Fluid supply assembly

Information

  • Patent Grant
  • 7380680
  • Patent Number
    7,380,680
  • Date Filed
    Tuesday, February 6, 2007
    17 years ago
  • Date Issued
    Tuesday, June 3, 2008
    16 years ago
Abstract
A fluid supply assembly. The fluid supply assembly includes a disposable cup and lid, and a reusable shell and outer lid. A flexible, disposable cup, a reusable shell, and a method of preparing a fluid supply assembly for use with a fluid supply applicator are also described.
Description
BACKGROUND OF THE INVENTION

The present invention is directed generally to a fluid supply assembly for a fluid applicator, and more particularly to a fluid supply assembly with a disposable cup and lid, and a reusable shell and outer lid.


Some fluid applicators, such as gravity feed paint spray guns, have a fluid supply cup mounted on top of the fluid applicator. The fluid supply cup is typically reusable. Fluid, such as paint, is generally measured and mixed in a separate container, and then poured into the fluid supply cup for use. The container for measuring and mixing must be either cleaned or disposed of. During fluid application, the user must be careful not to tip the fluid applicator too much, or fluid will leak out a vent in the fluid supply cup. In addition, the user cannot use all of the fluid because it moves around in the fluid supply cup and air can be drawn into the drain hole.


Attempts have been made to provide fluid supply assemblies which reduce the amount of cleaning required after use. For example, U.S. Pat. No. 5,582,350 describes a hand held spray gun with a top mounted paint cup which extends from the rear of the gun body at an angle of 30°±10°. The paint can be sealed in a collapsible closed bag in the paint cup. Using the closed bag, the gun can be operated at all angles without the paint leaking. The use of the closed bag also allows more of the paint to be used. In addition, it reduces cleanup time and cost because the bag keeps the paint cup clean. Thus, U.S. Pat. No. 5,582,350 represented a significant advance in the art.


The use of the combination of an exterior container and a collapsible cup-shaped liner as a fluid supply assembly is also known. For example, U.S. Pat. No. 6,820,824 describes a spray gun with a fluid reservoir containing a removable liner. The liner, which may be thermo/vacuum-formed from a plastics material, has a shape corresponding to, and is a close fit within, the interior of the reservoir and collapses as fluid is withdrawn from within the liner during operation of the gun. Preferably, the liner has a comparatively-rigid base and is capable of standing, unsupported, outside the reservoir. The side walls of the liner are preferably thin in comparison to the base and can be collapsed for disposal of the liner. The reservoir has a removable lid and is capable of standing, inverted, on its own so that it can be filled with fluid. The lid also functions to secure the liner in the reservoir and, at the end of a spraying operation, the lid and the liner are removed together from the reservoir and discarded, thereby simplifying the cleaning of the spray gun.


These containers typically have a frustum configuration matching the shape of the thin, smooth-walled liner. The frustum shape results from the nature of the manufacturing process which requires a draft angle. However, the fact that the container and liner have a corresponding shape can cause excessive friction between the liner and the container wall during collapse. Furthermore, the smooth walled liner does not provide assistance in the collapsing of the liner, which can cause difficulties, particularly at the beginning of the application process. These problems can lead to diminished surface quality on the painted object.


In addition, the fluid supply assembly must have a fluid tight seal. There are several known sealing methods used in the paint industry. The most common is internal sizing. In this arrangement, there is a circular rib on the bottom of the lid that fits inside the liner. The seal relies on the uniform compression of the rib against the sidewall of the liner. While this method is adequate in many cases, even minor deviations from a perfectly cylindrical shape on either part can cause seal failure. Another method relies on additional facial sealing using the liner lip as a gasket. The liner lip can be compressed directly (matching surfaces), or through a circular protrusion, which localizes the sealing. This method is an improvement over cylindrical compression alone. However, under certain conditions, it may still allow seepage, particularly with low viscosity fluids.


The various paint components must be provided in the appropriate amounts. One method of ensuring the proper mixture is to use a measuring guide. The measuring guide can be located on the inside or on the outside of the container. When the measuring guide is inside the container, there is direct contact between the liner as it collapses and the measuring guide. This contact can cause unintended movement of the measuring guide during use. Movement can also occur when the liner is replaced. Improper location of the measuring guide can lead to improper paint mixtures. External measuring guides have wide longitudinal protrusions which are positioned beyond the natural perimeter of the container. The protrusions can create an awkward grip on the container during use.


