The illustrative embodiments of the invention relate generally to a pump for fluid and, more specifically, to a pump having a substantially disc-shaped cavity with substantially circular end walls and a side wall and a valve for controlling the flow of fluid through the pump.
The generation of high amplitude pressure oscillations in closed cavities has received significant attention in the field of pump type compressors. Recent developments have allowed the generation of pressure waves with higher amplitudes than previously thought possible.
It is known to use acoustic resonance to achieve fluid pumping from defined inlets and outlets. This can be achieved using a cylindrical cavity with an actuator at one end, which drives an acoustic standing wave. In such a cylindrical cavity, the acoustic pressure wave has limited amplitude. Varying cross-section cavities, such as cone, horn-cone and bulb have been used to achieve high amplitude pressure oscillations thereby significantly increasing the pumping effect. In such high amplitude waves the non-linear mechanisms of energy dissipation have been suppressed. However, high amplitude acoustic resonance has not been employed within disc-shaped cavities in which radial pressure oscillations are excited until recently. Patent applications WO2006/111775, WO2009/112866, PCT/GB2009/050613, and PCT/GB2009/050615 disclose pumps having substantially disc shaped cavities with high aspect ratios (i.e. the ratio of the radius of the cavity to the height of the cavity).
The pump disclosed in WO2009/112866 has a substantially cylindrical cavity comprising a side wall closed at each end by an end wall. The pump also comprises an actuator that drives one or both of the end walls to oscillate in a direction substantially perpendicular to the surface of the plane of the end walls. The spatial profile of the motion of the driven end wall is described in WO2009/112866 as being matched to the spatial profile of the fluid pressure oscillations within the cavity, a state described therein as mode-shape matching. When the pump is mode-shape matched, work done by the actuator on the fluid in the cavity adds constructively across the driven end wall surface, thereby enhancing the amplitude of the pressure oscillation in the cavity and delivering improved pump efficiency. In a pump which is not mode-shape matched, there may be areas of the end wall wherein the work done by the end wall on the fluid reduces rather than enhances the amplitude of the fluid pressure oscillation in the fluid within the cavity. Thus, the useful work done by the actuator on the fluid is reduced and the pump becomes less efficient. The efficiency of a mode-shape matched pump may be dependent upon the interface between the driven end wall and the side wall. It is desirable to maintain the efficiency of such a pump by structuring this interface so that it does not significantly decrease or dampen the motion of the driven end wall thereby mitigating any reduction in the amplitude of the fluid pressure oscillations within the cavity.
Mode-shape matching the spatial profile of the displacement of the driven end wall to the spatial profile of the pressure oscillations of the fluid is preferable for efficient operation of the fluidic pump disclosed in WO2006/111775. FIGS. 3A and 3B of WO2006/111775 show the spatial profiles, referred to herein as modes, of the driven end wall for preferred embodiments of such a pump. FIG. 3A of WO2006/111775 shows an axisymmetric mode. Herein, axisymmetric is taken to mean having infinite order rotational symmetry, or equivalently being cylindrically symmetric, about the axis normal to and passing through the centre of the end walls of the cavity. For objects which do not have an obvious geometric centre, the term centre herein refers to the centre of mass of the object. Any object, group of objects or mode of oscillation which does not have this property is referred to herein as axially asymmetric. The axisymmetric mode shown in FIG. 3A of WO2006/111775 has maximum amplitude at the centre decreasing continuously to a minimum at the edge.
FIG. 3B of WO2006/111775 shows an axisymmetric mode where the displacement of the end wall is described by a Bessel function as further described therein. In this case, as the centre of the driven end wall 12 moves away from the opposite end wall 13, the outer portion of the driven end wall 12 is caused to move towards the opposite end wall 13. The modes of oscillation of the end walls in both of the above cases are matched to natural modes of acoustic oscillation of the cavity. Both of these modes show an antinode in the pressure oscillation localised at a single point, herein described as a point-antinode, at the centre of the cavity. The large pressure amplitude at this position makes it an ideal position for an aperture into the cavity with a valve, herein referred to as a valved aperture, operating as an inlet or outlet.
