The present invention is related to a fluid pressure pump, for example, an axial piston type fluid pressure pump. This application claims a priority based on Japanese Patent Application No. JP 2012-080136 filed on Mar. 30, 2012, the disclosure of which is incorporated herein by reference.
Patent Literature 1 discloses a conventional axial piston type hydraulic pump. The axial piston type hydraulic pump is composed of a cylinder block in which a plurality of cylinders are provided, a plurality of pistons arranged in the plurality of cylinders to be slidable, and a valve plate. A cylinder port is formed in the cylinder block to be connected with the cylinder and to have an opening on a sliding surface of the cylinder block. The valve plate has a sliding surface which faces the sliding surface of the cylinder block and a back surface opposite to the sliding surface. A suction port and a discharge port are provided in the valve plate. The discharge port branches to three discharge holes on the side of the back.
[Patent Literature 1] Japanese Patent 3,547,900
An object of the present invention is to reduce a pressure loss in a fluid pressure pump.
In an aspect of the present invention, a fluid pressure pump includes: a port plate having a first port and a second port, one of which functions as a suction port and the other of which functions as a discharge port; and a piston unit. The port plate and the piston unit are rotated relatively around a rotation axis. The piston unit includes a barrel in which a plurality of cylinders are formed; a plurality of pistons configured to carry out a reciprocating motion in the plurality of cylinders, respectively; and a valve plate in which a plurality of valve plate holes are formed to be respectively connected with the plurality of cylinders. The plurality of valve plate holes are arranged on a circumference around the rotation axis, and each of the first port and the second port is formed to have an arc shape around the rotation axis. The port plate includes a plurality of first bridges configured to divide the first port in a circumferential direction to provide a plurality of first port holes; and a plurality of second bridges configured to divide the second port in the circumferential direction to provide a plurality of second port holes. A summation of the number of first port holes and the number of second port holes is greater than the number of valve plate holes.
Because the summation of the number of first port holes and the number of second port holes is greater than the number of valve plate holes, the number of first bridges and the number of second bridges are great. Therefore, the width of the first bridge and the width of the second bridge can be made narrow. Thus, a pressure loss is reduced.
It is desirable that the number of first port holes and the number of second port holes are equal to each other.
In a second aspect of the present invention, a fluid pressure pump includes: a port plate having a first port and a second port, one of which functions as a suction port and the other of which functions as a discharge port; and a piston unit. The port plate and the piston unit rotate relatively around a rotation axis. The piston unit includes: a barrel having a plurality of cylinders; a plurality of pistons configured to carry out a reciprocating motion in the plurality of cylinders respectively; and a valve plate having a plurality of valve plate holes formed to be connected with the plurality of cylinders, respectively. The plurality of valve plate holes are arranged on a circumference around the rotation axis, and each of the first port and the second port is formed to have an arc shape around the rotation axis. The port plate includes: a plurality of first bridges configured to divide the first port in a circumferential direction to provide a plurality of first port holes; and a plurality of second bridges configured to divide the second port in the circumferential direction to provide a plurality of second port holes. An optional one of the plurality of valve plate holes is referred to as an optional valve plate hole. A first area as an area of the plurality of first bridges which overlaps with the optional valve plate hole changes based on the relative rotation of the piston unit and the port plate around the rotation axis in a view parallel to the rotation axis, and a second area as an area of the plurality of second bridges which overlaps with the optional valve plate hole changes based on the relative rotation. A quotient when a maximum value of the first area is divided by the area of the optional valve plate hole and a quotient when a maximum value of the second area divided by the area of the optional valve plate hole are both smaller than 0.65.
Because the quotient when the maximum value of the first area is divided by the area of the optional valve plate hole and the quotient when the maximum value of the second area divided by the area of the optional valve plate hole are small, the pressure loss is reduced.
It is desirable that the quotient when the maximum value of the first area is divided by the area of the optional valve plate hole and the quotient when the maximum value of the second area divided by the area of the optional valve plate hole are equal to each other.
According to the present invention, the pressure loss in the fluid pressure pump is reduced.
The above object, the other objects, the effect, and the features of the present invention would become clearer from the description of the embodiments made in the conjunction with the attached drawings.
Hereinafter, a fluid pressure pump according to the present invention will be described with reference to the attached drawings.
Referring to
The output cylinder 3 has a first output cylinder chamber 31, a second output cylinder chamber 32 and an output piston 33 arranged between the first output cylinder chamber 31 and the second output cylinder chamber 32. The output piston 33 moves to the right direction in the drawing when a working fluid is supplied to the first output cylinder chamber 31 and is discharged from the second output cylinder chamber 32. The output piston 33 moves to the left direction in the drawing when the working fluid is supplied to the second output cylinder chamber 32 and is discharged from the first output cylinder chamber 31. For example, the working fluid is hydraulic oil.
The fluid pressure pump 2 has a first port 11 and a second port 12. The electric motor 1 drives the fluid pressure pump 2. When the electric motor 1 rotates to a first direction, the fluid pressure pump 2 discharges from the first port 11, the working fluid suctioned from the second port 12. When the electric motor 1 rotates to a second direction opposite to the first direction, the fluid pressure pump 2 discharges from the second port 12, the working fluid suctioned from the first port 11. That is, one of the first port 11 and the second port 12 functions as a suction port and the other thereof functions as a discharge port. When the rotation direction of the electric motor 1 changes, the suction port and the discharge port are switched.