Therefore, there remains a need for an improved fluid supply assembly.


SUMMARY OF THE INVENTION

The present invention meets this need by providing a fluid supply assembly and components for use therein. One aspect of the invention is a flexible, disposable cup which includes a side wall, an open outlet end, and a closed bottom defining an interior, the sidewall having a protrusion extending around the circumference of the disposable cup, and a lip extending outward from an edge of the outlet end of the disposable cup, the disposable cup collapsing as fluid is dispensed, the protrusion facilitating the collapse of the disposable cup.


Another aspect of the invention is a shell for a fluid supply assembly. The shell includes a tubular, polygon-shaped sleeve having at least three faces, the sleeve having an open bottom; and a cylindrical flange at the upper end of the sleeve, the flange having a connecting surface adapted to mate with a complementary connecting surface on a lid.


Another aspect of the invention is a fluid supply assembly. The fluid supply assembly includes a flexible, disposable cup having a side wall, an open outlet end, and a closed bottom defining an interior, and a lip extending outward from an edge of the outlet end of the disposable cup; a reusable shell for a fluid supply assembly comprising a tubular, polygon-shaped sleeve having at least three faces, the sleeve having an open bottom; and a cylindrical flange at the upper end of the sleeve, the flange having a connecting surface adapted to mate with a complementary connecting surface on a lid, the flange of the shell supporting the lip of the disposable cup, the shell being adapted to receive the disposable cup; a disposable lid adapted to fit over the disposable cup, the disposable lid having a fitting with an opening therethrough; and a reusable outer lid adapted to mate with the flange of the shell, the reusable outer lid having a fitting with an opening therethrough, the fitting of the disposable lid adapted to fit into the fitting of the reusable outer lid, and a complementary connecting surface on the reusable outer lid adapted to mate with the connecting surface of the shell to seal the shell and reusable outer lid together.


Another aspect of the invention is a method of preparing a fluid supply assembly for use with a fluid supply applicator. The method includes providing a fluid supply assembly comprising: a flexible, disposable cup having a side wall, an open outlet end, and a closed bottom defining an interior, and a lip extending outward from an edge of the outlet end of the disposable cup; a reusable shell for a fluid supply assembly comprising a tubular, polygon-shaped sleeve having at least three faces, the sleeve having an open bottom; and a cylindrical flange at the upper end of the sleeve, the flange having a connecting surface adapted to mate with a complementary connecting surface on a lid, the flange of the shell supporting the lip of the disposable cup, the shell being adapted to receive the disposable cup; a disposable lid adapted to fit over the disposable cup, the disposable lid having a fitting with an opening therethrough; and a reusable outer lid adapted to mate with the flange of the shell, the reusable outer lid having a fitting with an opening therethrough, the fitting of the disposable lid adapted to fit into the fitting of the reusable outer lid, and a complementary connecting surface on the reusable outer lid adapted to mate with the connecting surface of the shell to seal the shell and reusable outer lid together; placing the disposable cup in the shell; filling the disposable cup with fluid; placing the disposable lid on the disposable cup; and placing the reusable outer lid on the shell.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is side elevation view of a gravity-feed paint sprayer with a fluid supply assembly.



FIG. 2 is an exploded side sectional view of one embodiment of a fluid supply assembly.



FIG. 3 is perspective view of one embodiment of a shell.



FIG. 4 is a bottom view of the embodiment of FIG. 3.



FIG. 5 is a perspective view of an alternate embodiment of a shell.



FIG. 6 is view of one embodiment of a measuring guide.



FIG. 7 is a partial cross-sectional view of an alternate embodiment of the shell and measuring guide.



FIG. 8 is a perspective view of the measuring guide of FIG. 7.



FIG. 9 is a partial cross-sectional view of an alternate embodiment of the shell.



FIG. 10 is a side sectional view of one embodiment of a disposable cup.



FIG. 11 is a side sectional view of another embodiment of a disposable cup.



FIG. 12 is a side sectional view of another embodiment of a disposable cup.



FIG. 13 is a side sectional view of one embodiment of a disposable lid.



FIG. 14 is a side sectional view of another embodiment of a disposable lid.



FIG. 15 is a partial side sectional view of one embodiment of a seal between the disposable cup and the disposable lid.



FIG. 16 is one embodiment of a reusable outer lid.



FIG. 17 is one embodiment of a conduit.



FIG. 18 is one embodiment of a filter.





