Fluid pump having at least one impeller blade and a support device

Information

  • Patent Grant
  • 11592028
  • Patent Number
    11,592,028
  • Date Filed
    Wednesday, January 9, 2019
    5 years ago
  • Date Issued
    Tuesday, February 28, 2023
    a year ago
Abstract
The invention relates to a fluid pump comprising at least one impeller blade (1, 1′, 1″) which is rotatable about an axis of rotation (3) and conveys a fluid in operation and comprising a support device (4, 6, 7, 8, 9, 10, 12, 12′, 13, 13′, 14, 14′, 15, 17) which supports the at least one impeller blade (1, 1′, 1″) in at least one support region, wherein the support device is change-able between a first state in which the rotor is radially compressed and a second state in which the rotor is radially expanded; and wherein at least one impeller blade extends at least partly radially inwardly with respect to the axis of rotation (3) from the support region/support regions in the radially expanded state of the rotor.
Description

The invention is in the field of mechanical engineering, in particular micromechanics, and addresses fluid pumps which work with rotating impeller blades and are particularly configured for use in areas which are difficult to access.


Pumps of this type can be used, for example, in the medical field and can also have particularly small construction shapes for this purpose.


A special application of micropumps is, for example, the assistance for the pump force of the human heart. Pumps used in this area are usually introduced into the body through blood vessels and are optionally operated in a chamber of the heart.


A plurality of such pumps have already become known which have different constructional shapes. An axial flow pump has become known, from WO 98/53864, and equally from EP 1 738 783 A1, which in each case has a rotor in the form of a rigid shaft, said rotor being provided with impeller blades and said shaft being outwardly journalled in a stator. The drive can be directly integrated into the stator and the rotor as an electromagnetic drive.


Pumps of this type have the disadvantage that they have a large diameter in relation to the pumping capacity and can hardly be introduced through a blood vessel.


In contrast to this, a rotor is known from WO 03/013745 A2 which has a smaller diameter in a compressed state than in an expanded state and which has an expandable rotor blade which expands in operation by the fluid counterpressure of the blood.


Other rotors which have become known likewise have impeller blades which are expandable for operation, for example by joints or by elastic deformability of the impeller blades.


A particular problem in this respect is that the impeller blades are usually fastened to a central neck and are rotationally drivable and also movably pivotable from this; that the impeller blades thus have to be flexible, but have a certain stiffness or a restriction in its movability, on the other hand, to exert the required pressure onto the fluid for conveying.


This object has previously not been ideally achieved in the prior art. It is therefore the underlying object of the present invention to further develop a pump of the described type to achieve a good pumping capacity in operation despite a small pump diameter in the compressed state. The design should in this respect be as uncomplicated and as inexpensive as possible.


The object is achieved in accordance with the invention by the features of the claims.


In this respect, at least one impeller blade is provided which is rotatable about an axis of rotation to convey the fluid as well as support device which supports the at least one impeller blade in a support region. The support device is moreover changeable between a compressed rotor state and an expanded rotor state and at least one part of at least one impeller blade extends at least partly, viewed from the support region, radially inwardly toward the rotor axis in the expanded rotor state. Since the support region is not disposed at the radially inner end of the impeller blade, but is rather offset to the impeller blade exterior, viewed radially, the impeller blade/impeller blades is/are supported in a region in which the relative speed to the fluid is greater than in the region of the axis of rotation and, where applicable, the mechanical load of the impeller blade is correspondingly higher. The support region and the support device can be the only region in which the impeller blade/impeller blades is/are journalled or is/are connected to another component. The impeller blade/impeller blades can, for example, be connected to other components in a force-transmitting manner only by means of the support device. In this respect, the region of the impeller blade/impeller blades conveying the fluid can lie wholly or only partly radially within the support region. A lower mechanical demand is in any case made here on the support device and on its connection to the respective impeller blade than if the support device were to support the impeller blades in the region of the axis of rotation. The impeller blades can moreover be made weaker since they are supported in a region of higher load and the mean spacing of the regions of the impeller blade/impeller blades conveying the fluid, viewed in the radial direction, is smaller than if it/they were supported in the region of a neck on the axis of rotation.


The support device can have a strand-like body which extends transversely to the impeller blade surface with respect to its longitudinal direction and/or, in the region in which it supports the impeller blade, passes through said impeller blade or a tangential surface of said impeller blade. The angle between the longitudinal direction of the strand-like body and of the surface normal of the impeller blade surface/of the tangential surface at the impeller blade surface should be less than 89°, preferably less than 85°.


