Contemporary fluid dispense systems are well suited for dispensing precise amounts of fluid at precise positions on a substrate. A pump transports the fluid to a dispense tip, also referred to as a “pin” or “needle”, which is positioned over the substrate by a micropositioner, thereby providing patterns of fluid on the substrate as needed. As an example application, fluid delivery systems can be utilized for depositing precise volumes of adhesives, for example, glue, resin, or paste, during a circuit board assembly process, in the form of dots for high-speed applications, or in the form of lines for providing underfill or encapsulation.
Contemporary dispensing pumps comprise a syringe, a feed tube, a dispense cartridge, and pump drive mechanism. The syringe contains fluid for dispensing, and has an opening at its distal end at which a feed tube is connected. The feed tube is a flexible, hollow tube for delivering the fluid to the cartridge. The cartridge is hollow and cylindrical and includes an inlet neck at which the opposite end of the feed tube is connected. The inlet neck directs the fluid into the hollow, central cartridge chamber.
A feed screw disposed longitudinally through the center of the cylindrical chamber transports the fluid in Archimedes principle fashion from the inlet to a dispensing needle attached to the chamber outlet. A continuously-running motor drives the feed screw via a rotary clutch, which is selectively actuated to engage the feed screw and thereby effect dispensing. A bellows linkage between the motor and cartridge allows for flexibility in system alignment.
Pump systems can be characterized generally as “fixed-z” or “floating-z” (floating-z is also referred to as “compliant-z”). Fixed-z systems are adapted for applications that do not require contact between the dispense tip and the substrate during dispensing. In fixed-z applications, the dispense tip is positioned and suspended above the substrate by a predetermined distance, and the fluid is dropped onto the substrate from above. In floating-z applications, the tip is provided with a standoff, or “foot”, designed to contact the substrate as fluid is delivered by the pump through the tip. Such floating-z systems allow for tip travel, relative to the pump body, such that the entire weight of the pump does not bear down on the substrate.
Such conventional pump systems suffer from several limitations. The motor and rotary clutch mechanisms are bulky and heavy, and are therefore limited in application for modern dispensing applications requiring increasingly precise, efficient, and fast operation. The excessive weight limits use for those applications that require contact of the pump with the substrate, and limits system speed and accuracy, attributed to the high g-forces required for quick movement of the system. The mechanical clutch is difficult to control, and coasts to a stop when disengaged, resulting in deposit of excess fluid. Clutch coasting can be mitigated by a longitudinal spring mounted about the body of the feed screw and urged against the chamber end to offer rotational resistance. However, the spring adds to the length of the cartridge, and contributes to system complexity.
The inlet neck feeds directly into the side of the feed screw or “auger”. Consequently, as the auger collects material from the small and circular inlet port, high pressure is required for driving the material into the auger body, because the auger threads periodically pass in front of the feed opening, preventing material from entering. This leads to inconsistent material flow. Additionally, the inlet neck is commonly perpendicular to the auger screw, requiring the fluid to make a 90 degree turn upon entering the pump. This further limits material flow and can contribute to material “balling” and clogging.
Overnight storage of dispensed fluids often requires refrigeration of the fluid and cleaning of the system. The syringe is typically mounted directly to a mounting bracket on the pump body such that the output port of the syringe passes through an aperture on the mounting bracket. The feed tube is then coupled to the output port on the opposite face of the bracket. Since the tube and bracket are on opposite sides of the bracket, removal of the syringe from the pump body requires dismantling of the tube and syringe, which can contaminate fluid material positioned at the interface during disassembly. Further, since the syringe and cartridge can not be removed and stored together as a unit, disassembly and cleaning of the cartridge is required. Additionally, the inlet neck is narrow and therefore difficult to clean.
The present invention is directed to a fluid pump and cartridge system that overcomes the limitations of conventional systems set forth above.
In a first aspect, the present invention is directed to a cartridge adapted for use with a fluid pump. The cartridge includes a material inlet port, a material outlet port, a feed screw, and a reservoir. The feed screw is disposed longitudinally through the body of the cartridge for delivering fluid provided at the inlet port to the outlet port. The inlet port takes the form of an elongated port provided at a side portion of the feed screw proximal to allow for fluid provided at the inlet port. This elongated configuration promotes even distribution of fluid during transport by the feed screw, and lowers system pressure, thereby reducing the likelihood of “balling-up” and/or clogging of fluid.