DETAILED DESCRIPTION OF THE INVENTION

A fluid supply assembly attached to a fluid applicator is shown in FIG. 1. In one embodiment, the fluid supply assembly is for feeding liquid, such as paint, to the fluid applicator, such as a paint sprayer. The present invention will be described for a paint sprayer, such as a gravity feed paint sprayer for use in applying paint to coat substrate surfaces. The paint sprayer can be used in the automotive refinishing market, such as automobile body shops, for repainting automobiles. Although the fluid supply assembly is described for a paint sprayer, it is not limited to such use. It can be used for supplying other flowable liquids, including, but not limited to, beverages, foods, condiments (such as ketchup), gasoline, petrochemicals and hydrocarbons, water, water-based solutions, solvent-based solutions, emulsions, adhesives, and the like.


Referring to FIG. 1, a paint sprayer 10 is shown. It includes a body 15, a nozzle assembly 20 secured to a front end 25 of body 15, and a handle 30 depending from a rear end 35 of body 15. A trigger 40 is pivotally secured to body 15 for the manual actuation of sprayer 10. A top-mounted paint supply assembly 45 is mounted to body 15 near front end 25 for feeding paint to nozzle assembly 20. An air connector 50 is connected to an air hose (not shown) for the delivery of pressurized air to nozzle assembly 20, wherein the delivery of pressurized air is controlled by trigger 40.


Compressed air from air connector 50 is delivered through an internal passage (not shown) to nozzle assembly 20 and the compressed air acts to atomize paint and deliver it through nozzle assembly 20 to spray paint about paint axis 55. Paint is delivered to nozzle assembly 20 from paint supply assembly 45.


As shown in FIG. 2, the paint supply assembly 45 typically includes a reusable shell 50, a disposable cup 55, a disposable lid 60, and a reusable outer lid 65.



FIGS. 3-5 show one embodiment of the reusable shell 50 of the present invention. The shell 50 has a flange 70 at the upper end of a sleeve 75. The flange 70 is generally cylindrical. The sleeve 75 has a tubular polygon shape with multiple faces 80. The polygon has at least three faces, alternatively at least four faces, alternatively at least five faces, alternatively at least six faces, alternatively at least seven faces, or alternatively at least eight faces, or more. The sleeve can be a frustum shape, or the faces can be vertical, if desired.


The faces 80 can be inwardly curved (concave, as shown) or outwardly curved (convex, not shown) around their longitudinal axis, creating scalloped faces, if desired. The inwardly scalloped faces 80 ergonomically match the human hand during the locking/unlocking process, reducing or eliminating slippage, particularly when the user's hands are wet or dirty.


There is a connecting surface 85 on the flange 70 which mates with a complementary connecting surface on the outer lid. Suitable connecting surfaces and complementary connecting surfaces include, but are not limited to, threaded connections, lugs and grooves, and pins and slots, or combinations thereof, if desired.


The shell 50 has an open bottom 90. This provides unobstructed access to atmospheric pressure during use. Access to atmospheric pressure is necessary for the disposable cup to collapse. The scalloped faces provide sufficient rigidity to the shell to allow the bottom to be completely open. The frustum-shaped prior art containers typically require either a whole or a partial bottom, or a flange at the bottom to reinforce the container during handling.


The shell 50 can be made of a rigid plastic, including, but not limited to, polypropylene or high density polyethylene. Desirably, the plastic selected is strong enough that the shell can withstand the clamping force of a paint shaker machine. The plastic is desirably transparent or translucent, although it could be opaque.


Typically, the faces of the shell are in the range of from about 0.05 in. to about 0.120 in. thick. Because of the relatively thin wall thickness, the inside faces of the shell have the same curvature as the outside. As a result, the disposable cup has minimal surface contact with the shell. Therefore, the disposable cup will encounter only a negligible friction force during its collapse.


The shell can be manufactured in one piece, or in more than one piece, if desired. In a two piece assembly, the flange 70 can be separate from the sleeve 75, as shown in FIG. 5, for example. The flange 70 and sleeve 75 can be attached using one or more snap connections 87 on each piece. The connections can be reversible or permanent, if desired. Suitable connections include, but are not limited to, screws, rivets, pins, welding, and adhesive. There can also be stops 89 on one or both pieces, which prevent the pieces from rotating during use, if desired.


Alternatively, the reusable shell could be made in other shapes, including, but not limited to, generally cylindrical, elliptical, etc., if desired.