It is desirable to increase the pneumatic output of such a pump by increasing its pressure or flow capability. This would increase the range of applications that the pump is suitable for. The frequency of the fundamental-mode pressure oscillation of the cavity decreases with increasing area of the cavity end walls so the pump's performance cannot be improved simply by increasing its size without compromising the pump's valuable property of silence in the frequency range audible to humans.
One solution is to increase the diameter of the central valved aperture 16 of a pump of the type shown in FIG. 1 of WO2006/111755 WO2006/111775 while maintaining the cavity 11 size. This can enable a reduction in the fluidic flow resistance of the valve, delivering improved performance. However, the magnitude of the pressure oscillation can decrease rapidly with distance from the centre of the cavity, reducing the effectiveness of this solution.
A second solution is to mount two central valves 316 and 16, one in each end wall 12 and 13, as shown in FIG. 9A of GB1001740.8 WO2011/095795. Both valves benefit from being mounted at the central point-antinode of the pressure oscillation and improved pump performance may therefore be obtained. However, this solution complicates the manufacture of such a pump. At least one of the end walls is required to be coupled to an actuator to generate a pressure oscillation in the fluid in the cavity. Attempting to mount a valve in an end wall that is coupled to an actuator may complicate the design of the actuator and the attachment of the valve to the end wall may incur significant additional manufacturing costs.
A third solution, applicable to the pump design described above wherein the pressure oscillation has the form of an axisymmetric Bessel function, is to mount a second valve at the outer edge of the cavity (at which in operation there exists a circular pressure antinode). In practise this design has several disadvantages. Firstly, due to the radial nature of the pressure oscillation this circular antinode has a lower pressure amplitude than the central point-antinode and therefore the rectified pressure delivered by the valve is lower. Secondly, a different design of valve may be required in order to best match the shape of the pressure antinode at the edge of the cavity. A second valve design could increase manufacturing costs. Finally, a more complex manifold may be required to channel the flow of fluid into or out of the pump.
In the present invention the pump cavity is designed and driven such that a plurality of high-amplitude pressure point-antinodes is generated within the cavity, providing multiple favourable positions for valved apertures. In this manner the limitations of the prior art are overcome.
To provide increased flow relative to the pumps described in the prior art, two or more of these valved apertures may be configured to act in parallel (i.e. all inlets or all outlets) with unvalved apertures located at pressure nodes acting as an outlets or inlets respectively. To provide increased pressure difference the valved apertures may be configured to act in series, with both inlets and outlets being valved.
It will be evident to one skilled in the art that the presence of a plurality of high-amplitude pressure point-antinodes facilitates improvement of the pneumatic performance of the pump, as desired.
Therefore, according to the present invention, there is provided a fluid pump comprising:
The actuator may include axially asymmetric features and also may include a piezoelectric layer.
The axial asymmetry of the actuator may be defined by sections of the piezoelectric layer having different polarity.
The actuator preferably includes at least two electrodes. The axial asymmetry may be defined by separate electrodes and/or the absence of an electrode. At least one of the electrodes may be non-coaxial relative to the actuator. By “non coaxial”, we mean that the longitudinal axis of the electrode(s) is different to that of the actuator itself.
Additionally or alternatively, a plurality of electrodes may be provided in a regular pattern which is non-coaxial relative to the actuator.
The actuator may include a piezoelectric layer which is non-coaxial relative to the cavity.
The pump may further include a voltage generator for generating one or more drive signals for supply to the actuator. The drive signal(s) generated by the electrical drive circuit may cause generation of non-axisymmetric motion of the actuator.
The actuator may contain at least one elliptical element, which may be a piezoelectric element or may be an electrode or both.
The actuator may cause a pressure oscillation with a plurality of nodal diameters to be generated.
The end wall motion is preferably mode-shape matched to the pressure oscillations in the cavity.