Provision can also be made that the predominant part of the region of the impeller blade/impeller blades conveying the fluid extends radially within the support region/support regions. The support region is thus closer to the parts of the impeller blade/impeller blades which move the fastest and can support them efficiently, for example transmit a torque to them.


Provision can advantageously also be made that the support region is arranged radially outwardly at the periphery of the fluid-conducting region of the impeller blade/impeller blades. In this respect, the support region can completely radially outwardly surround the impeller blades.


The impeller blade can generally be fixedly connected to the support device so that it rotates with the impeller blade.


This is a construction shape which can be manufactured particularly simply and which is mechanically stable. The support device can, for example, comprise the same material as the impeller blade and can be manufactured in one piece therewith.


Provision can, however, also be made that the support device is manufactured from a material different from that of the impeller blade, for example from a superelastic compound or from a shape memory material, in particular nitinol, so that the support device can actively change into an operating shape in order thus to erect the rotor with the impeller blades so that no further demands are made on the impeller blades with respect to an automatic deformation. They can then be manufactured as thin, pliable films which are not self-supporting.


The at least one impeller blade can, however, also be guided and journalled movably with respect to the support device. The support device can then he stationary with respect to the impeller blades as a stator. A guidance, for example in the form of a mechanical or magnetic journaling of the impeller blades with respect to the support device is then necessary.


The support device can, for example, be formed by at least one ring positioned concentrically and optionally journaled with respect to the axis of rotation. This ring can have an axial length which is smaller than the axial length of the impeller blades.


Two or more such rings can also respectively be connected, axially spaced apart, to the impeller blade/impeller blades. The rings can be designed in meandering form in the peripheral direction, for example, to be able to implement a corresponding deformability, for example as a consequence of superelasticity or shape memory properties in a particularly simple manner. A plurality of rings are preferably arranged coaxially to one another.


As shown in FIG. 15, a helical body 7a can also be provided coaxial to the axis of rotation as a support body instead of one or more rings. It can, for example, have a round or flat cross-section. The helix can extend in the same direction ‘C’ or in the opposite direction ‘D’ to a helical outer margin of an impeller blade 1.


The support device can, however, also be formed by a flexible tube surrounding the impeller blade/impeller blades. Such a tube can itself comprise a shape memory material, for example, also a wire meshwork of nitinol wire or it can comprise a flexible organic material impermeable for the fluid and have support elements such as support rings, for example. The tube can be inflatable in pumping operation by overpressure as a result of the fluid pressure which has built up.


The tube can be connected at points or in parts to the outer ends of the impeller blade/impeller blades.


In accordance with the present invention, the rotor does not need a neck in the region of the impeller blades so that the impeller blade/impeller blades, with all its/their parts, can be spaced apart from the axis of rotation. In this case, the cross-section of the rotor, which is otherwise taken up by a neck, is additionally available for conveying fluid.


When the support device rotates with the impeller blade/impeller blades, it can be journalled in at least one rotary bearing which is axially arranged outside the region over which the impeller blade/impeller blades extends/extend.


This design allows a simple journalling in a commercial rotary bearing, for example a roller bearing or a magnetic bearing. Such a journalling is less complicated and lower in friction than a journalling at the periphery of the support device in the region of the impeller blades.


However, a hydrodynamic journalling can, for example, also be provided at the periphery of the support device when a rotor of the described kind runs in a housing and when a gap is provided between the housing and the support device in which a fluid is located. In a particularly simple embodiment, this fluid could be identical with the conveyed fluid.





The invention will be shown and subsequently described in the following with reference to an embodiment in a drawing. There are shown



FIG. 1 a three-dimensional, partly broken away view of a rotor of a fluid pump with a support device and an impeller blade;



FIG. 2 an axial plan view of the subject of FIG. 1;



FIG. 3 a side view



FIG. 4 a partly broken away side view of the subject of FIG. 1;



FIGS. 5 & 6 respective longitudinal sections of the subject of FIG. 1;



FIG. 7 a rotor with a support device comprising two rings and an impeller blade in a three-dimensional view;



FIG. 8 the subject of FIG. 7 in a longitudinal section;



FIG. 9 the subject of FIG. 7 in a first side view;



FIG. 10 the subject of FIG. 7 in a second side view;



FIG. 11 the subject of FIG. 7 in an axial plan view;



FIG. 12 the subject of FIG. 7 in a longitudinal section offset angle-wise with respect to the longitudinal section of FIG. 8;



