The present invention relates to a fluid-powered torque wrench and, more particularly, to such a wrench in which the controls require two-hand operation.
Fluid-powered wrenches designed for the transmission of rotational power to threaded fasteners are widely used tools in industry. There are a variety of different types of power wrenches, but one typical wrench design consists of a fluid-driven, reciprocating piston driving a socket. These reciprocating piston style torque wrenches are commonly used in flange bolting operations due to their compact nature.
With reciprocating piston-style torque wrenches, a fluid pump is coupled to the wrench via a hose to drive the piston. The pump is typically actuated via controls located on the pump or coupled to the pump via a pendant.
In operation, it is common to use two technicians to operate this style of wrench. One technician positions the wrench on the nut to be tightened. Once in position and clear of pinch points, that technician communicates to the other technician to operate the pump to actuate the wrench. Miscommunication may result undesirable operations, especially for the first technician.
Thus, a need may exist to allow a single technician to operate a reciprocating piston-style fluid-operated torque wrench. Some much larger electronic, motor-driven torque wrenches (sometimes called torque multipliers) allow for this, but such operation is not known for the much more compact piston-style fluid-operated torque wrenches.
A further need may exist to have such a reciprocating piston-style fluid-operated torque wrench that can also remain compact.
In one independent aspect, a reciprocating piston-style torque wrench having pump controls coupled to the torque wrench may be provided. In some embodiments, the pump controls are selectively coupled to the torque wrench to allow the wrench to fit into tight areas while keeping the controls adjacent the wrench.
In another independent aspect, a handle with pump controls may be coupled to a fluid operated, reciprocating piston style torque wrench. In some embodiments, the handle is selectively coupled to the wrench to allow the wrench to fit into tight areas.
In yet another independent aspect, a handle with pump controls may be coupled to the reciprocating piston-style torque wrench, wherein the handle requires two hand operation.
In one particular independent embodiment, a fluid-operated, reciprocating piston-style torque wrench having fluid pump controls selectively coupled to the torque wrench may be provided. The wrench may further include a handle housing the pump controls, the handle being selectively coupled to the torque wrench. The handle may include a first grasping location and a second grasping location, wherein the wrench cannot be operated unless an operator's hands are on both grasping locations. The handle may further include a first actuator located adjacent the first grasping location and a second actuator located adjacent the second grasping location and wherein the wrench cannot operate unless both actuators are actuated.
In a further independent embodiment, a control assembly for a fluid-operated, reciprocating piston-style torque wrench may be provided. The wrench may include a housing, and a reciprocating drive mechanism supported by the housing, the drive mechanism being selectively-driven by a fluid pump and operable to drive an output member. The assembly may generally include a body connectable to the housing; a first handle and a second handle connected to the body; a first sensor operable to sense an operator's first hand on the first handle; and a second sensor operable to sense the operator's second hand on the second handle. Operation of the pump may require sensing the operator's first hand on the first handle while sensing the operator's second hand on the second handle.
In another independent embodiment, a torque wrench may generally include a housing; a reciprocating drive mechanism supported by the housing, the drive mechanism being selectively-driven by a fluid pump and operable to drive an output member; and a control assembly. The control assembly may include a body connected to the housing, a first handle and a second handle connected to the body, and pump controls operable to control the pump to drive the drive mechanism and thereby the output member. The pump controls may include a first pump control supported proximate the first handle, the first pump control being operable by a digit of a first hand of an operator gripping the first handle, and a second pump control supported proximate the second handle, the second pump control being operable by a digit of a second hand of the operator on the second handle. The pump may be operable upon operation of the first pump control and the second pump control
In yet another independent embodiment, a method of operating a fluid-operated, reciprocating piston-style torque wrench may be provided. The wrench may include a housing, and a reciprocating drive mechanism supported by the housing and operable to drive an output member. The method may generally include providing a control assembly connected to the housing, the control assembly including a body connected to the housing and a first handle and a second handle connected to the body; positioning the output member relative to a fastener to be adjusted; and after positioning, operating a fluid pump to drive the drive mechanism and thereby the output member to adjust the fastener, operating including sensing the operator's first hand on the first handle while sensing the operator's second hand on the second handle.
Independent features and independent advantages of the invention may become apparent to those skilled in the art upon review of the detailed description, claims and drawings.
Before any independent embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other independent embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
Use of “including” and “comprising” and variations thereof as used herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Use of “consisting of” and variations thereof as used herein is meant to encompass only the items listed thereafter and equivalents thereof.
