Accurate fluid level sensing has generally been complex and expensive. Accurate fluid levels can prevent fluid waste and premature replacement of fluid tanks and fluid-based devices, such as inkjet printheads. Further, accurate fluid levels prevent low-quality fluid-based products that may result from inadequate supply levels, thereby also reducing waste of finished products.
The disclosure is better understood with reference to the following drawings. The elements of the drawings are not necessarily to scale relative to each other. Rather, the emphasis has instead been placed upon clearly illustrating the claimed subject matter. Furthermore, like reference numerals designate corresponding similar parts, but perhaps not identical, through the several views. For brevity, some reference numbers described in earlier drawings may not be repeated in later drawings.
This disclosure relates to a new type of fluid property sensor. The fluid property to be sensed by such sensor may include at least one of pressure and fluid level, but also other properties may be sensed in addition to, or instead of said pressure or fluid level. Certain examples of such sensor incorporate at least one integrated circuit (IC) with one or multiple sensors, for example mounted on a substrate and/or packaged to protect any bond wires and circuitry. Other examples of such sensor incorporate a narrow elongated (aka ‘sliver’) circuit (EC) with multiple sensors mounted on a substrate and packaged to protect any bond wires and EC circuitry, for example better than chip-on-board techniques. The IC may be a semiconductor integrated circuit, a hybrid circuit, or other fabricated circuit having multiple electrical and electronic components fabricated into an integrated package. The fluid property sensor can provide substantially increased resolution and accuracy by placing a high density of exposed sets of multiple point and pressure sensors along the length of the elongated circuit. Multiple ICs may be arranged in a daisy chain fashion (staggering being one example) to create a long fluid property sensor covering the depth of fluid in a container. The multiple ICs may share a common interface bus and may include test circuitry, security, bias, amplification, and latching circuitry.
The sets of multiple sensors may be distributed non-linearly to allow for increasing resolution when a fluid cartridge has a low amount of fluid. Further, the sets of multiple sensors may be configured to be read in parallel to increase surface contact with the fluid for some applications or strobed individually in other applications. Not only levels of the fluid may be sensed, but complex impedance measurements may be taken. Additional sensors can be configured or added for property sense of the fluid (e.g., ink type, pH), temperature sense of the fluid, strain sensing of the sensing portion, pressure sensing within a fluid reservoir, or verification of fluid container servicing. The multiple ICs may be of the same type or different types depending on desired properties of the fluid property sensor. One of the multiple ICs may contain the container driver circuit with memory (aka acumen chip), or the container driver circuit may be on a separate IC. The length:width aspect ratio of the driver circuit may be 10:1 or less, for example 5:1 or less, for example coupled to the common interface bus as a non-elongated circuit. Several different examples and descriptions of various techniques to make and use the claimed subject matter follow below.
In this disclosure, the driver circuit may include decoding logic or decoding functions as part of integrated circuitry. The decoding logic may comprise an enable circuit such as a power, ground, clock and/or data line that enables at least one sensor in response to an enable instruction received by other logic in an IC. The decoding logic may facilitate addressing each sensor, or each point sensor of a sensor array, based on signals received from the printer through the external interface and/or common interface bus. The decoding logic may include a re-writable memory array such as a shift register array connected to the interface bus and/or external interface. The decoding logic may include multiplex circuitry to drive respective sensors and/or sensor points based on values written to the re-writable memory array. The driver circuit may include circuitry to convert input and/or output signals between the external interface and at least one connected sensor. The driver circuit may include circuitry to convert signals between analogue and digital and/or digital and analogue; and/or from analogue to analogue and/or from digital to digital. The driver circuit may include offset functions to offset input and/or output signals between the at least one sensor and the external interface. The driver circuit may include amplifier functions to amplify input and/or output signals between at least one sensor and the external interface. The driver circuit may include other calibration functions, other than an offset and/or amplifier function. Input and output signals may include analogue signals and/or digital values. The driver circuit may be adapted to drive a plurality of sensors having different sense functions, and/or individual point sensors of each sensor of the plurality of sensors. In certain examples, the driver circuit may include an application specific integrated circuit (ASIC).
