Sep 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4897081 Poirier et al. Jan 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4919654 Kalt Apr 1990 A
4941882 Ward et al. Jul 1990 A
4953565 Tachibana et al. Sep 1990 A
4962761 Golden Oct 1990 A
4969880 Zamierowski Nov 1990 A
4981474 Bopp et al. Jan 1991 A
4985019 Michelson Jan 1991 A
5037397 Kalt et al. Aug 1991 A
5086170 Luheshi et al. Feb 1992 A
5092858 Benson et al. Mar 1992 A
5100396 Zamierowski Mar 1992 A
5106362 Gilman Apr 1992 A
5112323 Winkler et al. May 1992 A
5134994 Say Aug 1992 A
5149331 Ferdman et al. Sep 1992 A
5167613 Karami et al. Dec 1992 A
5176663 Svedman et al. Jan 1993 A
5176667 DeBring Jan 1993 A
5215522 Page et al. Jun 1993 A
5215539 Schoolman Jun 1993 A
5232453 Plass et al. Aug 1993 A
5261893 Zamierowski Nov 1993 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5298015 Komatsuzaki et al. Mar 1994 A
5342329 Croquevielle Aug 1994 A
5342376 Ruff Aug 1994 A
5344415 DeBusk et al. Sep 1994 A
5358494 Svedman Oct 1994 A
5387207 Dyer et al. Feb 1995 A
5437622 Carion Aug 1995 A
5437651 Todd et al. Aug 1995 A
5527293 Zamierowski Jun 1996 A
5549584 Gross Aug 1996 A
5549707 Weaver Aug 1996 A
5556375 Ewall Sep 1996 A
5607388 Ewall Mar 1997 A
5630855 Lundback May 1997 A
5636643 Argenta et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5710233 Meckel et al. Jan 1998 A
5941863 Guidotti et al. Aug 1999 A
6071267 Zamierowski Jun 2000 A
6135116 Vogel et al. Oct 2000 A
6174306 Fleischmann Jan 2001 B1
6241747 Ruff Jun 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6345623 Heaton et al. Feb 2002 B1
6420622 Johnston et al. Jul 2002 B1
6458109 Henley et al. Oct 2002 B1
6488643 Tumey et al. Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6553998 Heaton et al. Apr 2003 B2
6626891 Ohmstede Sep 2003 B2
6814079 Heaton et al. Nov 2004 B2
6979324 Bybordi et al. Dec 2005 B2
7070584 Johnson et al. Jul 2006 B2
7108683 Zamierowski Sep 2006 B2
7276051 Henley et al. Oct 2007 B1
7381859 Hunt et al. Jun 2008 B2
7520872 Biggie et al. Apr 2009 B2
7569742 Haggstrom et al. Aug 2009 B2
7794438 Henley et al. Sep 2010 B2
7846141 Weston Dec 2010 B2
7863495 Aali Jan 2011 B2
8062273 Weston Nov 2011 B2
8216198 Heagle et al. Jul 2012 B2
8251979 Malhi Aug 2012 B2
8257327 Blott et al. Sep 2012 B2
8398614 Blott et al. Mar 2013 B2
8449509 Weston May 2013 B2
8529548 Blott et al. Sep 2013 B2
8535296 Blott et al. Sep 2013 B2
8551060 Schuessler et al. Oct 2013 B2
8568386 Malhi Oct 2013 B2
8679081 Heagle et al. Mar 2014 B2
8834451 Blott et al. Sep 2014 B2
8926592 Blott et al. Jan 2015 B2
9017302 Vitaris et al. Apr 2015 B2
9198801 Weston Dec 2015 B2
9211365 Weston Dec 2015 B2
9289542 Blott et al. Mar 2016 B2
20020016346 Brandt et al. Feb 2002 A1
20020065494 Lockwood et al. May 2002 A1
20020077661 Saadat Jun 2002 A1
20020115951 Norstrem et al. Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020128578 Johnston et al. Sep 2002 A1
20020143286 Tumey Oct 2002 A1
20020150720 Howard et al. Oct 2002 A1
20020183702 Henley et al. Dec 2002 A1
20020198504 Risk et al. Dec 2002 A1
20040030304 Hunt Feb 2004 A1
20040064132 Boehringer et al. Apr 2004 A1
20040076662 Riesinger Apr 2004 A1
20040186239 Qin et al. Sep 2004 A1
20050070858 Lockwood et al. Mar 2005 A1
20050137539 Biggie et al. Jun 2005 A1
20050256437 Silcock et al. Nov 2005 A1
20050261642 Weston Nov 2005 A1
20050261643 Bybordi et al. Nov 2005 A1
20060271020 Huang et al. Nov 2006 A1
20070027414 Hoffman et al. Feb 2007 A1
20070055209 Patel et al. Mar 2007 A1
20070078366 Haggstrom et al. Apr 2007 A1
20070185426 Ambrosio et al. Aug 2007 A1
20070225663 Watt et al. Sep 2007 A1
20070265585 Joshi et al. Nov 2007 A1
20080082059 Fink et al. Apr 2008 A1
20080119802 Riesinger May 2008 A1
20080195017 Robinson Aug 2008 A1
20080243044 Hunt et al. Oct 2008 A1
20090082740 Lockwood et al. Mar 2009 A1
20090227969 Jaeb Sep 2009 A1
20090264807 Haggstrom et al. Oct 2009 A1
20090326488 Budig et al. Dec 2009 A1
20100069886 Wilkes Mar 2010 A1
20100106106 Heaton Apr 2010 A1
20100137775 Hu et al. Jun 2010 A1
20110077571 Andresen Mar 2011 A1
20140163491 Schuessler et al. Jun 2014 A1
20150080788 Blott et al. Mar 2015 A1
20160067107 Cotton Mar 2016 A1
Foreign Referenced Citations (46)
Number Date Country
550575 Mar 1986 AU
745271 Mar 2002 AU
755496 Dec 2002 AU
2005436 Jun 1990 CA
26 40 413 Mar 1978 DE
43 06 478 Sep 1994 DE
29 504 378 Sep 1995 DE
0100148 Feb 1984 EP
0117632 Sep 1984 EP
0161865 Nov 1985 EP
0358302 Mar 1990 EP
1018967 Jul 2000 EP
1905465 Apr 2008 EP
692578 Jun 1953 GB
2 195 255 Apr 1988 GB
2 197 789 Jun 1988 GB
2 220 357 Jan 1990 GB
2 235 877 Mar 1991 GB
2 329 127 Mar 1999 GB
2 333 965 Aug 1999 GB
H08502194 Mar 1996 JP
2001252349 Sep 2001 JP
2008080137 Apr 2008 JP
4129536 Aug 2008 JP
71559 Apr 2002 SG
8002182 Oct 1980 WO
8704626 Aug 1987 WO
90010424 Sep 1990 WO
93009727 May 1993 WO
