The invention is directed to valves, specifically, the invention is directed to fluid pulse valves.
Rotary valves are used in industry for a number of applications like controlling the flow of liquids to molds, regulating the flow of hydraulic fluids to control various machine functions, industrial process control, and controlling fluids which are directed against work pieces. The vast majority of these applications are conducted at low fluid pressures and at either low rotational speeds or through an indexed movement. These applications have been addressed through application of various known fluid regulation valve applications including gate valves, ball valves, butterfly valves, rotating shafts with various void designs and configurations, solenoid actuated valves of various designs, and valves designed with disks with multiple holes to redirect flow streams. These applications are generally acceptable for low speed, low pressure processes, but are not suitable for high speed, high pressure processes.
For example, solenoid valves are effective for regulating fluid flow up to a frequency of approximately 300 Hz at a pressure of up to 200 psi. These limitations are primarily due to the physical design of the solenoid which relies upon the reciprocating motion of magnetic contacts and is therefore subject to significant acceleration and deceleration forces, particularly at higher frequencies. These forces, the resulting jarring action, and the frictional heat generated make these type valves subject to failure at high frequencies of actuation.
Rotary valves employing multiple outlets have been used at frequencies up to 1000 Hz in applications where a low pressure differential between valve inlet and outlet ports is desired. These valves, however, are large and complex and necessarily have significant physical space requirements for the valve and for the appurtenant inlet and outlet piping.
Other types of valves have disadvantages that include: the valve actuation cycle speed (frequency) of the valve is too low, the valve is large and physically complex, the valve creates significant head loss, the valve cannot satisfactorily operate at high inlet pressures, or the valve cannot create the necessary frequency or amplitude of flow perturbation.
In the oil and gas industry, bores are drilled to access sub-surface hydrocarbon-bearing formations. Conventional drilling involves imparting rotation to a drill string at surface, which rotation is transferred to a drill bit mounted on a bottom hole assembly (BHA) at the distal end of the string. However, in directional drilling a downhole drilling motor may be used to impart rotation to the drill bit. In such situations it tends to be more difficult to advance the non-rotating drill string through the drilled bore than is the case when the entire length of drill string is rotating. Furthermore, during use, the drill string often becomes jammed or otherwise unable to continue drilling. Currently the entire drill string must be removed to determine the cause of and fix the problem.
For the foregoing reasons, there is a need for a high-speed, high pressure rotary valve for controlling the flow of a fluid to produce high frequency fluid pulses or perturbations. Further, there is a need for such a valve which is suitable for high pressure applications with minimal head loss through the valve and is easily removable to leave a clear bore without disrupting the entire drill string.
The present invention overcomes the problems and disadvantages associated with current strategies and designs and provides new tools and methods creating rotary valves.
One embodiment of the invention is directed to a fluid pulse valve. The valve comprises an outer housing, a rotor contained within the outer housing, a stator tube surrounding the rotor and adjacent to the outer housing, the stator tube comprising a plurality of slots, and a closer rotationally coupled to the rotor and at least a portion of the closer in line with the plurality of slots. As the closer rotates, the closer covers and uncovers the plurality of slots to create a pulse.
In a preferred embodiment, as fluid passes through the fluid pulse valve, the fluid enters the outer housing, passes through the plurality of oblong slots, into the stator and rotates the rotor. Preferably, the fluid pulse valve further comprises at least one fixed flow area port in the stator tube. Preferably, the fluid pulse valve further comprises a gearbox, wherein gear reduction within the gearbox causes the closer to rotate at a different rate than the rotor. Preferably, at least one of gear ratio of the gearbox or pitch of the rotor is adjusted to alter pulse rate relative to flow rate. The fluid pulse valve is preferably a component of a well bore string.
Preferably, the fluid pulse valve further comprises an anchor coupled to the rotor. Preferably, the anchor, the rotor, and the closer are removable from the stator tube without removing a down hole portion of the well bore string. The anchor is preferably a hold point to remove the rotor and closer from the drill string. In a preferred embodiment, the fluid pulse valve closes and opens at 0.1-10 Hz. Preferably, there are no fluid bypasses. Preferably, at least one of the slot's quantity and size and a gap between the slot and the closer are adjusted to alter pulse intensity.