The media 14 is moved using a print media transport 16, typically from a media tray to an output tray. The print media transport 16 is controlled by a controller 100 to synchronize the movement of the media 14 with any movement and/or actuation of printhead 30 to place fluid on the media 14 accurately. The controller 100 may have one or more processors having one or more cores. The controller 100 is coupled to a tangible and non-transitory computer-readable medium (CRM) 120 that stores instructions readable by and executed by the controller 100. The CRM 120 may include several different routines to operate and control the system 10. One such routine may be a fluid sensing routine 102 (see
A computer-readable medium 120 allows for storage of one or more sets of data structures and instructions (e.g., software, firmware, logic) embodying or utilized by any one or more of the methodologies or functions described herein. The instructions may also reside, completely or at least partially, within the static memory, the main memory, and/or within a processor of controller 100 during execution by the system 10. The main memory, driver circuit 204 memory, and the processor memory also constitute computer-readable medium 120. The term “computer-readable medium” 120 may include single medium or multiple media (centralized or distributed) that store the one or more instructions or data structures. The computer-readable medium 120 may be implemented to include, but not limited to, solid-state, optical, and magnetic media whether volatile or non-volatile. Such examples include, semiconductor memory devices (e.g. Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-only Memory (EEPROM), and flash memory devices), magnetic discs such as internal hard drives and removable disks, magneto-optical disks, and CD-ROM (Compact Disc Read-Only Memory) and DVD (Digital Versatile Disc) disks.
The system 10 may include the service station 18 used to perform maintenance on the printhead 30 and air pressure regulation, such as to perform a hyper-inflation event to transfer fluid from a fluid container 40 to the FAA 20 and to maintain a back-pressure during normal operation within each of the fluid cartridges 40 and FAA 20. Such maintenance may include cleaning, priming, setting back pressure levels, and reading fluid levels. The service station 18 may include a pump 19 to provide air pressure to move fluid from the fluid containers 40 to the printhead 30 and to set a backpressure within the FAA 20 to prevent inadvertent leaking of fluid from the printhead 30.
The fluid interface 45 may, in use, supply fluid from the reservoir 44 to the FAA 20 along an approximately horizontal axis. In a use orientation, whereby fluid flows approximately horizontally and a height of the reservoir 44 extends approximately vertically, the fluid interface 45 is disposed closer to a gravitational bottom of the reservoir 44 than to a middle of a height of the inner volume, to facilitate emptying the reservoir 44 also in a nearly depleted condition. In said orientation, the air interface 47 may be disposed above the fluid interface 45, for example near or above a middle of the height of the reservoir 44.
To monitor and measure fluid level 43 in either the fluid container 40 or the FAA 20 or both, a fluid property sensor 46 may be located within the fluid reservoir 44. The controller 100 may be electrically coupled to an electrical interface 48 on the fluid property sensor 46, which may be an external electrical interface. The fluid property sensor 46 may be oriented substantially perpendicular to the fluid level 43 or it may be angled relative to the fluid level 43. In different examples, the sensor 46 may extend from near a gravitational bottom of the fluid reservoir 44 to (i) below a middle of a height of the fluid reservoir 44, (ii) near a middle of a height of the reservoir 44, or (iii) along a full height of the reservoir 44. The electrical interface 48 of the container 40 may be positioned near the full fluid level 43 as shown for fluid container 40, for example above the air interface 47 and/or near a top of the container 40. The fluid property sensor 46 may have one or an array of fluid level sensors distributed substantially uniform as diagrammatically shown for fluid container 40. In another example a similar fluid property sensor 46 is used for a fluid chamber 22 of the FAA 20 where the level sensors may be provided non-uniform and with a higher density closer to the gravitational bottom as shown for fluid chamber 22. In addition to fluid level sensors, a fluid property sensor 46 may include additional sensors such as stress sensors, temperature sensors, crack sensors, to just name a few. An example fluid chamber 22 with fluid property sensor 46 may similarly include an electrical interface 48.