The first output cylinder passage 7 connects the first port 11 and the first output cylinder chamber 31. The second output cylinder passage 8 connects the second port 12 and the second output cylinder chamber 32. The working fluid leaked from the fluid pressure pump 2 is stored in an accumulator 4 connected with a return passage 6. The working fluid stored in the accumulator 4 is returned to the first output cylinder passage 7 through a check valve 5 when the pressure of the return passage 6 exceeds the pressure of the first output cylinder passage 7. The working fluid stored in the accumulator 4 is returned to the second output cylinder passage 8 through another check valve 5 when the pressure of the return passage 6 exceeds the pressure of the second output cylinder passage 8.
Referring to
Referring to
S in an equal interval. In this embodiment, a case where the number of cylinders 22 and the number of pistons 23 are nine will be described. However, the numbers of the valve plate holes 25, the cylinders 22 and the pistons 23 are not limited to nine.
Referring to
Note that in the present embodiment, a case where the number of brides 13 and the number of bridges 14 are both 5, and the number of first port holes 11a and the number of second port holes 12a are both 6 will be described. However, the number of bridges 13 and the number of bridges 14 are not limited to 5 and the number of first port holes 11a and the number of second port holes 12a are not limited to 6.
Referring to
In the present embodiment, the number of bridges 13 and the number of bridges 14 are determined such that a summation of the number of first port holes 11a and the number of second port holes 12a is more than the number of valve plate holes 25. In a general axial piston type fluid pressure pump, because the number of valve plate holes often is seven or nine, it is desirable that each of the number of bridges 13 and the number of bridges 14 is equal to or more than three. Because the number of bridges 13 and the number of bridges 14 are more, the necessary strength of the port plate 10 is secured even if the width W13 of bridge 13 and the width W14 of bridge 14 are narrow. It can be prevented that the distance between the inner portion 15a and the outer portion 15b is increased due to the pressure of working fluid, and it can be prevented that the distance between the inner portion 16a and the outer portion 16b is increased due to the pressure of the working fluid. By narrowing the width W13 and the width W14, the pressure loss in the fluid pressure pump 2 is reduced.
Here, it is supposed that an optional one of the plurality of valve plate holes 25 is referred to as an optional valve plate hole 25. A first area as an area of the plurality of bridges 13 which overlaps with the optional valve plate hole 25 in a view parallel to the rotation axis S changes according to a relative rotation of the piston unit 20 and the port plate 10 around the rotation axis S. Also, a second area as an area of the plurality of bridges 14 which overlaps with the optional valve plate hole 25 changes according to the relative rotation. In the present embodiment, the quotient when the maximum value of the first area is divided by the area of the optional valve plate hole 25 and the quotient when the maximum value of the second area is divided by the area of the optional valve plate hole 25 are smaller than 0.65. Because the quotient when the maximum value of the first area or the second area is divided by the area of the optional valve plate hole 25 is small, the pressure loss in the fluid pressure pump 2 is reduced.
Hereinafter, the pressure loss in the fluid pressure pump 2 according to the present embodiment is compared with the pressure loss in the fluid pressure pump according to a comparison example, in order to explain the reduction effect of pressure loss in the present embodiment.
Referring to
The maximum value of the pressure loss in the fluid pressure pump 2 according to the present embodiment is small, as compared with the maximum value of the pressure loss in the fluid pressure pump according to comparison example. As shown in
Because the pressure loss is reduced in the fluid pressure pump 2, it is not required to increase the discharge pressure of the fluid pressure pump 2 so as to make up the pressure loss. Therefore, it is possible to manufacture the fluid pressure pump 2 in a small size and it is possible to manufacture the fluid pressure actuator 100 having the fluid pressure pump 2, in a small size.
Note that when the fluid pressure pump 2 is applied to EHA (Electro-Hydrostatic Actuator), it is desirable that the first port 11 and the second port 12 are symmetrically formed with respect to a symmetry plane P which contains the rotation axis S, in order to switch an suction port and a discharge port between the first port 11 and the second port 12. That is, it is desirable that the number of first port holes 11a is equal to the number of second port holes 12a. It is desirable that the quotient when the maximum value of the area of the plurality of bridges 13 which overlaps with the optional valve plate hole 25 is divided by the area of the optional valve plate hole 25 is equal to the quotient when the maximum value of the area of the plurality of bridges 14 which overlaps with the optional valve plate hole 25 is divided by the area of the optional valve plate hole 25, in a view parallel to the rotation axis S.
As described above, the fluid pressure pump according to the present invention has been described with reference to the embodiments. However, the fluid pressure pump according to the present invention is not limited to the above embodiments. For example, a modification may be applied to the above embodiments and the above embodiments may be combined. For example, when one of the first port 11 and the second port 12 is fixedly used as the suction port and the other is fixedly used as the discharge port, the first port 11 and the second port 12 needs not to be symmetrically formed with respect to the symmetry plane P which contains the rotation axis S.
Number | Date | Country | Kind |
---|---|---|---|
2012-080136 | Mar 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/058832 | 3/26/2013 | WO | 00 |