The present invention relates generally to air or fluid photocatalytic/thermocatalytic purifiers and, more particularly, to a purification system wherein the substrate to which the catalytic coating is applied is so structured and sized as to result in enhanced performance.
Indoor air can include trace amounts of contaminants, including carbon monoxide, ozone and volatile organic compounds such as formaldehyde, toluene, propanal, butene, and acetaldehyde. Adsorbent air filters, such as activated carbon, have been employed to remove these contaminants from the air. As air flows through the filter, the filter blocks the passage of the contaminants, allowing contaminant free air to flow from the filter. A drawback to employing filters is that they simply block the passage of contaminants and do not destroy them. Additionally, the filter is not effective in blocking ozone and carbon monoxide.
Titanium dioxide has been employed as a photocatalyst in an air purifier to destroy contaminants. When the titanium dioxide is illuminated with ultraviolet light, photons are absorbed by the titanium dioxide, promoting an electron from the valence band to the conduction band, thus producing a hole in the valence band and adding an electron in the conduction band. The promoted electron reacts with oxygen, and the hole remaining in the valence band reacts with water, forming reactive hydroxyl radicals. When a contaminant adsorbs onto the titanium dioxide catalyst, the hydroxyl radicals attack and oxidize the contaminants to water, carbon dioxide, and other substances.
Doped or metal oxide treated titanium dioxide can increase the effectiveness of the titanium dioxide photocatalyst. However, titanium dioxide and doped titanium dioxide are less effective or not effective in oxidizing carbon monoxide. Carbon monoxide (CO) is a colorless, odorless, and poisonous gas that is produced by the incomplete combustion of hydrocarbon fuels. Carbon monoxide is responsible for more deaths than any other poison and is especially dangerous in enclosed environments. Gold can be loaded on the titanium dioxide to act as an effective thermocatalyst for the room temperature oxidation of carbon monoxide to carbon dioxide.
Photocatalytically, titanium dioxide alone is less effective in decomposing ozone. Ozone (O.sub.3) is a pollutant that is released from equipment commonly found in the workplace, such as copiers, printer, scanners, etc. Ozone can cause nausea and headaches, and prolonged exposure to ozone can damage nasal mucous membranes, causing breathing problems. OSHA has set a permissible exposure limit (PEL) to ozone of 0.08 ppm over an eight hour period.
Ozone is a thermodynamically unstable molecule and decomposes very slowly up to temperatures of 250° C. At ambient temperatures, manganese oxide is effective in decomposing ozone by facilitating the oxidation of ozone to adsorbed surface oxygen atoms. These adsorbed oxygen atoms then combine with ozone to form an adsorbed peroxide species that desorbs as molecular oxygen.
Fluid purification systems have therefore been developed with catalytic coatings being applied to the surfaces of substrates over which the fluid is made to flow such that the catalyst oxidizes and decomposes the gaseous containments, including volatile organic compounds, carbon monoxide and ozone and that adsorb into the photocatalytic surface to form carbon dioxide, water, oxygen and other substances. In a photocatalyst based air purifier, gas-phase, including semi-volatile contaminants are destroyed by a photocatalyst. The photocatalyst itself is activated by photons of a suitable wavelength. The design of such a purifier brings both the contaminant and photon to the photocatalyst where oxidation of the contaminant can take place. To effectively accomplish this, the design must account for mass-transport of the contaminant and radiation transport of the photon. One possible support for the photocatalyst is a honeycomb monolith; walls of the honeycomb are coated with a thin layer of a photocatalyst. The honeycomb structure typically contains an array of equal sized “cells” or passages and is characterized by low pressure drop due to its unobstructed flow region and smooth walls. Arrays can also contain adjacent cells which have different cross sectional geometries or diameters. The typical dimensions of these substrates are such that the airflow through each passage of the honeycomb is laminar well before the exit of the honeycomb. This laminar flow places mass transfer limitations on reactor effectiveness.
When the associated flow regime is laminar, then mass transport of the contaminant to the catalyst is limited by molecular diffusion. For the situation in which the photocatalyst is sufficiently active the overall effectiveness of the contaminant destruction process will be limited by the molecular diffusion rate and, consequently, would be considered mass transport limited. There is thus a need to eliminate the occurrence of laminar flow within the length of the substrate so as to thereby increase the mass transfer efficiency of such a system.
In addition, and independent of this situation there is the “entrance length effect”. At the entrance to the honeycomb the mass transfer coefficient is greatest and decreases with distance in the flow direction, reaching a minimum when the velocity and contaminant fields are fully developed. The entrance length is the distance measured from the honeycomb entrance to the location of the fully developed regime (the fluid flow profile develops into a parabolic profile, i.e. laminar flow). The expression for the entrance length (L) is usually expressed in terms of the diameter (D) of a single honeycomb cell and is functionally related to the cell's Reynolds (ReD) and Schmidt (Sc) numbers:
L/D=0.05ReD*Sc
In the present case, we are considering that flow conditions are laminar if the Reynolds number value is less than 2000. A further constraint on the application of the honeycomb concept is the penetration depth of the UV photon into the interior of the honeycomb cell. The UV penetration depth is a geometry constraint and is independent of the flow velocity. Thus, the use of honeycombs can be limited in application to the UV penetration depth.