The packaged encasement 50 may have openings to heat stake or otherwise attach the fluid property sensor 46 to the sidewall 41. The attachment of fluid property sensor 46 to sidewall 41 in one example is sufficient to allow the fluid property sensor 46 to conform to flexing of sidewall 41. As shown in
The packaged encasement 50 allows for improved silicon die separation ratio, eliminate silicon slotting costs, eliminate fan-out chiclets, forming a fluid contact slot for multiple slivers simultaneously, and avoid many process integration problems. An overmolding or adhesive technology can be used to fully or partially encapsulate the fluid property sensor 46 to protect an electrical circuit assembly (ECA) 159 and bond wire interconnects, while only exposing the multiple level sensors to the fluid within a container. In some examples, the fluid may be harsh, such as with low and high pH or reactive components. By having the integrated packaging, the ECA 159, bond wires, any driver circuits 204, memory, ASIC, or other ICs, and EC's 49 may all embedded in the packaged material (except for the sensor area) thereby increasing reliability. The ECA 159 includes thin strips of a conducting material, such as copper or aluminum, which have been etched from a layer, placed, laser direct sintered, or fixed to a flat insulating sheet, such as an epoxy, plastic, ceramic, or Mylar substrate, and to which integrated circuits and other components are attached. In some examples, the traces may be buried within the substrate of the ECA 159, Bond wires may be encased in epoxy or glue as just a couple of examples.
Accordingly, a fluid container 40 or FAA 20 (collectively referred to as fluid container 40) may include a package containing a fluid chamber 22 or fluid reservoir 44 for containing a fluid. A fluid property sensor 46 may include a sensing portion extending into the fluid chamber 22 or fluid reservoir 44 and may include multiple integrated circuits (ICs) that share a common interface bus 83. At least one IC, in this example an elongated circuit (EC) 49, may have multiple exposed sets of multiple sensors distributed along a length of the EC 49. An interface portion may be exposed outside the package and include an electrical interface 48 electrically coupled to a proximal end of the sensing portion. The multiple ICs and the electrical interface 48 are packaged together to form the fluid property sensor 46. The sets of multiple exposed sets of multiple sensors may be distributed non-linearly or non-uniformly along the length of the EC 49 and have a layout with an increasing density along a portion of the EC 49 near a gravitational bottom of the fluid container 40 or FAA 20 when in use. The density of point sensors may be between 20 and 100 per inch (1 inch being about 2.54 cm) and in some instances at least 50 per inch. In other examples, the density of point sensors may more than 40 sensors per centimeter in a higher density region and less than 10 sensors per centimeter in lower density regions. The sensing portion may include at least one additional sensor to allow for one of a property sense of the fluid, a temperature sense of the fluid, strain sensing of the sensing portion, and pressure sensing within the chamber. The EC 49 may have a thickness between about 10 um and about 200 um, a width between 80 um and 600 um wide, and a length between about 0.5 inch to about 3 inch, for example, any length above approximately 1 cm. The aspect ratio of length:width of an EC 49 die may be at least 20:1 or 50:1, meaning at least 20 or at least 50 times longer than wide, respectively. In some examples, the length:width ratio may exceed 100 or over two orders of magnitude in length than width. In contrast, the driver circuit 204 may be an IC with a length:width aspect ratio less than 10:1. Accordingly, the fluid property sensor may include an EC 49 with an aspect ratio that is five or even ten times greater than the aspect ratio of the driver circuit 204. In one example the sensors and the driver circuit are provided on the same IC or EC whereby the sensors (and/or sensor point arrays) may stretch along a longer portion of the length of the IC or EC than the driver circuit.
The packaged encasement 50 in this example includes a first packaged section 51 and a second packaged section 52 on opposite ends of the ECA 159 of the fluid property sensor 46. The first packaged section 51 protects the encapsulated wire bonds 82. The second packaged section 52 of packaged encasement 50 provides for support from twisting and support for mounting. The two separated packaged sections 51, 52 of packaged encasement 50 allow for improved thermal expansion differences between the EC 49, the ECA 159, and the packaged encasement 50. As shown, fluid level and/or pressure point sensors 80 may be distributed along at least a portion of the length of the EC 49.