Another embodiment of the invention is directed to a method of vibrating a drill string. The method comprises providing a bottom hole assembly (BHA), providing a fluid pulse valve positioned uphole of the BHA, passing fluid through the fluid pulse valve to the BHA, wherein the fluid forces the closer to rotates, which covers and uncovers the plurality of slots to create a pulse, thereby vibrating the drill string. The fluid pulse valve comprises an outer housing, a rotor contained within the outer housing, a stator tube surrounding the rotor and adjacent to the outer housing, the stator tube comprising a plurality of slots, and a closer rotationally coupled to the rotor and at least a portion of the closer in line with the plurality of slots.
Preferably, as fluid passes through the fluid pulse valve, the fluid enters the outer housing, passes through the plurality of oblong slots, into the stator and rotates the rotor. In a preferred embodiment, the fluid pulse valve further comprises at least one fixed flow area port in the stator tube. Preferably, the fluid pulse valve further comprises a gearbox, wherein gear reduction within the gearbox causes the closer to rotate at a different rate than the rotor. At least one of gear ratio of the gearbox or pitch of the rotor is preferably adjusted to alter pulse rate relative to flow rate.
In a preferred embodiment, the fluid pulse valve further comprises an anchor coupled to the rotor. Preferably, the anchor, the rotor, and the closer are removable from the stator tube without removing a down hole portion of the well bore string. The anchor is preferably a hold point to remove the rotor and closer from the drill string. Preferably, the fluid pulse valve closes and opens at 0.1-10 Hz. There are preferably no fluid bypasses in the fluid pulse valve. In a preferred embodiment, the vibrations are caused by the flow of fluid within the fluid pulse valve starting and stopping. Preferably, at least one of the slot's quantity and size and a gap between the slot and the closer are adjusted to alter pulse intensity.
Other embodiments and advantages of the invention are set forth in part in the description, which follows, and in part, may be obvious from this description, or may be learned from the practice of the invention.
The invention is described in greater detail by way of example only and with reference to the attached drawing, in which:
As embodied and broadly described herein, the disclosures herein provide detailed embodiments of the invention. However, the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. Therefore, there is no intent that specific structural and functional details should be limiting, but rather the intention is that they provide a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention.
Fluid pulse valve 100 is preferably comprised of for basic parts: housing 115, anchor 120, rotor 125, and stator 130. Housing 115 makes up the majority of the outer portion of fluid pulse valve 100. Housing 115 is tubular in shape and preferably includes end 105. Preferably, the outer diameter of housing 115 is constant and may be equal to, larger, or smaller than the diameter of the drill string or the joints of the drill string. In a preferred embodiment, the inner diameter of housing 115 increases from end 105 toward end 110 of fluid pulse valve 100. The increase in diameter can be gradual, abrupt, or a combination thereof. Preferably, housing 115 is comprised of steel. However, housing 115 may be comprised of another material, for example, brass, plastic, other metals, or other manmade or naturally occurring materials. Preferably, housing 115 is detachable from the remainder of fluid pulse valve 100.
Rotor 125 is preferably comprised of a gearbox 150, a turbine 34, and a closer 35. Preferably rotor 125 is coupled to anchor 120 within housing 115.
Preferably, the gear ratio is adjustable to accommodate different uses. Preferably, gearbox 150 uses a planetary gear configuration for gear reduction. However, other gear configurations can be used. Preferably gearbox 150 has one or more valves to allow for oil expansion during use of fluid pulse valve 100. Preferably gearbox 150 is sealed to the drilling fluid by various seals and removably secured within fluid pulse valve 100 with various fastening devices. In a preferred embodiment, gearbox 150 is filled with oil or another lubricant to reduce wear, increase efficiency, and lubricate the components of gearbox 150.
Preferably, gearbox 150 is coupled to turbine 34 via shaft 33.
As shown in
The drilling fluid flows through and round stator tube 2, is often abrasive and, as it is forced though fixed flow area ports 37 and into closer 35, can be destructive. For example, as the drilling fluid flows through fixed flow area ports 37, a high-velocity jet of fluid may form that can impact and erode the valve components. In an effort to improve the life of the valve, multiple materials and coating can be used. For example, high strength alloy steel (e.g. ASI 4145 steel), wear resistant tool steels (e.g. A2 & D2 steels), HVOF applied carbide coatings up to 0.010 inches thick over alloy steel, and laser clad carbide coatings up to 0.030 inches thick over alloy steel are all potential materials and coatings. However, with each of these some erosion may occur. For example, the fluid may be able to penetrate between the coatings and the softer steel and erode the softer steel.