Referring now to
The control assembly 11 includes a body 12 having a first end 14 selectively coupled to the wrench 20 and a second end 16 supporting controls 36 for a remotely-located fluid pump (not shown), such as a hydraulic pump.
The torque wrench 20 can be a conventional compact, relatively flat wrench, such as that described in U.S. Pat. Nos. 4,825,730 and 4,982,626, which are hereby incorporated by reference with respect to the construction and operation of a reciprocating piston-style, fluid-operated torque wrench.
As illustrated, the wrench 20 has a housing containing the reciprocating piston drive mechanism (not shown). The housing includes fluid inputs and outputs 22 which fluidly communicate with a remotely-located fluid pump to selectively drive the piston drive mechanism. The wrench 20 further includes a socket 24 on a first end 26 of the tool 20 and a reaction arm 28 on the second end 30 of the tool 20. Although the socket 24 is illustrated as a hexagonal opening, in other embodiments (not shown), the socket can be a driver, such as a square projecting socket driver. However, in low clearance operations, a hexagonal opening is typically utilized.
In conventional operation of the wrench 20, the socket 24 is placed on a nut (not shown) by a first operator with the reaction arm 28 in engagement with a portion of a flange or an adjacent nut (also not shown). Once the wrench 20 is securely in position and the first operator is clear, the second operator actuates the pump remotely to provide fluid to the wrench 20, which drives the drive mechanism, and turns the socket 24 while the reaction arm 28 pushes against the reaction surface. Upon completion of the torque application, the second operator turns the pump off, and the first operator moves the wrench 20 to another nut. This process is then repeated for all nuts on a flange.
As noted above, this can be a cumbersome operation with either two operators or with one operator switching from wrench manipulation to pump control manipulation. Thus, a pump control coupled to the wrench 20 may be desirable to allow single person operation without the need to switch between manipulation of the wrench 20 and the pump—or without reliance upon another person. The control assembly 11 provides such operation.
As shown in
In the illustrated embodiment, the control assembly 11 is coupled to the wrench 20 via a first fastener 32, a mounting bracket 33, and second fastener 35. The first fastener 32 connects the mounting bracket 33 to the wrench 20. The second fastener 35 connects the first end of the body 12 to the mounting bracket 33. As illustrated, the second fastener 35 includes a thumb screw allowing for easy user manipulation to selectively remove the control assembly 11 from the wrench 20. In some embodiments, mounting brackets may be sized differently for different wrenches while the interconnection between the control assembly 11 and the bracket 33 is standardized.
As best illustrated in
The buttons 36 of the illustrated embodiment are electrically coupled to the pump via wiring (not shown). Wires from the buttons extend through the body 12 to an electrical connection port 38 in the side of body 12. This connection port can be a mounted control cable quick connect. An external wire (not shown) can be connected to the connection port 38 to communicate with the pump. In other embodiments (not shown), wireless communication techniques can also be used.
As shown in
In operation, the wrench and control assembly 10 can be positioned such that the socket 24 is engaged with a nut to be tightened (or loosened). With respect to the illustrated embodiment of
In a preferred method of operation, the operator will need to actuate two buttons 36 at the same time—one with each hand—in order for the pump to provide fluid to the wrench 20. Again, this feature ensures that the operator's hands on the handles 34 and free of pinch points prior to operation of the wrench 20 and the pump. This mode of operation is effective with the control assembly 11 attached to the wrench 20 or detached from the wrench 20 due to space constraints of the fastening location.
Once the actuation cycle is complete, the operator can release the actuation button 36 and actuate the “off” button to turn the pump off. The operator then can grasp the positioning handle 40 to lift the wrench 20 off of the nut being operated on and move the wrench to an adjacent nut. The process above then can be repeated.
Although the invention has be described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the invention as described above. For example, the illustrated embodiment utilizes two button control to ensure both hands are free of pinch points. In other embodiments, one or more sensors (e.g., capacitive touch sensors, dead man's switches, etc.) can be incorporated into each handle to ensure both hands are free from pinch points prior to actuation of the wrench.
One or more independent features and independent advantages of the invention may be set forth in the claims.
The present application claims priority to co-pending U.S. Provisional Patent Application No. 62/330,617, filed May 2, 2016, and is related to U.S. Design Patent Application No. 29/563,103, filed May 2, 2016, the entire contents of both of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62330617 | May 2016 | US |