The paint supply assembly can include one or more measuring guides 95, as shown in FIG. 6. The measuring guide 95 has indicia 97 for measuring the paint components. It can include mixing scales with one or more mixing ratios, e.g., 4:1 mixing ratio, 2:1 mixing ratio; 3:2:1 mixing ratio, etc. Each mixing ratio might include one or more different sized divisions so that different amounts of fluid could be measured using each mixing ratio. The indicia can also include one or more universal scales, i.e., scales with equal sized divisions. One universal scale might have 20 equal divisions, another 10 equal divisions, a third 5 equal divisions. There can be as many universal scales as needed. The multiple universal scales allow the user to measure different amounts of fluid without using the mixing ratio scales, which would not have to be included. The user could select the appropriate universal scale based on the amount of fluid needed.


The measuring guide 95 can be held in place by external ribs 100 on one or more faces 65a, as shown in FIG. 7. The external ribs 100 extend toward one another from each edge of the face 65a. There can be one or more sets of external ribs 100 around the outside of the shell. The external ribs 100 do not extend beyond the circumference of a circle 102 having a diameter that passes through the edges of the faces. The external ribs allow for an unobstructed grip, parallax-free level measurement, and uncluttered information placement. There can be an opening (not shown) in the flange of the shell to allow the measuring guide to be adjusted, if desired.


The measuring guide 95 can be flat, as shown in FIG. 6. Alternatively, as shown in FIGS. 7-8, the measuring guide 95a can have wings 105 which act as springs, forcing the measuring guide against the concave face 65a of the shell.


When the measuring guide is located on the outside the shell, it is typically positioned so that the indicia face the inside of the shell. The user reads the measuring guide through the disposable cup and the shell. In most cases, this arrangement works quite well. However, if the shell becomes dirty, then the user may not be able see the indicia through the shell properly, which could lead to measuring errors.


Alternatively, the measuring guide can be located on the inside of the shell. Internal ribs 110 extend toward one another from the edge of internal face 65b, as shown in FIG. 9. In this arrangement, the indicia also face the inside of the shell. Because the measuring guide is inside the shell, the user is looking through the disposable liner only. The presence of dirt on the shell does not affect the user's ability to see the indicia, reducing the possibility of measuring errors.


The paint supply assembly 45 includes disposable cup 55, shown in FIG. 10. Disposable cup 55 has a side wall 115 which is generally cylindrical. The outlet end 120 at the top of the disposable cup is open, and the bottom 125 is closed. The side wall 115, outlet end 120, and bottom 125 define an interior 130. There is a lip 135 at the outlet end which helps to provide sealing when the paint supply assembly is put together.


The disposable cup 55 is typically generally cylindrical for ease of manufacturing. However, it can have other shapes, if desired, including, but not limited to, generally polygonal, with at least three sides, alternatively at least four sides, alternatively at least five sides, alternatively at least six sides, alternatively at least seven sides, or alternatively at least eight sides, or more.


The disposable cup 55 can be made of transparent or translucent plastic if desired. Suitable plastics include, but are not limited to, low density polyethylene. The disposable cup has flexible side walls which allow the disposable cup to collapse as paint is dispensed. The side walls can be thin, for example in the range of about 0.003 in. to about 0.008 in. The bottom can be slightly thicker, in the range of about 0.003 to about 0.02 in., so that the bottom will remain substantially flat as the side walls collapse, if desired. The disposable cup does not need an air vent because the side walls collapse. This allows the user to discharge the paint sprayer at any angle without leaks and to use more of the paint in the disposable cup than is possible with conventional gravity feed paint cups.


The disposable cup 55 can optionally include a corrugation (not shown) where the bottom 125 meets the sidewall 115. The corrugation helps to stiffen the bottom so that it collapses less when the sidewalls collapse during use. In this way, fewer paint traps are formed during use, resulting in increased paint usage.


In another embodiment shown in FIG. 11, the disposable cup 55a can have a spiral protrusion 140 on the outer surface or the inner surface. Alternatively the protrusions could be formed at zero lead angle, making them appear as a series of concentric vertically spaced ledges 145, or circular protrusions, as shown in FIG. 12. Due to the thin wall thickness, the same spirals (or ledges) appear on the inside of the disposable cup 55a (55b). As a result of the spiral protrusion 140 (ledges 145), the disposable cup 55a (55b) cannot create surface contact with the shell 50. The contact will be a combination of separate points. As a result, the disposable cup 55a (55b) will encounter negligible friction during its collapse. In addition, because of the creases created by the spiral protrusion 140 (concentric ledges 145), the disposable cup will collapse more easily because weak elements which promote predictable collapse are built in to the disposable cup.