In this example, the packaged encasement 50 spans the entire length of the fluid property sensor 46 less the external electrical interface 48 and includes a first opening 53 on the top or proximal EC 49 and a second opening 54 on the bottom or distal EC 49.
Like the example in
The packaged encasement 50 includes a first opening 53 on the top or proximal EC 49, a second opening 54 on the bottom or distal EC 49, and an additional third opening 55 in the middle or mesial EC 49.
Accordingly, a fluid property sensor 46 may include an elongated circuit (EC) 49 having multiple exposed sets of multiple point sensors 80 distributed along a length of the EC 49. An external electrical interface 48 may be coupled to a proximal end of the EC 49, wherein the EC 49 and the external electrical interface 48 are packaged together to form the fluid property sensor 46. Multiple ECs 49 may be daisy-chained end to end along a direction of the length of the fluid property sensor 46 and share a common interface bus 83. In some examples, a second elongated circuit 49 (second EC) may be further packaged together and extending in the direction of the length of the fluid property sensor 46 from a distal end of the EC 49 and electrically coupled from the distal end of the EC 49 to a proximal end of the second EC 49. In other examples, the multiple ECs 49 may include a mesial EC 49 between the proximal EC 49 and the distal EC 49, the mesial EC 49 having a minimal set of point sensors 80 and a pass-through of the common interface bus 83. The multiple ECs 49 may include a proximal EC 49 with a set of various types of sensors and a distal EC 49 with a high density of sets of point sensors 80 of at least 50 per inch. In some examples, the sets of multiple point sensors 80 are distributed non-linearly along the length of the EC 49, and in other examples, the sets of multiple point sensors 80 are distributed non-linearly along the length of the fluid property sensor 46.
In some situations, it is preferable to have a thicker silicon base layer 151 to provide more structural strength, such as the example in
In one example, the silicon base layer 151 may be about 100 um (micrometers) thick and the temperature diode 166, if present, about 1 um in depth. A thinner silicon base layer 151 such as to about 20 um allows for a higher differential temperature change between air and fluid interfaces. For example, a 20 um silicon base layer 151 may have more than 14 deg. C. change in the temperature differential between air and fluid, while a 100 um silicon base layer 151 may have about a 6 deg. C. temperature differential. A thinner die may also cause the maximum temperature at the fluid/air interface to increase as the die becomes thinner due to less mass of the die to absorb the thermal energy. The FOX layer 155 may be about 1 um in depth, the first TEOS layer 156 about 2 um in depth, and second TEOS layer with the polysilicon about 2 um in depth as well. If no metal temperature sensor 152 is used, the additional TEOS layers 158 may be about 2 um. If the metal temperature sensor 152 is used, it may be positioned about 1 um from the polysilicon heater resistor 150 and be about 1 urn in thickness and topped with an additional TEOS layer of about 1 urn in thickness.
Depending on the various compositions of the fluids used in a system with multiple fluid containers, it may be desirable to have the maximum temperature at the fluid/air interface remain substantially constant relative to the amount of energy applied to the heater resistor 150 as well as keeping the differential temperature for the fluid/air interface also substantially constant. This may allow for more consistent readings and less calibration.
Because the stress sensor 99 extends along the length of the EC 49 die, any stresses due to packaging or mechanical mounting of the die may be read at manufacture or before or at installation, or during usage, to verify performance requirements and to compensate for these inherent package and/or mounting stresses of the fluid property sensor 46 when it is mounted to a fluid container 20, 40, to thereafter read stresses within the fluid container, such as those caused by (back) pressure regulation, while having accounted for variations caused by said package and/or mounting stresses. For instance, a fluid property sensor 46 incorporating the stress sensor 99 is mounted to a side wall of a fluid container 40 (as shown in
On the left side of
The magnitude of the EC 49 die stress is usually less than the magnitude of the local and adjacent hyper-inflation events and rather than being concave or convex is likely to vary randomly over the length of the fluid property sensor 46 as shown in the second leftmost graph. In addition to package flexes, the stress sensor 99 may also detect movement of the fluid container 40 due to inertial (acceleration) forces and may be able to detect “splashing” of the fluid against the fluid property sensor 46 such as during container stoppage or change of movement events. This type of signal for the splashing may be present at only a few resistive elements 98 where the splashing occurs at the air and fluid interface. For inertial movement, the stress detected will generally be sensed uniformly (less any splashing) along the length of the resistive element 98 as shown in the second rightmost graph. In certain examples, splashing and other liquid movements may be sensed by the fluid level sensors 80 instead of, or in addition to, the pressure sensors.