FIG. 13 a rotor with a support device comprising three rings;



FIG. 14 a side view of the rotor of FIG. 13;



FIG. 15 a rotor with a support device having four rings in a three-dimensional view;



FIG. 16 a rotor in which the support: device comprises at least one tube piece;



FIG. 17 a longitudinal section of the subject matter of FIG. 16;



FIG. 18 a rotor in which the impeller blade/impeller blades are surrounded in full by a tubular support device, with reinforcement rings reinforcing the tube;



FIG. 19 the rotor of FIG. 18 in a longitudinal section;



FIG. 20 the subject of FIG. 18 in a side view;



FIG. 21 the rotor of FIG. 18 in a three-dimensional view, with the support rings being designed in meandering form in the peripheral direction;



FIG. 22 a rotor with a tubular support device which is reinforced by a wire meshwork, in a three-dimensional view;



FIG. 23 a rotor similar to that of FIG. 22, with two rotor blades being arranged without a neck such that they do not extend up to the axis of rotation and can slide past one another on a compression of the rotor;



FIG. 24 the arrangement of FIG. 23 in a longitudinal section;



FIG. 25 a rotor arrangement with an impeller blade which is surrounded by a tubular support device, with the support device being connected at both sides to a respective shaft journal by means of fork-like braces;



FIG. 26 a side view of the subject of FIG. 25;



FIG. 27 a partly broken away view of the subject of FIG. 26;



FIG. 28 a three-dimensional outer view of the subject of FIGS. 25-27;



FIG. 29 a partly broken away three-dimensional view of the subject of FIG. 28.



FIG. 30 a rotor with a tubular support device which is connected via a brace to a shaft journal, with a single impeller blade being provided;



FIG. 31 the arrangement of FIG. 30 in a partly broken away view;



FIG. 32 an embodiment similar to the design of FIG. 30, with the impeller blade being coupled directly to the shaft journal and not via the support device; and



FIG. 33 the design of FIG. 32 in a longitudinal section.






FIG. 1 shows, in a three-dimensional view, a rotor of a fluid pump, in particular of a micropump, for the axial conveying of blood, such as is typically used in medicine to assist the human heart. Such a pump is, for example, mounted at the end of a hollow catheter and conducts blood under pressure from a chamber of the heart into a blood vessel when it is introduced into a heart ventricle through a blood vessel. For this purpose, a rotor rotates at some thousand revolutions per minute to achieve the required conveying capacity. The impeller blade 1 is helical in form, is connected to a neck 2 in the region of the axis of rotation 3 and is supported outwardly by a support device 4 in the form of a tubular sleeve, to which the impeller blade 1 is connected at its outer margin.


The neck 2 is typically connected to a drivable shaft which extends through the hollow catheter and blood vessel to a motor drive which can typically be arranged outside the body. A sluice is provided between the motor drive and the hollow catheter.



FIG. 2 shows a plan view in which the upper margin of the impeller blade 1 and the tubular sleeve 4 can easily be recognized.


The impeller blade 1 can also be understood as two partial impeller blades which extend respectively radially from the neck 2 to the tubular support device 4 and axially extend helically.



FIG. 3 shows the rotor from FIG. 1 in a side view, with the closed pipe-like or tubular sleeve 4 being easy to recognize and the ends of the neck 2 projecting beyond it.



FIG. 4 shows a broken away representation of the rotor of FIG. 3, with the marginal regions 5 of the impeller blade 1 being shown in dashed form where it is connected to the sleeve/support device 4.



FIG. 5 shows a longitudinal section through the rotor of FIG. 1, with the impeller blade 1 intersecting the plane of the drawing at the upper end of the rotor.


The impeller blade can, as shown in FIG. 5 and also in the following FIG. 6, be manufactured in one piece with the support device 4 made as a collapsible tube or as a collapsible pipe. Said support device can, for example, comprise a plastic as a flexible hose and can be held in an expanded and shape-stable manner by the pump action as a result of the overpressure built up in its interior. The shape stability can, however, also be established by the elastic restoring forces of the material. At the same time, the impeller blades are expanded and brought into the shape ready for operation by the expansion movement. The impeller blade 1, for example, is strained by tension and thus properly stabilized between the support device 4 and the neck 2 in the expanded state.


An embodiment can be seen from FIG. 7 with two rings 6, 7 which together form the support device and support the impeller blade 1. The support regions of the impeller blade 1 in this respect lie radially of its furthermost margin.


