The present invention relates generally to the field of fluid-dispensing systems, primarily in the electronics industry. More specifically, the present invention discloses a system for regulating the pressure of the fluid supplied to the pump in a fluid-dispensing system.
Fluid-dispensing systems are widely used in the electronics industry to dispense small quantities of viscous fluids, such as underfill, soldering paste, encapsulants, adhesives or similar fluids. For example, these fluid-dispensing systems are typically used to dispense a predetermined pattern of dots, lines or area fills of fluid on printed circuit boards or other substrates, pallets or products that are presented to the dispensing system. The tolerances required in this field can be quite demanding regarding both the location and quantity in terms of weight and volume of fluid dispensed on the printed circuit board, substrate, pallet or other products that are presented to the system.
Conventional fluid-dispensing systems in the electronics industry typically include an electrically-controlled pump that is triggered by a controller to dispense a predetermined pattern of dots or lines of fluid through a dispenser tip or nozzle over time as it moves relative to a circuit board, to thereby create the desired spatial pattern of fluid on the surface of the circuit board, substrate or other product.
The pump is supplied with fluid from a reservoir. Due primarily to the viscosity of some fluids commonly used in the electronics industry, the reservoir is sometimes pressured with air or by a mechanical or electrical device to help maintain a uniform flow of fluid into the pump. The pressurization of the reservoir to feed fluid into the pump is generally determined by the characteristics of the pump and the rate at which fluid is dispensed from the pump onto the circuit board for a particular job.
The conventional approach in the electronics industry has been to perform an initial setup for each job with trial runs to verify that the fluid-dispensing machine is properly functioning and that a satisfactory fluid pattern is being dispensed. But, this ignores variations in the fluid flow rate from the reservoir due to changes in the level of fluid in the reservoir, stiction of the plunger or stopper in the syringe, as well as fluctuations in air pressure that may occur over the course of a job. In particular, changes in the pressure at which fluid is fed into the pump can result in variations in the fluid output of the pump. As a result, there is a need for a system to actively regulate fluid pressure into the pump on a continuous basis during operation of the fluid-dispensing system to help ensure consistent performance.
The present invention addresses this problem in the prior art by providing a means for actively regulating the fluid pressure into the pump. This is accomplished by a feedback controller that monitors the fluid pressure in the supply line (which may be located between the reservoir and pump, or directly at the pump inlet, or directly at the reservoir exit), and accordingly adjusts the pressurization of the reservoir to maintain a desired fluid pressure entering the pump. Optionally, a second pressure sensor can be used to monitor the fluid pressure at the pump exit to provide an additional input for the feedback controller.
This invention provides a system for modulating and regulating the fluid pressure into the pump of a fluid-dispensing system. The pump is supplied with fluid from a pressurized reservoir (e.g., that is pressurized from an external air source, or by a mechanical or electrically-driven *** force). A pressure sensor monitors the fluid pressure in the fluid supply line between the reservoir and pump. A feedback controller receives this fluid pressure reading as an input to regulate the pressurization of the reservoir.
These and other advantages, features, and objects of the present invention will be more readily understood in view of the following detailed description and the drawings.
The present invention can be more readily understood in conjunction with the accompanying drawings, in which:
Turning to
A reservoir 15 stores a quantity of this fluid and supplies it to the pump 16 via a fluid supply line 23. For example, the reservoir can be a syringe, cartridge or a larger container. In the embodiment depicted in
The present invention employs a pressure sensor 17 to detect the fluid pressure in the fluid supply line 23 between the reservoir 15 and the inlet to the pump 16. Ideally, the measured pressure at the pressure sensor 17 accurately reflects the fluid pressure at or near the inlet to the pump 16. Nonetheless, depending on fluid viscosity and the location of the pressure sensor 17 along the length of the fluid supply line 23, the measured pressure should at least serve as a suitable proxy for the fluid pressure at the inlet to the pump 16 for the purpose of regulating the air pressure supplied to the reservoir 15. It should also be noted that detecting changes in fluid pressure may be sufficient for this purpose, rather than requiring an accurate measurement of the fluid pressure itself.
A controller 21 receives these pressure readings 26 from the pressure sensor 17 either in digital or analog format. In the embodiment shown in
It should be understood that a variety of different types of controllers could be employed. Also, any of a wide variety of control algorithms can be used by the controller 21. For example, the controller can be configured to regulate the air pressure to maintain a predetermined set point in the measured fluid pressure. This can be done either with, or without a dead band around the desired set point to avoid over-regulation of the air pressure to the reservoir 15. If the measured fluid pressure falls below a predetermined lower limit, the controller 21 adjusts the air supply pressure upward. If the measure fluid pressure rises above a predetermined upper limit, the controller 21 adjusts the air supply pressure downward. A proportional, integral, differential (PID) control algorithm could also be employed to regulate the air supply pressure using the fluid pressure as the feedback signal.
The above disclosure sets forth a number of embodiments of the present invention described in detail with respect to the accompanying drawings. Those skilled in this art will appreciate that various changes, modifications, other structural arrangements, and other embodiments could be practiced under the teachings of the present invention without departing from the scope of this invention as set forth in the following claims.
The present application is based on and claims priority to the Applicants' U.S. Provisional Patent Application 61/879,733, entitled “Pressure Regulating System for Fluid Dispensing Systems,” filed on Sep. 19, 2013.
Number | Name | Date | Kind |
---|---|---|---|
5199607 | Shimano | Apr 1993 | A |
5277333 | Shimano | Jan 1994 | A |
6152348 | Finn et al. | Nov 2000 | A |
6334569 | Yoshimura | Jan 2002 | B1 |
6386433 | Razon et al. | May 2002 | B1 |
6634545 | Razon et al. | Oct 2003 | B2 |
6715506 | Ikushima | Apr 2004 | B1 |
7121449 | Zakel et al. | Oct 2006 | B2 |
7654414 | Hiranaga | Feb 2010 | B2 |
7810705 | Mizuno et al. | Oct 2010 | B2 |
7967168 | Geier | Jun 2011 | B2 |
RE43288 | Sund | Apr 2012 | E |
20070090132 | Williams et al. | Apr 2007 | A1 |
20070215639 | Roberts et al. | Sep 2007 | A1 |
20080107796 | Cho | May 2008 | A1 |
20090014468 | Byers | Jan 2009 | A1 |
Entry |
---|
PCT International Search Report with attached Written Opinion of the International Searching Authority for International Application No. PCT/US2014/055908, dated Dec. 22, 2014, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20150075635 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61879733 | Sep 2013 | US |