The inlet port is preferably provided through the cartridge body at an acute angle relative to the reservoir to allow for gravity-assisted fluid delivery. The inner portion of the cartridge may be lined with a carbide or plastic (for example Teflon, torlon, or tercite) liner having an aperture aligned with the inlet port to enhance ease of cleaning. The elongated port of the cartridge may be provided in a wall of the carbide liner.
In another aspect, the present invention is directed to a release bracket for mounting the syringe and cartridge to the body of the pump. In this manner, the syringe, feed tube, and cartridge can be dismantled from the pump body as a unit, allowing for joint storage of the syringe, feed tube and cartridge, while minimizing risk of contamination of the material. Additionally, once the system is initially purged of extraneous gas during initialization, the purged system can be stored as a unit without the need for re-initialization prior to its next use.
In another aspect, the present invention is directed to a fluid pump assembly that employs an electronically-operated servo-motor assembly. A closed-loop servo motor having a rotary encoder is adapted for controlling rotation and position of the feed screw with heightened accuracy, as compared to those of conventional clutch-driven assemblies. For example, in a preferred embodiment, a rotary encoder capable of 8000 counts in a 360 degree range may be employed to achieve dispensing resolution to a degree that is orders of magnitude greater than conventional systems. Servo-motor-based systems further confer the advantages of small, lightweight systems well-suited for high-performance operation. Electronic control allows for complete determination of the acceleration/deceleration of feed screw rotation, allowing for application-specific flow profiles. An orbital gear transmission unit may be provided between the motor and the pump feed screw for providing further accuracy in controlling the feed screw.
In another aspect, the present invention is directed to a pump assembly that is compatible with both floating-z and fixed-z cartridges and dispensing tips. A quick-release pin, which may be spring-biased, is provided on the side of the cartridge body to allow for removal/insertion of cartridges. A fixed-z cartridge includes a hole for receiving the quick-release pin in a fixed relationship. A floating-z cartridge includes a longitudinal groove to permit longitudinal travel of the pin in the groove, and thus allow for floating-z operation.
In another aspect, the present invention is directed to a quick-release mount assembly for mounting a pump to a dispensing frame. The pump body includes a tab feature on its surface for mating with a hole on a mounting plate attached to the dispensing frame. The mounting plate includes a lever for securing the tab when inserted. Guide features may be provided for aligning and guiding the pump body relative to the mounting plate.
In another aspect, the present invention is directed to an apparatus and method for drawing entrapped air from the material supply during a dispensing operation, thereby purging the system of entrapped air. A vacuum is drawn from the material supply, for example by a vacuum tube with needle inserted into a material feed tube, in a direction parallel to material flow through the feed tube. In this manner, air is withdrawn from the dispensed material, leading to an improvement in dispensing consistency, especially at small tolerances.
In another aspect, the present invention is directed to a vacuum purge configuration for removing air entrapped in the body of the cartridge during initialization of a dispensing operation. A first purge interface is placed on the end of the feed tube, and a vacuum is drawn, thereby purging the feed tube of entrapped gas. A second purge interface is then placed on the cartridge body outlet while the feed screw is rotated slowly until material presents itself at the outlet. A vacuum is drawn to eliminate entrapped gas from the cartridge. A third purge interface is then placed on the needle assembly and a vacuum is drawn to eliminate entrapped air from the needle body. Entrapped air is thus substantially removed from the feed tube, auger screw and dispensing needle. Normal dispensing can commence following removal of the purge interface.
In another aspect, the present invention is directed to a bellows means inserted at the piston end of, and replacing the piston of, a dispensing syringe. The bellows is pressurized from within and expands, thereby exerting pressure on the underlying material, forcing material flow. In this manner, material can be driven with minimal pressure, and with minimal air migration into the material, as compared to plunger-style drivers. In a preferred embodiment, the bellows comprises a latex film applied about the lip of the syringe top. The syringe top is preferably vented to allow for expansion of the bellows.