1994008636 Apr 1994 WO
94020041 Sep 1994 WO
9605873 Feb 1996 WO
9718007 May 1997 WO
9913793 Mar 1999 WO
0185248 Nov 2001 WO
03045492 Jun 2003 WO
2005105176 Nov 2005 WO
2007133618 Nov 2007 WO
2008013896 Jan 2008 WO
2008036131 Mar 2008 WO
2008041926 Apr 2008 WO
2008100440 Aug 2008 WO
2008104609 Sep 2008 WO
2009066105 May 2009 WO
2009066106 May 2009 WO
2009068667 Jun 2009 WO
Non-Patent Literature Citations (58)
Entry
NPD 1000 Negative Pressure Wound Therapy System, Kalypto Medical, pp. 1-4.
Partial International Search Report dated Jul. 31, 2009 for PCT International Application No. PCT/US2009/036217.
International Search Report and Written Opinion dated Oct. 19, 2009; PCT International Application No. PCT/US2009/036217.
International Search Report and Written Opinion dated Jan. 5, 2010; PCT International Application No. PCT/US2009/057130.
Partial International Search Report dated Jul. 31, 2009; PCT International Application No. PCT/US2009/036222.
International Search Report and Written Opinion dated Dec. 15, 2009; PCT International Application No. PCT/US2009/036222.
International Search Report and Written Opinion dated Feb. 24, 2010; PCT International Application No. PCT/US2009/057182.
International Search Report and Written Opinion dated May 31, 2010 for PCT Application No. PCT/US2009/064364.
Restriction Requirement dated Jun. 13, 2011 for U.S. Appl. No. 12/398,891.
Response filed Jun. 24, 2011 for U.S. Appl. No. 12/398,891.
Non-Final Office Action dated Jul. 21, 2011 for U.S. Appl. No. 12/398,891.
Non-Final Office Action dated Jul. 20, 2011 for U.S. Appl. No. 12/398,904.
Response filed Oct. 21, 2011 for U.S. Appl. No. 12/398,891.
Interview Summary dated Oct. 27, 2011 for U.S. Appl. No. 12/398,891.
Response filed Oct. 20, 2011 for U.S. Appl. No. 12/398,904.
Interview Summary dated Oct. 27, 2011 for U.S. Appl. No. 12/398,904.
European Extended Search Report for Application No. 09826823.8 dated Mar. 4, 2013.
Examination Report for corresponding European Application No. 15152663.9, dated Jul. 31, 2017.
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery.
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24.
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA.
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 198, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK.
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of be Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487.
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639.
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, Vol. 165, pp. 79-80.
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995.
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999.
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999.
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997.
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997.
Dattilo, Philip P., JR., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5.
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof.
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof.
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof.
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct 1988, pp. 48-52, and 8 page English translation thereof.
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof.
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63.
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24.
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2.
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534.
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81.
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213.
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221.
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133.
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (certified translation).
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246.
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation).
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585.
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation).
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370.
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513.
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I).
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549.
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211.
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”).
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”).
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”).
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007.
Related Publications (1)
Number Date Country
20170312407 A1 Nov 2017 US
Provisional Applications (1)
Number Date Country
61114827 Nov 2008 US
Continuations (2)
Number Date Country
Parent 14229457 Mar 2014 US
Child 15648143 US
Parent 12617792 Nov 2009 US
Child 14229457 US