The disposable cup can have a flat bottom (not shown) or a concave bottom (shown in FIGS. 10-12). The concave bottom ensures stable non-rocking placement of the disposable cup, whether empty or filled, on a flat surface. The concave bottom, which is more rigid than a flat bottom, is advantageous because it will collapse with a piston effect, providing a more uniform collapse.


The disposable cup can extend the full length of the sleeve, or it can be shorter than the sleeve, if desired.


As shown in FIG. 13, the disposable lid 60 has a generally frustoconical portion 150. The disposable lid 60 fits over the disposable cup 55. The inside of the disposable lid 60 can have a downward extending rib 160, if desired. The downward extending rib 160 extends into the interior 130 of the disposable cup 55 and mates with the inside of the side wall 115 of the disposable cup 55, forming a seal. Additionally, there can be a downwardly projecting sealing bead 165 on the inside of the disposable lid 130. The downwardly projecting sealing bead 165 mates with the lip 135 of the disposable cup 55 to aid in forming a seal.


There is an integral generally cylindrical fitting 170 integrally connected to the generally frustoconical portion 150. The fitting 170 has an opening 175 extending through it.


The disposable lid can have a optional lifting tab located near the outer edge, if desired. The lifting tab extends upward from the lid. The lifting tab can be used in conjunction with the removal tab on the disposable cup to aid in removing the disposable lid. The user would grasp the lifting tab, preferable while holding the removal tab on the disposable cup, and remove the lid from the disposable cup. The lifting tab can have any suitable shape, including, but not limited to, square, rectangular, triangular, and semicircular.


The disposable lid 60 can be made of a transparent, translucent, or opaque plastic. Suitable plastics include, but are not limited to, polypropylene or high density polyethylene.


An alternative embodiment of the disposable lid is shown in FIG. 14. The disposable lid 180 has a generally frustoconical inner portion 185 connected to the bottom of an upwardly extending portion 190, and a generally frustoconical sealing flange 195 connected to the upper end of the upwardly extending portion 190. There is an integral generally cylindrical fitting 200 connected to the inner portion 185. The fitting 200 has an opening 205 extending through it.


The sealing flange 195 mates with the lip 135 of the disposable cup 55 forming one seal. The upwardly extending portion 190 fits inside the outlet end 120 the disposable cup 55 forming an additional seal. The sealing flange 195 can include a sealing bead 210, if desired.


Alternatively, a dual bead construction can be used as shown in FIG. 15 (without the outer lid). Two sealing beads 215, 220 are positioned on the sealing flange 225 of the disposable lid. The sealing beads can be in the shape of a half of an ellipse cut along the longer axis. Alternatively, the sealing beads can be hemispherical, or combinations thereof. The lip 227 of the disposable cup has matching indentations 230, 235 which are slightly shorter in length than the length of the sealing beads 215, 220. When the locking pressure is applied by the shell and outer lid, the sealing beads 215, 220 imbed into the matching, smaller indentations 230, 235 on the lip 227 of the disposable cup. The beads 215, 220 spread the smaller indentations 230, 235 at more than one point (generally two points). This results in at least four circular seals (240, 245, 250, 255) around the lip (at least two for each bead), creating a more positive and predictable seal.


As shown in FIG. 16, the reusable outer lid 65 has a generally frustoconical portion 260. The outer edge 265 of the reusable outer lid 65 mates with the flange 70 of the shell 50. There is a complementary connecting surface 270 at the outer edge 265 of the reusable outer lid 65. In this embodiment, the complementary connecting surface 270 extends downward from the outer edge 265, although other arrangements are possible. The complementary connecting surface 270 mates with the connecting surface 85 of the shell 50 to seal the shell 50 and reusable outer lid 65 together. Suitable connecting surfaces and complementary connecting surfaces include, but are not limited to, threaded connections, lugs and grooves, and pins and slots.


The reusable outer lid 65 has an integral generally cylindrical fitting 275 connected to the generally frustoconical portion 260. The fitting 275 has an opening 280 extending through it. The fitting 175 (or 205) of the disposable lid 60 (or 180) fits into the fitting 275 of the reusable outer lid 65.