The frequency of the oscillatory motion is preferably within 20% of a resonant frequency of the substantially radial pressure oscillations in the cavity.
In use, the frequency of the oscillatory motion is preferably equal to a resonant frequency of the substantially radial pressure oscillations in the cavity.
The cavity of the pump is preferably substantially circular or elliptical.
The pump may further contain at least two apertures including at least one inlet aperture and at least one outlet aperture. In use, the pressure oscillations of the fluid in the cavity preferably cause fluid to flow from one or more of the inlet apertures to one or more of the outlet apertures.
The frequency of pressure oscillations in the cavity is preferably greater than 500 Hz.
The frequency of radial pressure oscillations in the cavity is more preferably greater than 19,000 Hz.
The ratio of the radius of the cavity (a) to the height of the side wall (h) is preferably greater than 1.7.
The radius of the cavity (a) and the height of the side wall (h) preferably satisfy the relationship
metres.
A pair of pumps may be provided, wherein the two pump cavities are separated by a common end wall. The common cavity end wall may be formed by an actuator.
Other objects, features, and advantages of the illustrative embodiments are described herein and will become apparent with reference to the drawings and detailed description that follow.
In the following detailed description of several illustrative embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
Note that the term ‘radial mode’ is used herein to describe the spatial profile of a pressure oscillation in the plane of the end walls of the cavity having little or no variation perpendicular to the end walls. This phrase is intended to apply to modes in both circular and near-circular cavities, including elliptical cavities. As the deviation from a circular end wall becomes more pronounced, so will the mode shape deviate from what is shown in
Radial modes of a cavity of circular cross section are characterised by the number of nodal diameters, j, and nodal circles, k, within each mode shape. A nodal diameter is a line that bisects the cavity along which there is little or no change in the pressure of the fluid in the cavity. A nodal circle is a circular line at constant cavity radius along which there is little or no change in the pressure of the fluid in the cavity.
Note that the term “nodal diameter” as used herein is intended to include not only a true diameter, i.e. passing through the centre of a cavity of circular cross section, but also similar paths, straight or curved, that start at one point on the perimeter of the cavity and finish at a second point along which there is no change in the pressure. The term “nodal circle” as used herein is similarly intended to include other substantially circular paths, such as ellipses.
Modes with one or more nodal diameters have multiple point-antinodes which are favourable positions for the location of valved apertures. For example,
This cross section shows two point-antinodes at −0.35a and +0.35a respectively, where a is the cavity radius.
For a cylindrical cavity the orientation with respect to the cavity of modes where j>1 is not fixed by the geometry of the cavity. This would make disposal of valves at point-antinodes problematic as the locations of these antinodes could not be predicted. The present invention solves this problem by designing the pump in such a way as to break the axial symmetry of these modes, thereby fixing the positions of the point-antinodes. This allows valved apertures to be disposed in predetermined locations at which pressure antinodes will be formed in operation, thereby enabling the improvements in pneumatic performance discussed above. Furthermore, because the size and shape of each point-antinode may be similar, the design of all of the valves may be the same, reducing costs in manufacture.
The resonant frequency of a radial mode of a pressure oscillation in a given cavity increases with the number of nodal diameters of that mode, and decreases with increasing cavity radius. These two factors may be balanced such that a larger cavity can be used while maintaining the frequency of operation of the pump above that which is audible to humans. This is advantageous as larger cavities can enable greater pneumatic performance without significantly increasing the cost of manufacture. Increasing pneumatic performance while maintaining cost increases the range of commercial applications viable with this pump.
Cavity Geometry
The present invention, as with the pump disclosed in WO2006/111775, may be described as possessing a substantially disk shaped cavity. In operation the pump generates radial acoustic pressure oscillations. In particular, when the cavity radius a is greater than 1.7 times the height h of the cavity, i.e.
the radial mode j=1, k=1 has a lower frequency than the any longitudinal modes of the cavity. For cavities with non-circular end walls, for example elliptical cavities, a may be approximated by an equivalent radius:
where A is the area of the end wall.