The rings 6, 7 can comprise a shape memory alloy, nitinol, for example, and can be directly expanded after introduction into a body to adopt the shown circular shape. At the same time, they pull the support regions of the impeller blade 1 radially outwardly and tension it.



FIG. 8 shows a longitudinal section through the rotor in accordance with FIG. 7 and FIG. 9 shows the extent of the margin of the impeller blade in a side view.



FIG. 10 shows a three-dimensional side view which illustrates the helical structure of the impeller blade 1.


In addition to the elements shown, spacers can be provided between the rings 6, 7 which do not have to be shape-changeable and which can maintain their form on the transition between the compressed shape and the expanded shape of the rotor. They can be made as bars or braces extending parallel to the neck 2.


The rings 6, 7 can generally also comprise an elastic material, for example rubber-like material, which has small restoring forces on the transport to the point of use in compressed form and which stabilizes itself after adopting the circular ring shape.



FIG. 11 shows an axial plan view of the rotor in accordance with FIG. 7 and FIG. 12 shows a section in which the impeller blade 1 intersects the plane of the drawing at the upper and lower ends of the rotor. The impeller blade passes through 180 degrees of a helix between the upper end and the lower end of the rotor.


A rotor of a fluid pump is shown in FIG. 13 which has a support device with three rings 6, 7, 8 which are each, viewed radially in the marginal region of the impeller blade 1, connected to it and can be spaced apart from one another by means of braces, not shown.



FIG. 14 shows a side view of the rotor of FIG. 13.


In FIG. 15, a rotor having four rings 6, 7, 8, 9 is shown perspectively, said rings together forming the major part of a support device. In another respect, what was already said with regard to the embodiments described above applies to the rings 6, 7, 8, 9.


Instead of individual rings, a helical body 7a can also be provided circumferentially at the periphery which is shown in dashed form in FIG. 15 and which is fastened spot-wise to the periphery of the impeller blade.


The torque can generally be introduced into the rotor via the support device. For this purpose, a part of the support device must, for example, be connected to a drive device or to a drive shaft via braces. This coupling will be looked at in more detail further below.


Alternatively, the torque can also be introduced via the neck 2 provided such a neck is present. In this case, the effect of the support device is restricted to the radial support and shape of the impeller blade/impeller blades.



FIG. 16 shows an embodiment in a three-dimensional representation in which an impeller blade 1 is stabilized at its periphery by a pipe section 10 or a tubular section. FIG. 17 shows the same arrangement in a longitudinal section.


The pipe section 10 can comprise a plastic, for example, and can be made in one piece with the impeller blade, but can also comprise a material different from the material of the impeller blade, for example a shape memory alloy. A tubular section or pipe section of this type has the disadvantage with respect to a ring of possibly being more difficult to compress, but has the advantage of being easy to stabilize in the expanded shape.



FIG. 18 shows, in a three-dimensional view, a rotor of a fluid pump having a rotor blade 1 which is supported by a support device 11 in the form of a throughgoing tube element. The tube element 11 extends across the complete axial length of the impeller blade. The tube element can, however, also be axially shorter than the impeller blade 1.



FIG. 19 shows a longitudinal section through the embodiment of FIG. 18, with in particular three ring-like reinforcement elements 12, 13, 14 being able to be recognized which are fastened radially outwardly to the tube element 11 or are manufactured in piece therewith in a contiguous manner.


The reinforcement elements 12, 13, 14 can comprise the same material as the tube element 11, but can also comprise another material tending to be stiffer, for example a shape memory alloy of a rubber which may tend to be stiffer than the flexible material which the tube element 11 comprises.


In this respect, the tube element 11 can be at least partly co-expanded on the unfolding by expansion of the ring-shaped reinforcement elements 12, 13, 14. This expansion movement can moreover be reinforced by an overpressure built up in the rotor as soon as the rotor is set into rotation.



FIG. 20 shows a side view of the rotor of FIGS. 18, 19 in a closed form.


A variant is shown in FIG. 21 in which the ring-shaped reinforcement elements 12′, 13′, 14′ are made in meandering form in the peripheral direction. These reinforcement elements can comprise a shape memory material and are particularly easily collapsible by the meander-like design. In addition to the rectangular meander-like structure shown, these reinforcement elements can also have a saw-tooth structure or a wavy-line structure.


Such reinforcement elements can be adhered to the tube element, for example.