As the fluid property sensor 46 will be experiencing several different amounts and types of flexure, the EC 49 die may become overstressed at times. A crack sensor 95 may extend along the length of the EC 49 die or encircle the die and be made of a thin film material such as metal or poly that is narrow and likely to break when the EC die is overstressed. The crack sensor 95 output may be designed to be communicated on the Sense signal of the common interface bus 83, or it may be used to disable operation of the fluid property sensor 46. The crack sensor may comprise an elongate resistor trace.
Accordingly, having an integral strain gauge in stress sensor 99 allows for monitoring and measurement of back pressure regulation, hyper-inflation events, movement of the fluid containers 40 and FAA 20 during printing or servicing operations, presence of adjacent containers, monitor for air or fluid leaks in the system, and verify operation of the service station 18 and pump 19 operation. As inertial forces may also be measured, in systems such as printers, the operation of container movement may be monitored to detect gear wearing, obstructions, and paper binding as just a few examples. Depending on the container construction and type of back pressure regulation system used (spring bag, bubbler, sponge, etc.) the stress sensor 99 may also be used to determine the type of back pressure regulation based on the amount of package flexure and/or pressure differences during hyperinflation and back pressure regulation events.
In
The carrier 206 and tape 204 are released, and the packaged assembly 50 is turned over as shown. In
Accordingly, a method of making a fluid property sensor may include placing an electrical circuit assembly (ECA) 159 on a carrier substrate 206 and placing on the carrier substrate 206 an elongated circuit (EC) 49 having multiple exposed sets of multiple point sensors 80 distributed along a length of the EC 49. The method includes encapsulating using transfer molding the external interface board 159 and the EC 49 and removing the carrier substrate 206. The external interface board 159 is electrically coupled with the EC 49 to a common interface bus 83 with bond wires 82. The bond wires 81 of the electrical coupling are encapsulated with an epoxy or glue coating 82. In some examples, there are multiple ECs 49 arranged in a daisy chain pattern and share the common interface bus 83. The common interface bus 83 may be electrically coupled between respective distal and proximate ends of the multiple ECs 49 in the daisy chain pattern. In some examples, the EC 49 silicon base layer 151 may be thinned prior to placing on the carrier substrate 206. The fluid property sensor 46 may be formed on an ECA panel with multiple fluid property sensors 46 formed in an array and singulated from the array after encapsulating the electrical coupling with epoxy.
In block 402, the level or location of the fluid is determined within a fluid container. The level can be determined by using thermal impedance sensors and/or electrical impedance sensors to detect a fluid/air boundary. In block 404, multiple impedance measurements are made over time of the fluid. The impedance measurements may be made by using thermal impedance sensors and/or electrical impedance sensors. In block 406, the multiple impedance measurements are used to perform a time to frequency transform, such as a Fast Fourier Transform, a Cosine transform or other time to frequency transform. In block 408, the output of the frequency transform is then used to compare with various frequency signatures of known fluid components to determine the chemical makeup of the fluid.
In summary,
The middlemost drawing of container 40-1 is a side view of fluid container 40 illustrating an example hyper-inflation event within the fluid container 40. A pressure regulation bag 42 (or other type of pressure regulator) is pressurized by air from air interface 47 causing it to balloon outward and create a concave shape of container 40. Since the fluid property sensor 86 in this example is attached to the side wall of container 40-1, the fluid property sensor 86 also forms a concave shape closely matching that of container 40. The fluid level 43 may rise due to the pressure regulation bag 42 expanding to occupy additional space within fluid container 40 thus displacing the fluid to another area within fluid container 40 or out of the fluid container 40 to a fluid actuation assembly 20. In some examples, a printhead 30 die may be attached to the fluid container 40 and the hyper-inflation cycle done to reset the backpressure within the fluid container 40.