The reusable outer lid 65 can be made of a strong, tough plastic. Desirably, the plastic selected is strong enough that the reusable outer lid can withstand the clamping force of a paint shaker machine. Examples of suitable plastic include, but are not limited to, acetal. Acetal is not typically transparent. The reusable outer lid 65 can include one or more sight holes so that the paint level is visible to the user, if desired. The sight hole can also allow the user to write the name of the name of the paint type on the disposable lid, and it permits easy removal of the disposable lid from the reusable outer lid.


As shown in FIG. 17, a conduit 285 connects the fluid supply assembly to the paint sprayer 10. The conduit 285 mates with the fitting 275 of the reusable outer lid 65 and the fitting 170 (or 200) of the disposable lid 60 or 180. The conduit 285 has an opening 290 through it. There is a path for fluid to flow from the interior 130 of the disposable cup 55 through the opening 175 (or 205) in the disposable lid 60 (or 180) through the opening 290 in conduit 285 to the paint sprayer 10. An optional filter 295 (shown in FIG. 18) can be placed into the opening 290 in the conduit 285, the opening 280 in the reusable outer lid 65, or the opening 175 (or 205) in the disposable lid 60 (or 180) to filter out impurities.


In order to use the fluid supply assembly, the disposable cup 55 is placed into the shell 50. The lip 135 of the disposable cup 55 mates with the flange 70 of the shell 50. The flange 70 centers the disposable cup 55 in the shell 50.


Optionally, there can be indicia on either the disposable cup 55 or the shell 90 or both. The indicia can be molded in the side, printed on the side, a label can be attached to the side, or the indicia can be supplied in some other fashion. The indicia can be used to measure paint components. Alternatively, the disposable cup and shell can be used on a scale, with a measuring stick to measure the paint components, or with a measuring guide, as discussed above.


After the disposable cup 55 is filled with paint (either before or after the disposable cup is placed into the shell), the disposable lid 60 is placed on top of the disposable cup 55. The downward extending rib 160 on the inside of the disposable lid 60 (or the upwardly extending portion 190 of the lid 180) fits inside the disposable cup 55.


The reusable outer lid 65 is placed on top of the disposable lid 60. It is tightened to the shell 65 using the connecting surface 85 of the shell 50 and the complementary connecting surface 250 of the reusable outer lid 65.


Tightening the reusable outer lid 65 to the shell 50 clamps the edge 165 of disposable lid 60 (or sealing flange 195 of lid 180) and lip 135 of disposable cup 55 together between edge 245 of reusable outer lid 65 and flange 70 of shell 50.


Lip 135 of disposable cup 55, edge 165 (or sealing flange 195) of disposable lid 60, flange 70 of shell 50, and edge 265 of reusable outer lid 65 can be at an angle to the top of the disposable cup or shell or to the bottom of the disposable lid or reusable outer lid. The angle is generally in the range of about 10° to about 70° from the respective axis, typically about 20° to about 60°, more typically about 30° to about 50°, more typically about 35° to about 45°.


The fluid supply assembly of the present invention is strong enough to be placed in a paint shaker machine without any additional support.


The conduit 285 is placed into the fitting 280 in the reusable outer lid 65. An optional filter 295 is inserted in the opening 290 of the conduit 285. Alternatively, the filter 295 could be placed in the fitting 170 of the disposable lid 60 or the fitting 275 of the reusable outer lid 65. The filter 295 can have a projection 300, if desired, which prevents the collapsing disposable cup 55 from blocking the opening 175 through to the conduit 285. Projection 300 can also be used to remove the filter 295 for cleaning or disposal. The conduit 285 can be filled with solvent and plugged for storage, if desired.


The fluid supply assembly is attached to the conduit 285. The conduit 285 connects to the reusable outer lid 65 and the paint sprayer 10 and provides a flow path from the interior 130 of the disposable cup 55 to the paint sprayer 10.


Various types of conduits could be used, as are well known to those of skill in the art. For example, U.S. Ser. No. 10/458,436, filed Jun. 10, 2003, entitled “Friction Fit Paint Cup Connection,” U.S. Ser. No. 10/760,079, filed Jan. 16, 2004, entitled “Adapter Assembly for a Fluid Supply Assembly,” U.S. Ser. No. 11/368,715, filed Mar. 6, 2006, entitled “Adapter Assembly for a Fluid Supply Assembly,” U.S. Ser. No. 10/860,631, filed Jun. 4, 2004, entitled “Adapter Assembly for a Fluid Supply Assembly,” and U.S. Ser. No. 11/235,717, filed Sep. 26, 2005, entitled “Adapter Assembly for a Fluid Supply Assembly,” all of which are incorporated herein by reference, describe suitable conduits.