FIG. 22 shows, in a three-dimensional representation, a tube element 15 which forms a support device for the vane wheel 1 and is reinforced by wire meshwork 16 on its outer side. The wire meshwork 16 can be adhered, in particular also only spot-wise, to the tube element 15, for example. The wire meshwork can, as usual with stents, be made so that a radial compression does not result in a change in the length of the wire meshwork. The wire meshwork can comprise a shape memory alloy as a metal wire or also as a grid structure, in particular in one piece; however, a manufacture from a plastic is also conceivable.



FIG. 23 shows an embodiment of a rotor having two impeller blades 1′, 1″ which are each helically fastened, for example adhesively bonded, at their outer sides in a tubular element 15, with the two helical shapes being matched to one another such that the two impeller blades 1′, 1″ being able to slide past one another radially with respect to the axis of rotation on compression of the support device 15 so that an extensive compression of the rotor is possible overall.


Both impeller blades 1′, 1″ end radially spaced apart from the axis of rotation, with a neck not being present. Only small forces act on the impeller blades at the margin of the rotor blades close to the axis of rotation due by the fluid to be conveyed since the relative movement is small in this region close to the axis. The space saved by omitting the neck can additionally be utilized for the transport of the fluid and the lack of the neck and the ability to push the impeller blades together makes an extensive compression of the rotor possible in the radial direction.



FIG. 24 shows the arrangement of FIG. 23 in a longitudinal section.


In a similar manner to the design of FIG. 22, the tubular sleeve which forms the support device for the impeller blades comprises an inner flexible sleeve and an outer wire meshwork.



FIGS. 25-29 in particular show the coupling of the support device to two shaft journals which are provided at both sides of the rotor and can serve both as a journalling and for the introduction of a torque.



FIG. 25 shows, in a longitudinal sectional representation, a tubular support device 17 which is connected via braces 18, 19, 20, 21 to two shaft journals 22, 23. Since the impeller blade 1 is supported by the support device 17, the total rotor is rotatably journalled and driven via the shaft journals 22, 23.



FIG. 26 shows a representation rotated by 90° about the axis of rotation 24 in a side view.



FIG. 27 shows a view from the same direction as FIG. 26 in a sectional representation.



FIGS. 28, 29 show respective three-dimensional representations of the subject of FIGS. 25, 26, 27, with FIG. 28 showing an outer view while FIG. 29 shows a partially broken away representation in which the impeller blade 1 becomes visible within the support device 17.



FIGS. 28, 39, unlike FIGS. 25, 26, 27, do not show fork-like braces 18, 19 as the connection between the support device 17 and the shaft journals 22, 23, but rather a triangular plate 25. It has the advantage with respect to two fork-like braces of being more stable, but the disadvantage that the fluid has to be displaced through the plate 25 on a rotational movement at high rotational frequency.


It becomes visible from FIG. 29 that a single helical impeller blade 1 is provided which has no neck.



FIG. 30 shows a support device in which the torque is transmitted from the tubular element 17 into the shaft journal 22 by means of a triangular plate 25. FIG. 31 shows the same constellation in a partly broken away representation.


In contrast to this, FIG. 32 shows the connection of the shaft journal 22 directly to a prolongation 26 of the impeller blade 1.



FIG. 33 shows the same constellation as FIG. 32 in a longitudinal section. FIGS. 32 and 33 make clear that the torque is introduced directly into the impeller blade 1 there and that the support device 17 only serves the stabilization of the impeller blade/impeller blades radially in the outer region or the expansion of the impeller blade and the subsequent shape stabilization. The prolongation of the helical structure 26 up to the shaft journal 22 moreover has the advantage that this also causes less resistance in the surrounding fluid on rotation since it represents a prolongation of the helical structure of the impeller blade.


It was made clear by the above-described examples that a high stabilization of the impeller blades is achieved with a small effort with the means of the invention by the support of one or several impeller blades radially in their outer region. The connection of impeller blades to a neck is thereby either not particularly taken up or it becomes unnecessary in total, which can also result in the omission of the neck. The support device can moreover co-expand the rotor blade/rotor blades on the expansion of the rotor so that they can he manufactured from commercial, flexible materials without any particularly high mechanical demands.