In another aspect, the present invention is directed to a pump cartridge having a material feed aperture that is elongated with respect to the primary axis of the feed screw. In this manner, a larger portion of the feed screw threads are exposed to the material supply, leading to improvement in dispensing consistency. In a preferred embodiment, a carbide cartridge liner is inserted in the cartridge cavity between the cartridge body and the feed screw, and the elongated aperture is provided in the body of the carbide insert to provide increased material supply exposure.
The foregoing and other objects, features and advantages of the invention will be apparent from the more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
The motor 42 preferably comprises a closed-loop servo motor with an independent motion controller 43. The motion controller 43 may be provided by the host dispensing platform, and may comprise, for example, a Delta Tau controller, Northbridge, Calif., USA. The closed-loop servo motor may comprise, for example, a Sigma Mini Series motor, produced by Yaskawa Electric Corp., Japan. Feedback is preferably provided by a rotary encoder, for example providing 8192 discrete counts over 360 degree rotation. The motor 42 includes an axle 41 which operates to drive the feed screw in the cartridge assembly 58 (described below). In this manner, high-performance control is maintained over material dispensing. For example, rotary position, rotational velocity, and acceleration/deceleration of the feed screw can be readily controlled by the closed-loop servo motor, and is easily programmed at the controller 43. This is compared to conventional embodiments that rely on timed open-loop coasting of a mechanical clutch for control over the feed screw. Additionally, the closed-loop servo-motor is generally a compact system that is small, lightweight, and designed for high-performance operation; as compared to the bulky, inefficient, and inaccurate conventional motor pump systems.
An optional planetary-gear transmission box 44 may be provided to step down the available motor positions, thereby providing even more enhanced control over angular position of the feed screw. For example, step-down transmissions offering 7:1, 25:1, and 48:1 step-down ratios are available for increasing the number of angular steps from 8,192 to 57,344, 204,800 and 393,216 respectively, depending on the application. Such transmission boxes are also available in compact units that match well in size and weight with the closed-loop servo motor 42.
The pump housing 52 comprises a machined or die cast body having an opening 49 at a top portion for receiving the motor drive axle 41 or optional transmission box 44 drive axle (not shown). The interior of the housing 52 is hollow for receiving a cartridge 58 that extends through the housing 52 from an opening 51 at a bottom portion, upward to the top portion, and interfaces with the motor drive axle or transmission box drive axle. The motor 42 and transmission box 44 are mounted to each other, and to the housing 52, by bolts 46, and screws 24, 28, and 30. Cavities 53 are preferably provided in the walls of the housing 52, in order to reduce weight.
A cartridge release lever 34 is rotatably mounted to the housing 52 by bolt 38. When rotated, the cartridge release lever 34 engages an actuator pin 56, biased by spring 54 to remain in a released position. With reference to
A syringe 22 and feed tube 40 are releasably coupled to a side wall of the housing, as shown. The syringe 22 includes a syringe holder 20, a syringe body 22, and a syringe outlet 32, shown exploded along an axis 26. The feed tube 40 is preferably formed of a flexible material, a first end of which elastically deforms to fit over the end of the syringe outlet 32 to form a tight seal. The second end of the feed tube 40 inserts into a feed aperture 64, also referred to herein as an inlet port 64 (see
With reference again to
A release bracket 50 is mounted to a side wall of the housing 52 by bolts 36. With reference to
The present invention overcomes this limitation by providing an elongated cartridge inlet port 100. With reference to
In this embodiment, the elongated inlet port 100 is provided by a slot formed in a side wall of a cylindrical carbide liner 70 inserted in the cartridge body 60 about the feed screw 74. The cartridge inlet port 64 comprises a standard circular bore formed in the cartridge body 60, preferably at an acute angle relative to the feed screw 74, to allow gravity to assist in material flow. An elongated chamber, or pocket 101, is formed within the inlet port 100, between the feed screw 74 and the inner wall 103 of the cartridge body, in a region proximal to the inlet port 64. The elongated pocket 101 allows for dispensing fluid to migrate in a downward direction, and is captured by the feed screw threads over a larger surface area, conferring the various advantages outlined above.