To avoid inefficient operation resultant from high viscous losses in the fluid in the cavity the height of the cavity should be at least twice the thickness of the viscous boundary layer in the fluid:
where μ is the viscosity of the fluid, ρ is the density of the fluid, c is the speed of sound in the fluid and k1 is the wave number of the Bessel function j=1, k=1. Rearranging the above expression and substituting in appropriate values for density and viscosity,
should be greater than 3×10−10 m when pumping a liquid and greater than 8×10−8 m in the case of pumping a gas.
Axially Asymmetric Actuators
One method of breaking the axial symmetry of the pressure oscillations and thereby fixing the positions of the point-antinodes is to drive the oscillations in the cavity with an actuator that generates axially asymmetric motion. If the mode shape of an axially asymmetric displacement oscillation of the actuator substantially matches the mode shape of an axially asymmetric pressure oscillation in the cavity then this pressure oscillation will be excited with its orientation in the plane of the cavity fixed by the asymmetry of the actuator. By aligning the orientation of the actuator to the cavity during manufacture, the positions of the pressure point-antinodes, and thus the preferable locations of the valved apertures, are also fixed.
An actuator capable of generating axially asymmetric motion must itself have some feature of axial asymmetry. That is, there is some variation in the structure of the actuator along at least one path described by a circle that lies in the plane of the actuator and is centred on the axis normal to and passing though the centre of the end walls of the cavity. For clarity, such axial asymmetry may be embodied in the material(s) that make up the actuator (including any isolator as defined in PCT/GB 09/50613), any active elements such as piezoelectric materials (including state of polarisation), or any conductive materials deposited on the actuator as electrodes.
In a preferred embodiment, an actuator whose active element is a disc of piezoelectric material drives the oscillatory motion of an end wall. Because the manufacture of an axially asymmetric disc of piezoelectric material may be economically inefficient, axial asymmetry in the driving oscillation is introduced by the application of voltage to the piezoelectric disc via axially asymmetric electrodes. These electrodes are patterned to drive axially asymmetric oscillatory motion in the end wall and thereby generate an axially asymmetric pressure oscillation in the cavity. This approach may define the location of the point-antinodes without substantially increasing the cost of manufacture of the actuator. Preferred embodiments of pumps with axially asymmetric patterned electrodes are shown in
In a second preferred embodiment, also including an actuator whose active element is a disc of piezoelectric material, axial asymmetry is introduced by the pattern of polarisation of the piezoelectric disc. The polarisation of a piezoelectric material is a physical property that governs the material's response to an applied electric field. A material polarised in one direction may expand in that direction under an applied electric field; an oppositely polarised material would contract under the same conditions. Inducing axially asymmetric polarisation in an actuator can enable axially asymmetric displacement of the actuator in operation. A preferred embodiment of a pump having an axially asymmetric polarised piezoelectric disc is shown in
In a third preferred embodiment the axial asymmetry of the displacement oscillation of the actuator is generated by the axially asymmetric placement of one or more discrete piezoelectric elements. In a more preferred embodiment these piezoelectric elements are positioned such that there is substantial mode-shape matching between the displacement oscillation generated in the actuator and some part of an axially asymmetric mode of the pressure oscillation generated in the fluid in the cavity. Preferred embodiments of pumps with actuators with axially asymmetric placement of piezoelectric elements are shown in
Axially Asymmetric Cavities
A further method of defining the antinodal positions is by selecting a cavity shape that does not show axial symmetry. A preferable arrangement would be to construct the cavity with elliptical end walls. Such a cavity shows radial pressure oscillation modes broadly similar to those observed in a cavity with circular end walls, with increased distortion to the mode shapes occurring at higher values of eccentricity. The mode j=1, k=1 for cavities with end walls of eccentricity 0.4 and 0.6 is shown in
Due to the axial asymmetry in such a cavity, the angular orientations of pressure modes are fixed relative to the cavity. For example, for the j=1, k=1 modes shown in
The difference in resonant frequency of the parallel and perpendicular orientations of the mode j=1, k=1 with eccentricity are shown in
In one embodiment of the present invention, the pressure oscillations are generated using an elliptical actuator. This actuator could be an elliptical piezoelectric device. Such a device could generate a displacement oscillation that would produce a mode shape that matches the desired mode shape of the cavity.