Claims
  • 1. A fluid pump comprising: a pump housing,a rotor positioned within the pump housing, the rotor having an axis of rotation;an impeller blade that extends radially in a direction from about the axis of rotation to an outer radial edge furthermost from the axis of rotation, has a compressed state and expanded state, and has a longitudinal length that extends within the pump housing, wherein the outer radial edge extends axially along the length of the blade, wherein the impeller blade is rotatable about the axis of rotation within the pump housing when in operation, and the rotor is configured to convey a fluid during operation; anda support coupled to the outer radial edge of the impeller blade, wherein the support is coupled to the outer radial edge over a coupling length less than a total length of the outer radial edge, wherein the support is configured to pull the impeller blade radially outwardly.
  • 2. The fluid pump of claim 1, wherein the support at least partly surrounds the at least one impeller blade.
  • 3. The fluid pump of claim 1, wherein the rotor further comprises a hub, and wherein the impeller blade extends radially from the hub.
  • 4. The fluid pump of claim 1, wherein the coupling length comprises a plurality of coupling lengths along the outer radial edge, wherein a sum of the plurality of coupling lengths is less than the total length of the outer radial edge.
  • 5. The fluid pump of claim 1, wherein the support comprises a shape memory alloy.
  • 6. The fluid pump of claim 1, wherein the support comprises an elastic material.
  • 7. The fluid pump of claim 1, wherein the support is changeable between a first state in which the support is radially compressed associated with the compressed state of the rotor and a second state in which the support is radially expanded associated with the expanded state of the rotor.
  • 8. The fluid pump of claim 1, wherein a majority of a surface area of the impeller blade conveying the fluid extends radially inward from the support.
  • 9. The fluid pump of claim 1, wherein the impeller blade is connected to the support and said support rotates with the impeller blade.
  • 10. The fluid pump of claim 1, wherein the support comprises a ring with a meandering form in the peripheral direction.
  • 11. The fluid pump of claim 1, wherein the support is configured as two or more mutually axially spaced apart rings.
  • 12. A fluid pump in accordance with claim 1, wherein the support is configured as a flexible tube at least partly surrounding the impeller blade.
  • 13. The fluid pump of claim 12, wherein the flexible tube is inflatable and stable in shape in pumping operation.
  • 14. The fluid pump of claim 1, wherein all components of the impeller blade are radially spaced apart from the axis of rotation.
  • 15. The fluid pump of claim 1, wherein the fluid pump has a constant diameter in the region of the impeller blade.
  • 16. The fluid pump of claim 1, wherein the support comprises a wire meshwork compressible in diameter.
  • 17. The fluid pump of claim 1, wherein the support is fixedly coupled to the impeller blade.
  • 18. The fluid pump of claim 1, wherein the support comprises a helical structure at least partly surrounding the impeller blade.
  • 19. The fluid pump of claim 18, wherein the impeller blade comprises a helical blade.
  • 20. The fluid pump of claim 19, wherein a first helical direction of the helical structure is opposite a second helical direction of the helical blade.
  • 21. The fluid pump of claim 19, wherein a first helical direction of the helical structure is in a same direction as a second helical direction of the helical blade.
Priority Claims (1)
Number Date Country Kind
09075441 Sep 2009 EP regional
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/807,615, filed Jul. 23, 2015 (now U.S. Pat. No. 10,208,763), which is a continuation of U.S. application Ser. No. 13/261,205, filed May 16, 2012 (now U.S. Pat. No. 9,089,634), which is a national stage filing under 35 U.S.C. § 371 of International Application No. PCT/EP2010/005867, filed Sep. 22, 2010, which claims the benefit of U.S. Provisional Application No. 61/244,592, filed Sep. 22, 2009, and European Application No. 09075441.7, filed Sep. 22, 2009. The disclosures of each of the foregoing applications are hereby incorporated by reference in their entirety. International Application No. PCT/EP2010/005867 was published under PCT Article 21(2) in English.

