Electronic devices such as imaging devices, for example, may perform operations on or with media, sometimes referred to as print media. Such operations may involve the use of a print fluid. In some situations, such print fluid may be pumped from one location within the electronic device to another location with the use of a fluid pump.
Electronic devices such as imaging devices, for example, may perform operations on or with media, sometimes referred to as print media, or a medium thereof. Such operations may be referred to as print operations, and may include printing, copying, scanning, plotting, or other types of operations using media. Such print operations may sometimes involve the use of a print substance or print fluid. In some situations, such print fluid may be disposed in one portion of the electronic device, while the print fluid may be used in print operations in another portion of the electronic device. Thus, the print fluid may be transported using plumbing, conduits, or other structure from one location within the electronic device to another location. In some situations, it may be beneficial to use a fluid pump to help transport the print fluid through such plumbing or other structure within the electronic device.
In some situations, a standard, “off-the-shelf,” or commonly-used fluid pump, or a fluid pump having its own drive components, e.g., a motor and/or gear train, may be used in an electronic device to transport print fluid. Such types of fluid pumps may be relatively large, heavy, expensive, and/or occupy a larger-than-desired footprint or volume within the electronic device. Interior volume of such electronic devices is often at a premium, and minimizing size and/or weight of such electronic devices is often a priority or goal. Thus, such a standard or common type of fluid pump is often not desired for use in such an electronic device.
In some situations, it may be desirable to utilize a fluid pump within an electronic device wherein the fluid pump is relatively small, lightweight, and/or cheap. Further, it may be desirable that, instead of the fluid pump having its own dedicated drive components, the fluid pump be driven by existing motive components or motion of components already in use within the electronic device.
Implementations of the present disclosure provide a fluid pump for driving or transporting print fluid within an electronic device, for example, an imaging device. Examples of fluid pumps disclosed herein may be capable of being driven, actuated, or otherwise operated by existing components within the electronic device. Thus, the size, weight, and/or additional cost of example fluid pumps described herein, as well as the footprint or volume such example fluid pumps may occupy within an electronic device, may be minimized, thereby lowering the overall size, weight, and cost of the electronic device itself, and thus improving user experience.
Referring now to
Referring additionally to
The collar 114 may be a component with sufficient structure and/or strength to rigidly engage the diaphragm 110 with the cam 108. In some implementations, the collar 114 may be a plate or wall which may be movable in a direction towards the fluid cavity 112 from the cam 108. In further implementations, the collar 114 may be disposed in between the cam 108, or the cam surface 108a thereof, and the diaphragm 110, or the base portion 110b thereof. In yet further implementations, the collar 114 may mate with, attach to, or otherwise be engaged with the base portion 110b such that the collar 114 may press on the base portion 110b upon being moved in a direction towards the fluid cavity 112. Such pressing on the base portion 110b may cause the base portion 110b to, in turn, press on and elastically deform the thin-walled portion 110a so to decrease the volume of the fluid cavity 112. In further implementations, the cam surface 108a may press against a bottom surface of the collar 114, and the base portion 110b may be engaged with a top surface of the collar 114, opposite from the bottom surface.
The fluid pump 100 may further include a fluid inlet 116 having a one-way inlet valve 118 to only allow fluid into the fluid cavity 112, and a fluid outlet 120 having a one-way outlet valve 122 to only allow fluid out of the fluid cavity 112. The fluid inlet 116 and the fluid outlet 120 may both be conduits or plumbing which may be fluidly engaged with the fluid cavity 112. Further, the inlet valve 118 and the outlet valve 122 may be fluid valves that may be structured and oriented within the fluid inlet 116 and the fluid outlet 120, respectively, so as to only allow fluid such as print fluid to pass through the respective valve in one direction. In further implementations, the inlet valve 118 and/or the outlet valve 122 may be check valves, umbrella valves, or other types of one-way valves. As such, fluid may come in to the fluid inlet 116 and pass through the inlet valve 118 to enter the fluid cavity 112. Similarly, fluid may exit the fluid cavity 112 and pass through the outlet valve 122 to exit the fluid pump 100 through the fluid outlet 120. In some implementations, the one-way outlet valve 122 may allow fluid out of the fluid cavity 112 upon the volume of the fluid cavity 112 being decreased, e.g., by the diaphragm 110 contracting or being pushed or squeezed. Similarly, the one-way inlet valve 118 may allow fluid to pass through the inlet valve 118 and into the fluid cavity 112 upon the volume of the fluid cavity 112 being increased, e.g., by the diaphragm 110 expanding back to its original shape.