In this manner a high-performance, lightweight pump configuration is provided. The pump is operable in both fixed-z and floating-z mode. Quick release mechanisms provide for storage of the syringe and cartridge as a single unit, without the need for component disassembly. The components themselves are relatively easy to clean and maintain. The elongated inlet port provides for enhanced dispensing consistency at a lower material pressure, while the various purging and priming techniques allow for removal of entrapped gases, further improving dispensing consistency.
While this invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be made herein without departing from the spirit and scope of the invention as defined by the appended claims.
For example, the enhanced control over material flow offered by the various configurations of the present invention make the pump system of the present invention especially amenable to use with dispense needles having a flat dispensing surface with a cross pattern formed in the dispensing surface for dispensing a cross pattern for providing a fillet for bonding a die to a substrate. Particularly, since the closed-loop servo motor pump of the present invention offers control over both position and velocity of the feed screw, the delivery of fluid through the needle to the cross pattern can be controlled to a level of precision previously unattainable. Cross-pattern-style fillets can be achieved at a level of accuracy orders of magnitude beyond those currently achieved.
This application is a continuation application of U.S. application Ser. No. 13/023,098, filed on Feb. 8, 2011, now U.S. Pat. No. 8,197,582, which is a continuation of U.S. application Ser. No. 12/245,390, filed on Oct. 3, 2008, now U.S. Pat. No. 7,905,945, which is a divisional application of U.S. application Ser. No. 11/037,444, filed on Jan. 18, 2005, now U.S. Pat. No. 7,448,857, which is a continuation application of U.S. application Ser. No. 10/295,730, filed Nov. 15, 2002, now U.S. Pat. No. 6,851,923, which is a divisional application of U.S. application Ser. No. 09/702,522, filed Oct. 31, 2000, now U.S. Pat. No. 6,511,301, which claims the benefit of U.S. Provisional application Ser. No. 60/186,783, filed Mar. 3, 2000 and U.S. Provisional application Ser. No. 60/163,952, filed Nov. 8, 1999, the contents of each application being incorporated herein by reference, in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1746604 | Piquerez | Feb 1930 | A |
2933259 | Raskin | Apr 1960 | A |
3355766 | Causemann | Dec 1967 | A |
3394659 | Van Alen | Jul 1968 | A |
3425414 | La Roche | Feb 1969 | A |
3507584 | Robbins, Jr. | Apr 1970 | A |
3693844 | Willeke | Sep 1972 | A |
3734635 | Blach et al. | May 1973 | A |
3811601 | Reighard et al. | May 1974 | A |
3938492 | Mercer, Jr. | Feb 1976 | A |
3963151 | North, Jr. | Jun 1976 | A |
4004715 | Williams et al. | Jan 1977 | A |
4077180 | Agent et al. | Mar 1978 | A |
4116766 | Poindexter et al. | Sep 1978 | A |
4168942 | Firth | Sep 1979 | A |
4197070 | Koschmann | Apr 1980 | A |
4239462 | Dach et al. | Dec 1980 | A |
4258862 | Thorsheim | Mar 1981 | A |
4312630 | Travaglini | Jan 1982 | A |