In a preferred embodiment, at least a portion of fluid pulse valve 100 is comprised of a ceramic material. Preferably, at least stator tube 2 and closer 35 are comprised of a ceramic material, however other parts that come into contact with the drilling fluid may also be comprised of the ceramic material. Preferably, the ceramic material is harder than the abrasives present in the drilling fluid. Preferably, the parts are solid ceramic, however in other embodiments ceramic coatings can be used. Preferably, the ceramic is highly impact resistant and resistant to temperature changes within operating ranges of fluid pulse valve 100 (i.e. up to 400° F.). The ceramic is also preferably resistant to acidic corrosion, which can be an issue in certain wells. In a preferred embodiment, the ceramic material is zirconium dioxide (ZrO2) also known as zirconia. For example, the zirconia may be NILCRA™, produced by Morgan Advanced Materials. Other ceramics may include, for example Partially stabilized zirconia (PSZ) and silicon nitride (Si3N4).
During drilling, for example, drilling fluid enters fluid pulse valve 100 at end 105. The fluid flows into a cavity surrounding anchor 120 and within housing 115. The fluid continues around gearbox 150 and over stator tube 2. Then, the fluid flows though slots 3 in stator tube 2 and into the interior of stator tube 2. As the fluid flows through the interior of stator tube 2, it forces turbine 34 to rotate, which forces the gears in gearbox 150 to turn, which, in turn, rotate closer 35. As closer 35 is rotated, slots 3 become covered and uncovered by closer 35, causing the fluid to stop and restart, thereby creating pulses in fluid pulse valve 100.
Preferably, due to the high speed and pressure of the fluid passing through fluid pulse valve 100, fluid pulse valve 100 vibrates the entire drill string. For example, fluid pulse valve 100 can vibrate the drill string at 0.1 Hz, 3 Hz, 5 Hz, 7 Hz, 10 Hz, or another rate. As described herein, changing various elements of fluid pulse valve 100 can change the frequency at which fluid pulse valve 100 vibrates. In a preferred embodiment, the vibration rate may be chosen or tuned to a desired frequency or frequency range based on the application. For example, a low frequency pulse can be designed to have a strong thrust effect, while a higher frequency pulse might not thrust as strongly, but it can be designed to reduce friction between the drill string and the bore to help keep cuttings stirred up and entrained in the drilling fluid or to add micro-vibration assistance to the cutters of a drill head or reamer.
In the preferred embodiment, fluid pulse valve 100 is positioned 1500 to 2000 feet uphole of the bottom hole assembly (BHA) however, fluid pulse valve 100 can be attached to the BHA, positioned adjacent to the BHA, or at another distance from the BHA. Preferably, fluid pulse valve 100 has no bypass so that all of the fluid flows though fluid pulse valve 100. In some embodiments, multiple fluid pulse valves 100 can be installed on a drill string. All of the fluid pulse valves 100 in a drill string may produce the same frequency vibrations or may produce different frequency vibrations with each fluid pulse valve 100 tuned to a specific frequency. Certain frequencies may have more of an effect at specific locations in the drill string. The multiple fluid pulse valves 100 may be placed adjacent to each other or at a distance from each other. In other embodiments, a single fluid pulse valve 100 may be able to produce multiple frequencies either simultaneously or sequentially.
Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All references cited herein, including all publications, U.S. and foreign patents and patent applications, are specifically and entirely incorporated by reference. It is intended that the specification and examples be considered exemplary only with the true scope and spirit of the invention indicated by the following claims. Furthermore, the term “comprising of” includes the terms “consisting of” and “consisting essentially of.”
This application is a Continuation-In-Part Application of U.S. Non-Provisional application Ser. No. 15/694,347, filed Sep. 1, 2017, which is a Continuation-In-Part Application of U.S. Non-Provisional application Ser. No. 15/467,389, filed Mar. 23, 2017, which is a Continuation Application of U.S. Non-Provisional application Ser. No. 14/339,958, filed Jul. 24, 2014, all entitled “Fluid Pulse Valve,” and all of which are hereby specifically and entirely incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14339958 | Jul 2014 | US |
Child | 15467389 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15694347 | Sep 2017 | US |
Child | 15730835 | US | |
Parent | 15467389 | Mar 2017 | US |
Child | 15694347 | US |