Referring additionally to
Referring now to
Stated differently, the fluid pump 100 may evacuate the fluid cavity 112 by the cam 108 rotating in a first direction to push the collar 114 to squeeze the diaphragm 110 to push fluid contained within the fluid cavity 112 through the outlet valve 122 and out of the fluid outlet 120. Further, the fluid pump 100 may refill the fluid cavity 112 or draw fluid into the fluid cavity 112 by the cam 108 rotating back in a second direction to allow the diaphragm 110 to expand and return to its original shape, moving the collar 114 back down concurrently. The expansion of the diaphragm 110, and thus the fluid cavity 112, decreases the pressure within the fluid cavity 112 so as to allow the inlet valve 118 to open, thereby drawing fluid in the fluid inlet 116 through the inlet valve 118 and into the fluid cavity 112. After the fluid cavity 112 has been filled with fluid once again, the whole process may repeat, thus pumping fluid throughout an electronic device, or a portion thereof. In some implementations, a reciprocating force exerted against the shifter 102 may cause a reciprocating pumping action of the fluid pump 100.
Referring now to
Each pump channel 200 of the plurality of pump channels 200 may include a fluid inlet 216 and a fluid outlet 220 (illustrated as fluid inlets 216a . . . 216n, and fluid outlets 220a . . . 220n). Each fluid inlet 216 may have a one-way inlet valve and each fluid outlet 220 may have a one-way outlet valve, as described above. Each pump channel 200 may also include a diaphragm having or at least partially defining a fluid cavity in fluid communication with the respective fluid inlet 216 and fluid outlet 220.
The multi-channel fluid pump 201 may include a shifter 202 having a first end 204 extending from the pump housing 224 and a second end 206, about which the shifter 202 may be rotatable or pivotable. In some implementations, the first end 204 may receive a linear force 213 to cause the shifter to rotate about the second end 206. In other implementations, the shifter 202 may receive a linear force and/or another type of force, such as a torque, and may receive such forces at a location other than the first end 204, as long as the location is suitable to transfer the force into a rotational movement of the shifter 202 about the second end 206. In some implementations, the shifter 202, or the first end 204 thereof, may receive the linear force externally from the pump housing 224. Thus, the shifter 202 may be moved or actuated by another component or motive force within an electronic device within which the multi-channel fluid pump 201 may be disposed or employed.
The multi-channel fluid pump 201 may further include a cam 208 fixed to a cam shaft 226 and having a cam surface 208a. The cam shaft 226 may extend along the pump housing 224 and may be rotatably engaged with the shifter 202 such that a rotation of the shifter 202 about the second end 206 may be transferred into a rotation of the cam shaft 226 about a cam shaft axis 205. The cam shaft axis 205 may be substantially parallel to an axis of rotation of the second end, in some implementations. The multi-channel fluid pump 201 may also have a collar (not shown) that may be movable with the cam surface 208a of the cam 208. In further implementations, the collar may be disposed so as to actuate each of the diaphragms of the pump channels 200 upon the collar moving with the cam surface 208a of the cam 208. In other words, the collar may move with the cam surface 208a so as to actuate each pump channel 200 by compressing each diaphragm of the plurality of pump channels 200 so as to decrease the volume of each fluid cavity. Thus, in such an implementation, the plurality of pump channels 200 may be arranged in an array that is substantially parallel to the cam shaft 226 so that the cam 208 may press against the collar in a sufficient manner so as to actuate each of the pump channels 200. In other implementations, each pump channel 200 of the plurality of pump channels 200 may have its own discrete collar that is individually pushed on by a separate, discrete cam disposed along the cam shaft 224. Stated differently, upon receiving an external force 213, the shifter 202 may turn the cam 208 so as to push on the collar and actuate the plurality of pump channels 200 so as to cause each pump channel 200 to pump fluid out of the respective fluid outlet 220.