Briefly, in accordance with one aspect of the invention, the substrate cell surface to which the catalytic coating is applied is so structured (e.g. textured) as to disrupt the occurrence of laminar flow and intentionally create turbulence along the flow path of the fluid passing therethrough.
In accordance with another aspect of the invention, the length of the substrate cells (X) is on the order of or less than the entrance length (L) such that the mass transfer limitations that are imposed by laminar flow that would otherwise occur are significantly mitigated.
In accordance with another aspect of the invention, rather than a single relatively long substrate, a plurality of relatively short substrates are placed in offset serial flow relationship.
In accordance with another aspect of the invention, textured features are introduced to create turbulence and reduce the occurrence of laminar flow along the surface of the substrate.
By yet another aspect of the invention, the substrate cells are so dimensioned as to maintain an adequate mass transfer coefficient along their length.
By still another aspect of the invention, the substrate is so dimensioned and structured as to maintain sufficient penetration depth at the photons throughout their lengths.
In the drawings as hereinafter described, a preferred embodiment is depicted; however, various other modifications and alternate constructions can be made thereto without departing from the spirit and scope of the invention.
A monolithic honeycomb cell array is shown at 11 in
The effectiveness of the photocatalyst process will vary along the length X of the cell array 11 because of various factors including the entrance length effect, a variation in DV light penetration depth, and the tendency of the airflow becoming laminar in nature. Each of those effects will be discussed herein.
As the air enters the entrance to the individual cells 12, the mass-transfer coefficient is greatest at the entrance to the cells and decreases with distance in the flow direction, reaching a minimum when the velocity and contaminant fields are fully developed and have a generally parabolic profile. That distance measured from the honeycomb entrance (X=0) to the fully developed regime is referred to as the entrance length (L). If the diameter of the individual cells 12 is D, the entrance length (L) is usually expressed in terms of the individual honeycomb cell diameter D and is functionally related to the cell's Reynolds number (ReD) and Schmidt number (Sc) as follows:
L/D=0.05ReD*Sc.
When the physical length (X) of a honeycomb cell exceeds the entrance length (L), the overall mass transport is largely determined by the mass transport coefficient for the fully developed regime. That is, when L is less than X, the fully developed velocity (parabolic) profile develops within the length of the honeycomb so that the mass transfer coefficient (h0) of the fully developed regime is within the honeycomb. This situation is a highly undesirable for system effectiveness.
On the other hand, if the physical length (X) of a honeycomb cell is less than the entrance length (L), then the flow profile never fully develops into a parabolic form within the honeycomb, in which the case h0 is outside the honeycomb and causes the ratio of h/h0 to get very large. The mass transfer coefficient, h, is now larger than h0 for any location within the honeycomb flow passage. Then the overall mass transport coefficient is strongly dependent on the actual cell depth (X).
As shown in
As will be seen, the curve decreases to a value of h/h0 near the point where the abscissa, (X/D)/(Re*Sc) is equal to about 0.1. Thus, there is an opportunity to increase the mass transfer coefficient and thus enhance the performance of the purifier when the combination of honeycomb cell diameter and flow conditions render the abscissa of
In addition to the mass transfer coefficient being affected by the dimensional features of a honeycomb based air purifier, the penetration depth of the UV photon in a honeycomb cell is also dependent on the dimensional features of the cell as shown in
The ordinate in
As will be seen in
For the discussions above, it will be seen that both the mass transfer coefficient and the UV photon penetration depth are dependent on the aspect ratio X/D of the honeycomb cells. While it is desirable that the length X of the cell is less than the entrance length L, it is desirable to limit the cell length X such that the aspect ratio X/D is maintained within the parameters discussed hereinabove. On the other hand, the limiting of the cell length X may unnecessarily reduce the effective surface of the cell. Accordingly, as discussed hereinabove with respect to the
An alternate approach for improving the mass transport of contaminants is through the application of turbulators, protuberances or flow disruptors 16 as shown in
As another means of introducing protuberances at the honeycomb entrance, an interlaced grid 17 or mat-like construction (e.g. screen) can be positioned against the entrance face of the honeycomb as shown in
A combination of gaps between honeycomb segments 11 and turbulator structures is also contemplated to better tailor the flow field characteristics, with non limiting examples shown in
Alternatively, a plurality of features can be formed on or in the surfaces of the honeycomb passages. To create Karman instability and vortex shedding, the protuberances must be aerodynamically blunt in the dimension perpendicular to the fluid velocity. An alternate means of causing mixing of the flow field is through swirl. For example, the protuberances could be designed in the shape of a turbine-blade so as to induce swirl. Alternate features such as, but not limited to, raised chevrons, turning vanes, trip strips, swirl features, guide vanes or other flow disruptors and combinations thereof, can be employed.
This latter concept offers the added benefit of an associated lower pressure drop.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US07/15583 | 7/5/2007 | WO | 00 | 12/30/2009 |