The rightmost drawing of container 40-2 is another side view of fluid container 40 only this time to illustrate the deformation of a sidewall of fluid container 40 caused by a hyper-inflation cycle performed in an adjacent fluid container 40-1 next to the fluid container 40-2. As the adjacent fluid container 40-1 expands and bulges outward to form a concave shape, that shape contacts the sidewall of fluid container 40-2 and causes it to bulge inward in a convex shape. This convex shape causes the sidewall to occupy an area within fluid container 40-2 and thus may cause the fluid level 43 to rise as well, but less than during a hyper-inflation event within the fluid container 40. Accordingly, in some examples, the pressure event may be one of a hyper-inflation cycle within a fluid container 40 and a hyper-inflation cycle within an adjacent fluid container 40-1. In other examples, a pressure event may include other air inflation events of the pressure regulation bag 42 such as a servicing operation on the fluid container 40 in a service station 18 or detection of a back-pressure regulation. In still other examples, the pressure sensor 84 may be used to detect many forms of stress on the fluid property sensor 84 such as an inertial movement of the fluid property sensor 86 under acceleration or movement of carriage 12 or even a fluid movement within the fluid container 40 as the fluid splashes upon the pressure sensor 84. Accordingly, the fluid property sensor may communicate a concave, convex, or normal shape of the sidewall of the container 40. Also, the hyper-inflation cycle may be detected and communicated based upon fluid level 43 changes detected by fluid level sensor 46.
The fluid property sensor 86 may include multiple fluid level point sensors 80 distributed linearly or non-linearly along a length of the fluid level sensor 46, and multiple stress sensors 99 distributed along a length of the pressure sensor 84 to measure a flexure of the ECA 159 of fluid property sensor 86. The ECA 159, the fluid level sensor 46, and the pressure sensor 84, and the external interface 48 may be packaged together to form the fluid property sensor 86. The fluid level sensor 46 may include a proximal elongated circuit (EC) 49 and a distal EC 49 electrically coupled to the proximal EC 49 with the common interface bus 83. The proximal EC 49 and the distal EC 49 may each include a portion of the pressure sensor 84. In other examples, the fluid level sensor 46 may include an elongated circuit (EC) 49 and the pressure sensor 84 may include multiple stress sensors 99 formed along a length of the EC 49. These multiple stress sensors 99 may be formed as a doped diffusion within the EC 49 or a piezo-resistive element bonded to the EC 49. In case of too much flexure or due to other circumstances, there may be excessive flexure of the fluid property sensor 86. To detect such occurrence, the fluid property sensor 86 may have the driver circuit 204 configured to communicate a status of a die crack sensor 95 for the EC 49.