In another embodiment of the present invention pressure oscillations are generated with a circular or semi circular actuator coupled to the elliptical cavity by a compliant membrane of the type disclosed in PCT/GB 09/50613. In a preferred embodiment this actuator would be a circular or semicircular piezoelectric device. This has the commercial benefit that these devices are inexpensive compared to more unusual geometries such as ellipses. This would have the disadvantage of imperfect mode-shape matching between the circular actuator and the elliptical cavity.
An advantage of using an elliptical cavity over a circular cavity is an increase in the separation of the point-antinodes. This may simplify the manufacture and assembly of the valves and pump.
The actuator comprises a piezoelectric disc 20 attached to a disc 17. When an appropriate electrical drive is applied, the actuator is caused to vibrate in a direction substantially perpendicular to the plane of the cavity. Electrical drive is applied by two separate conductive electrodes 21 and 22 and electrical connection to the disc 17 which is electrically conductive in this embodiment. This electrode arrangement generates axially asymmetric displacement oscillations in the actuator, which in turn generate axially asymmetric pressure oscillations within the fluid in the cavity.
This oscillation has two point-antinodes at r≈˜0.35a and r≈0.35a. The two valved apertures 16 are disposed at these positions.
This embodiment of the present invention therefore enables good mode-shape matching to be obtained between actuator oscillation and an axially asymmetric pressure oscillation in the cavity. The resulting pump may deliver greater pneumatic performance without significantly increased cost.
The piezoelectric disc is divided into two regions of opposite polarisation 29 and 31.
Because of the axially asymmetric polarisation of the piezoelectric disc, the mode shape of the displacement of the actuator is also axially asymmetric. For the polarisation configuration shown in
It is worth noting that generating axially asymmetric actuator motion by patterning the polarisation of the piezoelectric disc allows the use of an axially symmetric electrode for the pump. The polarisation could be applied during manufacture of the piezoelectric disc using a temporary axially asymmetric electrode. This has advantages for fabrication of the pump as it simplifies the electrical connections to the actuator.
This embodiment has the advantage of reducing the amount of piezoelectric material required to fabricate a pump operating on the principle of axially asymmetric pressure oscillation thus reducing the cost of said pump. This may be particularly suited to a pump where high pressure or flow was required, but efficiency was of secondary importance.
Number | Date | Country | Kind |
---|---|---|---|
1101870 | Feb 2011 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2012/050227 | 2/3/2012 | WO | 00 | 11/6/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/104648 | 8/9/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3745384 | Blanchard | Jul 1973 | A |
5961298 | Bar-Cohen et al. | Oct 1999 | A |
6079214 | Bishop | Jun 2000 | A |
6227824 | Stehr | May 2001 | B1 |
6672847 | Dooley | Jan 2004 | B2 |
7424827 | Yamada | Sep 2008 | B2 |
8123502 | Blakey et al. | Feb 2012 | B2 |
20030124006 | Dooley | Jul 2003 | A1 |
20090087323 | Blakey et al. | Apr 2009 | A1 |
20090104056 | Miyazawa | Apr 2009 | A1 |
20100310398 | Janse Van Rensburg | Dec 2010 | A1 |
20110280755 | Wackerle et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
1529963 | May 2005 | EP |
1952992 | Aug 2008 | EP |
2006111755 | Oct 2006 | WO |
2009112866 | Sep 2009 | WO |
WO 2009112866 | Sep 2009 | WO |
2009122340 | Oct 2009 | WO |
2010139916 | Dec 2010 | WO |
2010139918 | Dec 2010 | WO |
2011095795 | Aug 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20140050604 A1 | Feb 2014 | US |