US Referenced Citations (183)
Number Name Date Kind
3510229 Smith et al. May 1970 A
3568659 Kamegis Mar 1971 A
3802551 Somers Apr 1974 A
3812812 Hurwitz May 1974 A
4014317 Bruno Mar 1977 A
4207028 Ridder Jun 1980 A
4559951 Dahl et al. Dec 1985 A
4563181 Wijayarathna et al. Jan 1986 A
4679558 Kensey et al. Jul 1987 A
4686982 Nash Aug 1987 A
4747821 Kensey et al. May 1988 A
4749376 Kensey et al. Jun 1988 A
4753221 Kensey et al. Jun 1988 A
4801243 Norton Jan 1989 A
4817613 Jaraczewski et al. Apr 1989 A
4919647 Nash Apr 1990 A
4957504 Chardack Sep 1990 A
4969865 Hwang Nov 1990 A
4995857 Arnold Feb 1991 A
5011469 Buckberg et al. Apr 1991 A
5040944 Cook Aug 1991 A
5042984 Kensey et al. Aug 1991 A
5052404 Hodgson Oct 1991 A
5061256 Wampler Oct 1991 A
5092844 Schwartz et al. Mar 1992 A
5097849 Kensey et al. Mar 1992 A
5108411 McKenzie Apr 1992 A
5112292 Hwang et al. May 1992 A
5113872 Jahrmarkt et al. May 1992 A
5117838 Palmer et al. Jun 1992 A
5118264 Smith Jun 1992 A
5145333 Smith Sep 1992 A
5163910 Schwartz et al. Nov 1992 A
5169378 Figuera Dec 1992 A
5183384 Trumbly Feb 1993 A
5191888 Palmer et al. Mar 1993 A
5192286 Phan et al. Mar 1993 A
5201679 Velte, Jr. et al. Apr 1993 A
5275580 Yamazaki Jan 1994 A
5300112 Barr Apr 1994 A
5373619 Fleischhacker et al. Dec 1994 A
5376114 Jarvik Dec 1994 A
5405383 Barr Apr 1995 A
5501574 Raible Mar 1996 A
5531789 Yamazaki et al. Jul 1996 A
5676162 Larson, Jr. et al. Oct 1997 A
5676651 Larson, Jr. et al. Oct 1997 A
5693091 Larson, Jr. et al. Dec 1997 A
5701911 Sasamine et al. Dec 1997 A
5702430 Larson, Jr. et al. Dec 1997 A
5722429 Larson, Jr. et al. Mar 1998 A
5722930 Larson, Jr. et al. Mar 1998 A
5749855 Reitan May 1998 A
5755784 Jarvik May 1998 A
5758666 Larson, Jr. et al. Jun 1998 A
5776190 Jarvik Jul 1998 A
5813405 Montano, Jr. et al. Sep 1998 A
5820571 Erades et al. Oct 1998 A
5843129 Larson, Jr. et al. Dec 1998 A
5851174 Jarvik et al. Dec 1998 A
5879375 Larson, Jr. et al. Mar 1999 A
5882329 Patterson et al. Mar 1999 A
5888241 Jarvik Mar 1999 A
5938672 Nash Aug 1999 A
6030397 Monetti et al. Feb 2000 A
6129704 Forman et al. Oct 2000 A
6152693 Olsen et al. Nov 2000 A
6168624 Sudai Jan 2001 B1
6254359 Aber Jul 2001 B1
6302910 Yamazaki et al. Oct 2001 B1
6308632 Shaffer Oct 2001 B1
6336939 Yamazaki et al. Jan 2002 B1
6346120 Yamazaki et al. Feb 2002 B1
6387125 Yamazaki et al. May 2002 B1
6503224 Forman et al. Jan 2003 B1
6506025 Gharib Jan 2003 B1
6508787 Erbel et al. Jan 2003 B2
6517315 Belady Feb 2003 B2
6527521 Noda Mar 2003 B2
6533716 Schmitz-Rode et al. Mar 2003 B1
6537030 Garrison Mar 2003 B1
6537315 Yamazaki et al. Mar 2003 B2
6592612 Samson et al. Jul 2003 B1
6652548 Evans et al. Nov 2003 B2
6719791 Nusser et al. Apr 2004 B1
6790171 Grundeman et al. Sep 2004 B1
6860713 Hoover Mar 2005 B2
6945977 Demarais et al. Sep 2005 B2
6981942 Khaw et al. Jan 2006 B2
7022100 Aboul-Hosn et al. Apr 2006 B1
7027875 Siess et al. Apr 2006 B2
7074018 Chang Jul 2006 B2
7118356 Ma et al. Oct 2006 B2
7179273 Palmer et al. Feb 2007 B1
7393181 McBride et al. Jul 2008 B2
7467929 Nusser et al. Dec 2008 B2
7731675 Aboul-Hosn et al. Jun 2010 B2
7798952 Tansley et al. Sep 2010 B2
7841976 McBride Nov 2010 B2
7927068 McBride et al. Apr 2011 B2
7934909 Nuesser et al. May 2011 B2
7942804 Khaw May 2011 B2
8012079 Delgado, III Sep 2011 B2
8177703 Smith et al. May 2012 B2
8366411 Baykut et al. Feb 2013 B2