Accordingly, a fluid container 40 includes a housing containing a chamber 22 or fluid reservoir 44 for containing a fluid. A fluid property sensor 86 may include a sensing portion extending into the reservoir or chamber 22, 44. The sensing portion may include a fluid level sensor 46 to indicate a fluid level 43, and a pressure sensor 84 to indicate a pressure event. An interface portion may share a common interface bus 83 with the sensing portion and include an analog interface (Sense signal), a digital interface (Data and Clock signals), and an external interface 48 exposed outside the package and electrically coupled to the common interface bus 83. The Sense signal may also be used as a digital signal on the digital interface. A driver circuit 204 may be coupled to the common interface bus 83 to communicate with the fluid level sensor 46 and the pressure sensor 84 and communicate characteristics of the fluid level sensor 46 and the pressure sensor 84 on the analog interface and communicate threshold indications of the fluid level 43 and the pressure event on the digital interface. The interface portion may be configured to indicate an amount of flexure of a sidewall of the chamber with multiple pressure readings. The sensing portion and the interface portion may be packaged together to form the fluid property sensor 86 and attached to the sidewall. In some examples, the sensing portion and the interface portion may communicate a concave, convex, or normal shape of the sidewall of the container 40. Also, a hyper-inflation cycle may be detected and communicated based upon fluid level 43 changes detected by fluid level sensor 46. In other examples, the interface portion is to communicate a chemical makeup of the fluid, such as discussed in
In some examples, the pressure sensor 84 includes multiple stress sensors 99 distributed along a length of the fluid property sensor 46 to monitor a stress event within a package of the fluid property sensor 86. The fluid level sensor 46 may include an elongated circuit (EC) 49 with multiple point sensors 80 and the pressure sensor 84 may include multiple stress sensors 99 formed along a length of the EC 49 formed as one of a doped diffusion within the EC and a piezo-resistive element bonded to the EC. In some examples, the interface portion may be configured to communicate the stress event within a package of the fluid property sensor. For instance, a stress event could be a detection of inertial movement, movement of the fluid within the fluid container 40, vibrations of the carriage 12 mechanisms, as well as servicing events in the service station 18.
This disclosure describes different examples of a fluid property sensor, comprising an integrated circuit (IC) including a fluid level sensor and/or a pressure sensor. In certain examples only a pressure level sensor is provided, for example combined with at least one different sensor. An external interface may be electrically coupled to a proximal end of the EC. The pressure sensor may be configured to measure a flexure of the fluid property sensor. The fluid level sensor may comprise multiple point sensors distributed along a length of the IC to sense fluid level. The IC and the external interface may be packaged together to form the fluid property sensor. The IC may comprise an elongate circuit (EC) having an aspect ratio of length:width of at least 20:1. The IC may comprise a proximal elongated circuit (EC) and a distal EC electrically coupled to the proximal EC. The proximal EC and the distal EC may each include a portion of the pressure sensor. The IC and the external interface may be packaged together to form the fluid property sensor. Multiple integrated circuits (ICs) may be provided, sharing a common interface bus. The fluid property sensor may include datums to position and attach the sensor to a wall of a fluid container to allow the fluid property sensor to measure a flexure of the wall. The pressure sensor may include at least five stress sensors. The pressure sensor may include multiple stress sensors formed along a length of the IC, for example, to monitor the stress within the package of the fluid property sensor, for example, formed as one of a doped diffusion elongated circuit (EC) and a piezo-resistive element bonded to the EC. The IC may include a die crack sensor.
A fluid container may comprise a reservoir for containing a fluid and a fluid property sensor, for example as described above. The reservoir may contain fluid along which at least part of the fluid property sensor extends and/or is exposed to. The fluid container may further comprise a fluid interface to supply fluid from the reservoir to a printer along an approximately horizontal axis, the fluid interface closer to a gravitational bottom of the reservoir than to a middle of a height of the reservoir, and an air interface for the printer to provide air pressure to the reservoir through the air interface to pressurize the fluid in the reservoir, the air interface disposed above the fluid interface. The fluid container may further comprise a pressure regulator wherein the air interface is connected to the pressure regulator. An external interface may be exposed outside of the reservoir and electrically coupled to the interface bus, wherein the fluid property sensor is attached to a sidewall of the fluid container and the pressure sensor is to report an amount of flexure of the sidewall. The fluid property sensor may be attached to a sidewall of a fluid container and may be configured to communicate a concave, convex, or normal shape of the sidewall of the container.
In one example container and/or fluid property sensor, the multiple ICs include a proximal elongated circuit (EC) with a set of various types of sensors, a distal EC with a high density of fluid property sensors, and a mesial EC between the proximal EC and the distal EC, the mesial EC having a minimal set of fluid property sensors and a pass-through of the common interface bus. At least one of the multiple ICs and the interface bus may be packaged together to form the fluid property sensor.