4339840 | Monson | Jul 1982 | A |
4346849 | Rood | Aug 1982 | A |
4377894 | Yoshida | Mar 1983 | A |
4386483 | Schlaefli | Jun 1983 | A |
4408699 | Stock | Oct 1983 | A |
4465922 | Kolibas | Aug 1984 | A |
4513190 | Ellett et al. | Apr 1985 | A |
4572103 | Engel | Feb 1986 | A |
4579286 | Stoudt | Apr 1986 | A |
4584964 | Engel | Apr 1986 | A |
4610377 | Rasmussen | Sep 1986 | A |
4705218 | Daniels | Nov 1987 | A |
4705611 | Grimes et al. | Nov 1987 | A |
4785996 | Ziecker et al. | Nov 1988 | A |
4803124 | Kunz | Feb 1989 | A |
4836422 | Rosenberg | Jun 1989 | A |
4859073 | Howseman, Jr. et al. | Aug 1989 | A |
4917274 | Asa et al. | Apr 1990 | A |
4919204 | Baker et al. | Apr 1990 | A |
4941428 | Engel | Jul 1990 | A |
4969602 | Scholl | Nov 1990 | A |
5002228 | Su | Mar 1991 | A |
5106291 | Gellert | Apr 1992 | A |
5130710 | Salazar | Jul 1992 | A |
5161427 | Fukuda et al. | Nov 1992 | A |
5176803 | Barbuto et al. | Jan 1993 | A |
5177901 | Smith | Jan 1993 | A |
RE34197 | Engel | Mar 1993 | E |
5265773 | Harada | Nov 1993 | A |
5348453 | Baran et al. | Sep 1994 | A |
5407101 | Hubbard | Apr 1995 | A |
5452824 | Danek et al. | Sep 1995 | A |
5480487 | Figini et al. | Jan 1996 | A |
5535919 | Ganzer et al. | Jul 1996 | A |
5553742 | Maruyama et al. | Sep 1996 | A |
5564606 | Engel | Oct 1996 | A |
5567300 | Datta et al. | Oct 1996 | A |
5699934 | Kolcun et al. | Dec 1997 | A |
5765730 | Richter | Jun 1998 | A |
5785068 | Sasaki et al. | Jul 1998 | A |
5795390 | Cavallaro | Aug 1998 | A |
5803661 | Lemelson | Sep 1998 | A |
5819983 | White et al. | Oct 1998 | A |
5823747 | Ciavarini et al. | Oct 1998 | A |
5833851 | Adams et al. | Nov 1998 | A |
5837892 | Cavallaro et al. | Nov 1998 | A |
5886494 | Prentice et al. | Mar 1999 | A |
5903125 | Prentice et al. | May 1999 | A |
5904377 | Throup | May 1999 | A |
5918648 | Carr et al. | Jul 1999 | A |
5925187 | Freeman et al. | Jul 1999 | A |
5927560 | Lewis et al. | Jul 1999 | A |
5931355 | Jefferson | Aug 1999 | A |
5947022 | Freeman et al. | Sep 1999 | A |
5947509 | Ricks et al. | Sep 1999 | A |
5957343 | Cavallaro | Sep 1999 | A |
5971227 | White et al. | Oct 1999 | A |
5984147 | Van Ngo | Nov 1999 | A |
5985029 | Purcell | Nov 1999 | A |
5985216 | Rens et al. | Nov 1999 | A |
5992688 | Lewis et al. | Nov 1999 | A |
5992698 | Copeland et al. | Nov 1999 | A |
5993183 | Laskaris et al. | Nov 1999 | A |
5993518 | Tateyama | Nov 1999 | A |
5995788 | Baek | Nov 1999 | A |
6007631 | Prentice et al. | Dec 1999 | A |
6017392 | Cavallaro | Jan 2000 | A |
6025689 | Prentice et al. | Feb 2000 | A |
6068202 | Hynes et al. | May 2000 | A |
6082289 | Cavallaro | Jul 2000 | A |
6085943 | Cavallaro et al. | Jul 2000 | A |
6093251 | Carr et al. | Jul 2000 | A |
6112588 | Cavallaro et al. | Sep 2000 | A |
6119895 | Fugere et al. | Sep 2000 | A |
6126039 | Cline et al. | Oct 2000 | A |
6157157 | Prentice et al. | Dec 2000 | A |
6193783 | Sakamoto et al. | Feb 2001 | B1 |
6196521 | Hynes et al. | Mar 2001 | B1 |
6199566 | Gazewood | Mar 2001 | B1 |
6206964 | Purcell et al. | Mar 2001 | B1 |
6207220 | Doyle et al. | Mar 2001 | B1 |
6214117 | Prentice et al. | Apr 2001 | B1 |
6216917 | Crouch | Apr 2001 | B1 |