8376707 McBride et al. Feb 2013 B2
8617239 Reitan Dec 2013 B2
8641594 LaRose et al. Feb 2014 B2
8734331 Evans May 2014 B2
8979493 Roehn Mar 2015 B2
9028216 Schumacher May 2015 B2
9089634 Schumacher Jul 2015 B2
10208763 Schumacher Feb 2019 B2
11291824 Schwammenthal Apr 2022 B2
20020010487 Evans Jan 2002 A1
20020123661 Verkerke et al. Sep 2002 A1
20030135086 Khaw et al. Jul 2003 A1
20030231959 Snider Dec 2003 A1
20040044266 Siess et al. Mar 2004 A1
20040046466 Siess et al. Mar 2004 A1
20040093074 Hildebrand et al. May 2004 A1
20040215222 krivoruchko Oct 2004 A1
20040215228 Simpson et al. Oct 2004 A1
20050017603 Ma et al. Jan 2005 A1
20050227277 Tang et al. Oct 2005 A1
20060008349 Khaw Jan 2006 A1
20060036127 Delgado Feb 2006 A1
20060062672 McBride et al. Mar 2006 A1
20060195004 Jarvik Aug 2006 A1
20060276880 Neuss Dec 2006 A1
20070112033 Trieselmann et al. May 2007 A1
20070156006 Smith Jul 2007 A1
20070276480 Tansley et al. Nov 2007 A1
20080103591 Siess May 2008 A1
20080132747 Shifflette Jun 2008 A1
20080262584 Bottomley et al. Oct 2008 A1
20080292478 Baykut et al. Nov 2008 A1
20080306327 Shifflette Dec 2008 A1
20090060743 McBride et al. Mar 2009 A1
20090093764 Pfeffer et al. Apr 2009 A1
20090093796 Pfeffer et al. Apr 2009 A1
20090112312 LaRose et al. Apr 2009 A1
20100041939 Siess Feb 2010 A1
20100172741 Hosoya Jul 2010 A1
20100268017 Siess Oct 2010 A1
20110071338 McBride et al. Mar 2011 A1
20110152999 Hastings Jun 2011 A1
20110236210 McBride et al. Sep 2011 A1
20110238172 Akdis Sep 2011 A1
20110275884 Scheckel Nov 2011 A1
20120029265 LaRose et al. Feb 2012 A1
20120039711 Roehn Feb 2012 A1
20120041254 Scheckel Feb 2012 A1
20120041255 Delgado, III Feb 2012 A1
20120046648 Scheckel Feb 2012 A1
20120059460 Reitan Mar 2012 A1
20120093628 Liebing Apr 2012 A1
20120101455 Liebing Apr 2012 A1
20120142994 Foellner Jun 2012 A1
20120184803 Simon et al. Jul 2012 A1
20120224970 Schumacher et al. Sep 2012 A1
20120226097 Smith et al. Sep 2012 A1
20120234411 Scheckel Sep 2012 A1
20120237353 Schumacher et al. Sep 2012 A1
20120237357 Schumacher Sep 2012 A1
20120245404 Smith et al. Sep 2012 A1
20120264523 Liebing Oct 2012 A1
20120265002 Roehn et al. Oct 2012 A1
20120294727 Roehn Nov 2012 A1
20120301318 Er Nov 2012 A1
20120308406 Schumacher Dec 2012 A1
20130019968 Liebing Jan 2013 A1
20130041202 Toellner Feb 2013 A1
20130060077 Liebing Mar 2013 A1
20130066139 Wiessler et al. Mar 2013 A1
20130085318 Toellner Apr 2013 A1
20130129503 McBride et al. May 2013 A1
20130177409 Schumacher et al. Jul 2013 A1
20130177432 Toellner et al. Jul 2013 A1
20130204362 Toellner et al. Aug 2013 A1
20130237744 Pfeffer et al. Sep 2013 A1
20140039465 Schulz et al. Feb 2014 A1
20140148638 LaRose et al. May 2014 A1
Foreign Referenced Citations (9)
Number Date Country
2701809 Apr 2009 CA
2701810 Apr 2009 CA
114432588 May 2022 CN
1738783 Jan 2007 EP
2047872 Apr 2009 EP
2239675 Jul 1991 GB
9853864 Dec 1998 WO
2003103745 Dec 2003 WO
2007112033 Oct 2007 WO
Non-Patent Literature Citations (1)
Entry
Office Action received in corresponding German Patent Application No. 11 2010 003745.0 dated May 6, 2022, (14 pp.).
Related Publications (1)
Number Date Country
20190211836 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
61244592 Sep 2009 US
Continuations (2)
Number Date Country
Parent 14807615 Jul 2015 US
Child 16243855 US
Parent 13261205 US
Child 14807615 US