Example pressure sensors may be configured to at least one of (i) detect a hyper-inflation cycle performed within the fluid container, (ii) detect a hyper-inflation cycle performed on an adjacent fluid container, (iii) detect at least one of an inertial movement of the fluid container and a movement of fluid within the fluid container, and (iv) monitor a leakage or servicing operation of the fluid container. A sensing portion of the fluid property sensor may include at least one of multiple thermal impedance sensors, multiple electrical impedance sensors, the stress sensor, and a die crack sensor.
An example fluid property sensor, which may be any fluid property sensor of the preceding examples, may comprise (i) an electrical circuit assembly (ECA) including an external interface coupled to a common interface bus, (ii) a fluid level sensor coupled to the common interface bus to indicate a fluid level and/or a pressure sensor coupled to the common interface bus to indicate a pressure event, and (iii) a driver circuit coupled to the common interface bus, configured to communicate characteristics of the fluid level sensor and the pressure sensor. In certain examples only a pressure level sensor is provided, for example combined with at least one different sensor. A pressure event may be at least one of a hyper-inflation cycle within a fluid container, a hyper-inflation cycle within an adjacent fluid container, a servicing operation on the fluid container, an inertial movement of the fluid property sensor, and a fluid movement within the fluid container. The fluid property sensor may comprise multiple point fluid level sensors distributed along a length of the fluid property sensor; and/or multiple stress sensors distributed along a length of the pressure sensor to measure a flexure of the ECA. The fluid property sensor may comprise a proximal elongated circuit (EC) and a distal EC electrically coupled to the proximal EC with one or both ECs coupled the common interface bus, and wherein the proximal EC and the distal EC each include a portion of the pressure sensor. The sensor portion with sensors may have a length:width aspect ratio that is five times greater than the aspect ratio of the driver circuit.
The fluid property sensor and/or container may include interfaces for the fluid property sensor interfacing with the sensing portion, the interfaces including at least one of an analog interface and a digital interface, and an external interface exposed outside the reservoir. Also, a driver circuit may be provided coupled to at least one of the interfaces to communicate with the fluid level sensor and the pressure sensor and communicate characteristics of the fluid level sensor and the pressure sensor via the external interface. The sensing portion, e.g., including the pressure sensor, may be configured to communicate at least one of (i) an amount of flexure of a sidewall of the reservoir, (ii) a concave, convex, or normal shape of the sidewall of the container, and (iii) a chemical makeup of the fluid. The pressure sensor may include multiple stress sensors distributed along a length of the fluid property sensor to monitor a stress event within a package of the fluid property sensor. The external interface is configured to communicate the stress event. The stress event may be at least one of a hyper-inflation cycle performed within the fluid container, a hyper-inflation cycle performed on an adjacent fluid container, an inertial movement of the fluid container, a movement of fluid within the fluid container, a leakage of the fluid container, and a servicing operation of the fluid container.
All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document. For irreconcilable inconsistencies, the usage in this document controls.
While the claimed subject matter has been particularly shown and described with reference to the foregoing examples, those skilled in the art will understand that many variations may be made therein without departing from the intended scope of subject matter in the following claims. The foregoing examples are illustrative, and no single feature or element is essential or inextricable to all possible combinations that may be claimed in this or a later application. Where the claims recite “a” or “a first” element of the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
This application is related to commonly assigned PCT Applications PCT/US2016/028642, filed Apr. 21, 2016, entitled “LIQUID LEVEL SENSING”, PCT/US2016/028637, filed Apr. 21, 2016, entitled “FLUID LEVEL SENSING WITH PROTECTIVE MEMBER”, PCT/US2016/028624, filed Apr. 21, 2016 entitled “FLUID LEVEL SENSOR”, PCT/US2016/044242, filed Jul. 27, 2016, entitled “VERTICAL INTERFACE FOR FLUID SUPPLY CARTRIDGE HAVING DIGITAL FLUID LEVEL SENSOR”, PCT/US2015/057728, filed Oct. 28, 2015, entitled “Relative Pressure Sensor”, and PCT International Publication WO2017/074342A1, filed Oct. 28, 2015, entitled “LIQUID LEVEL INDICATING” all of which are hereby incorporated by reference within.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/026149 | 4/5/2019 | WO | 00 |