6224671 | Cavallaro | May 2001 | B1 |
6224675 | Prentice et al. | May 2001 | B1 |
6234358 | Romine et al. | May 2001 | B1 |
6253957 | Messerly et al. | Jul 2001 | B1 |
6253972 | DeVito et al. | Jul 2001 | B1 |
6257444 | Everett | Jul 2001 | B1 |
6258165 | Cavallaro | Jul 2001 | B1 |
6322854 | Purcell et al. | Nov 2001 | B1 |
6324973 | Rossmeisl et al. | Dec 2001 | B2 |
6354471 | Fujii | Mar 2002 | B2 |
6371339 | White et al. | Apr 2002 | B1 |
6378737 | Cavallaro et al. | Apr 2002 | B1 |
6383292 | Brand et al. | May 2002 | B1 |
6386396 | Strecker | May 2002 | B1 |
6391378 | Carr et al. | May 2002 | B1 |
6395334 | Prentice et al. | May 2002 | B1 |
6412328 | Cavallaro et al. | Jul 2002 | B1 |
6428852 | Pillion et al. | Aug 2002 | B1 |
6453810 | Rossmeisl et al. | Sep 2002 | B1 |
6511301 | Fugere | Jan 2003 | B1 |
6514569 | Crouch | Feb 2003 | B1 |
6540832 | Cavallaro | Apr 2003 | B2 |
6541063 | Prentice et al. | Apr 2003 | B1 |
6562406 | Chikahisa et al. | May 2003 | B1 |
6619198 | Rossmeisl et al. | Sep 2003 | B2 |
6626097 | Rossmeisl et al. | Sep 2003 | B2 |
6719174 | Swift | Apr 2004 | B1 |
6736900 | Isogai et al. | May 2004 | B2 |
6739483 | White et al. | May 2004 | B2 |
6851923 | Fugere | Feb 2005 | B1 |
6892959 | Fugere | May 2005 | B1 |
6957783 | Fugere | Oct 2005 | B1 |
6983867 | Fugere | Jan 2006 | B1 |
7000853 | Fugere | Feb 2006 | B2 |
7178745 | Fugere | Feb 2007 | B1 |
7331482 | Fugere | Feb 2008 | B1 |
RE40539 | Fugere | Oct 2008 | E |
7448857 | Fugere | Nov 2008 | B1 |
7694857 | Fugere | Apr 2010 | B1 |
7762480 | Fugere | Jul 2010 | B1 |
7905945 | Fugere | Mar 2011 | B1 |
8056833 | Fugere | Nov 2011 | B1 |
8197582 | Fugere | Jun 2012 | B1 |
8220669 | Fugere | Jul 2012 | B1 |
20020007227 | Prentice et al. | Jan 2002 | A1 |
20020020350 | Prentice et al. | Feb 2002 | A1 |
20030000462 | Prentice et al. | Jan 2003 | A1 |
20030066546 | Bibeault et al. | Apr 2003 | A1 |
20030084845 | Prentice et al. | May 2003 | A1 |
20030091727 | Prentice et al. | May 2003 | A1 |
20030132243 | Engel | Jul 2003 | A1 |
20040089228 | Prentice et al. | May 2004 | A1 |
Number | Date | Country |
---|---|---|
0110591 | Jun 1984 | EP |
0001495 | Jan 2000 | WO |
Entry |
---|
Karassik, Igor J., et al, “Pump Hand Book”, Second Ed., McGraw Hill Inc., 1986, pp. 9.30. |
Micro-Mechanics Design Specifications. May 1999. |
“Epoxy Die Attach: The challenge of Big Chips.” Rene J. Ulrich. Semiconductor International. Oct. 1994. |
“Dispensing Technology: The Key to high-Quality, High-Speed Die-Bonding.” Uri Sela and Hans Steinegger. Microelectronics Manufacturing Technology. Feb. 1991. |
Affidavit of Jeffrey P. Fugere in connection with Information Disclosure Statement filed in Reissue U.S. Appl. No. 10/948,850. |
Number | Date | Country | |
---|---|---|---|
60163952 | Nov 1999 | US | |
60186783 | Mar 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11037444 | Jan 2005 | US |
Child | 12245390 | US | |
Parent | 09702522 | Oct 2000 | US |
Child | 10295730 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13023098 | Feb 2011 | US |
Child | 13482440 | US | |
Parent | 12245390 | Oct 2008 | US |
Child | 13023098 | US | |
Parent | 10295730 | Nov 2002 | US |
Child | 11037444 | US |