In some implementations, the cam shaft axis 205 may not be coaxial with an axis of rotation of the second end 206 of the shifter 202. In other words, the shifter 202 may be indirectly engaged with the cam shaft 226 through intermediary components. In some implementations, the second end 206 of the shifter 202 may have a shifter gear 228 to operably engage with a cam gear 230 disposed about the cam shaft axis 205. The shifter gear 228 may operably mesh and engage with the cam gear 230 such that a rotation of the shifter gear 228 is transferred to an opposite but corresponding rotation of the cam gear 230. In other words, the shifter 202 may receive a force 213, which may be a linear force, which may cause the shifter 202 to pivot or rotate about the second end along direction 207. Such a rotational movement may be transferred by the shifter gear 228 to the cam gear 230 to cause the cam shaft 226, and thus the cam 208 to rotate along corresponding and opposite direction 203a. Further, while illustrated as gears with complementary and meshing teeth, the shifter gear 228 and/or the cam gear 230 may be other types of transmission components suitable for transmitting rotational motion and torque. For example, in other implementations, the shifter gear 228 and the cam gear 230 may be friction wheels.
Referring now to
Referring additionally to
In some implementations, the multi-channel fluid pump 301, or the pump channels 300 thereof, may include one or multiple guide slots 338 and guide pins 336. Such guide slots 338 and guide pins 336 may assist in the smooth functioning and actuation of each pump channel 300. Specifically, in some implementations, the guide slots 338 and the guide pins 336 may help the collar 314 move through its range of motion smoothly and consistently.
Referring now to
The electronic device 403 may be an imaging device in some implementations, for example, a printer, scanner, copier, or another type of imaging device. In other implementations, the electronic device 403 may be another type of electronic device which may benefit from having a fluid pump. In some implementations, the electronic device 403 may perform operations on or with media, sometimes referred to as print media. The electronic device 403 may perform such operations, which may sometimes be print operations, using a substance such as a fluid, which may be a liquid in some situations. In further implementations, the fluid may be a print fluid, and may be a substance such as ink. In further implementations, the fluid may be disposed in one portion of the electronic device 403 and may be transported to another portion of the electronic device 403, for example to be used during operations or print operations. In yet further implementations, the fluid may be ink and may be disposed or stored remotely from a printhead or other device which may utilize the ink. Thus, the example fluid pump 400 may assist in transporting such fluid throughout or through a portion of the electronic device 403.
The electronic device 403 may also have a motive component 440 which may move within the electronic device 403. In some implementations, the motive component 440 may be a carriage and may have or receive a printhead, print cartridge, or other component for use in the electronic device 403. In some implementations, the motive component 440 may move in a manner similar to example direction 415. In implementations wherein the motive component 440 is a carriage, the carriage may move along a carriage path within the electronic device 403, which may be represented by example direction 415. Further, the motive component 440 may be disposed near a shifter 402 of the fluid pump 400, or a first end thereof, such that the motive component may engage with the shifter 402 throughout at least a portion of the movement of the motive component. The motive component 440 may engage with the shifter 402 so as to cause the shifter 402 to move. In other words, the shifter 402 may receive a linear force, external to the fluid pump 400, to cause the shifter 402 to rotate about a second end and actuate the fluid pump 400. In implementations wherein the motive component 440 is a carriage, the movement of the carriage along the carriage path may transfer the linear force to the first end of the shifter 402. Thus, the existing movement of the motive component 440 within the electronic device 403 may actuate the fluid pump 400 and cause the fluid pump 400 to pump or transport fluid through the electronic device 403, without the need for a supplemental or dedicated pump motor. In further implementations, the motive component 440 may repeatedly engage with the shifter 402 so as to cause the shifter 402 to reciprocate, thereby causing the fluid pump 400 to pump fluid repeatedly.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/046538 | 8/11/2017 | WO | 00 |