While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the compositions and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.

Claims
  • 1. A shell for a fluid supply assembly comprising: a tubular, polygon-shaped sleeve having at least three faces, the sleeve having an open bottom, a pair of ribs on the outside of the shell extending toward each other from each edge of one face, wherein the ribs do not extend beyond a circumference of a circle having a diameter that passes through the edges of the faces;a cylindrical flange at the upper end of the sleeve, the flange having a connecting surface adapted to mate with a complementary connecting surface on a lid.
  • 2. The shell of claim 1 wherein the faces of the sleeve are curved.
  • 3. The shell of claim 1 wherein the sleeve and the flange are separate pieces attached by at least one connection.
  • 4. The shell of claim 3 wherein the connection is selected from snap connections, screws, rivets, welding, adhesive, or combinations thereof.
  • 5. The shell of claim 3 wherein the sleeve or the flange or both has at least one stop to prevent rotation of the pieces during use.
  • 6. The shell of claim 1 wherein the connecting surface and complementary connecting surface are selected from lugs and grooves, threaded connections, pins and slots, or combinations thereof.
  • 7. The shell of claim 1 further comprising a measuring guide positioned between the pair of ribs.
  • 8. A fluid supply assembly comprising: a flexible, disposable cup having a side wall, an open outlet end, and a closed bottom defining an interior, and a lip extending outward from an edge of the outlet end of the disposable cup, wherein the lip of the disposable cup has at least two sealing beads, the sealing beads having a length;a reusable shell for a fluid supply assembly comprising a tubular, polygon-shaped sleeve having at least three faces, the sleeve having an open bottom; and a cylindrical flange at the upper end of the sleeve, the flange having a connecting surface adapted to mate with a complementary connecting surface on a lid, the flange of the shell supporting the lip of the disposable cup, the shell being adapted to receive the disposable cup;a disposable lid adapted to fit over the disposable cup, the disposable lid having a fitting with an opening therethrough, wherein the disposable lid has a sealing flange with at least two indentations, the indentations having a shape matching a shape of the sealing beads, a length of the indentations being smaller than the length of the sealing beads; and wherein the sealing beads on the lip of the disposable cup engage the indentations on the sealing flange of the disposable lid, and the sealing beads spread the indentations, each sealing bead forming at least two sealing points; anda reusable outer lid adapted to mate with the flange of the shell, the reusable outer lid having a fitting with an opening therethrough, the fitting of the disposable lid adapted to fit into the fitting of the reusable outer lid, and a complementary connecting surface on the reusable outer lid adapted to mate with the connecting surface of the shell to seal the shell and reusable outer lid together.
  • 9. The fluid supply assembly of claim 8 wherein the faces of the sleeve are curved.
  • 10. The fluid supply assembly of claim 8 wherein the connecting surface and complementary connecting surface are selected from lugs and grooves, threaded connections, pins and slots, or combinations thereof.
  • 11. The fluid supply assembly of claim 8 wherein a pair of ribs extends toward each other from each edge of one face.
  • 12. The fluid supply assembly of claim 8 wherein the sidewall of the disposable cup has a protrusion extending around the circumference of the disposable cup.
  • 13. The fluid supply assembly of claim 12 wherein the protrusion is a spiral around the disposable cup.
  • 14. The fluid supply assembly of claim 12 wherein the protrusion is at least one circle around the disposable cup.
  • 15. The fluid supply assembly of claim 8 wherein the shape of the sealing beads is selected from half of an ellipse along the longer axis, or a hemisphere.
  • 16. A fluid supply assembly comprising: a flexible, disposable cup having a side wall, an open outlet end, and a closed bottom defining an interior, and a lip extending outward from an edge of the outlet end of the disposable cup;a reusable shell for a fluid supply assembly comprising a tubular, polygon-shaped sleeve having at least three faces, the sleeve having an open bottom, a pair of ribs on the outside of the shell extending toward each other from each edge of one face, wherein the ribs do not extend beyond a circumference of a circle having a diameter that passes through the edges of the faces; and a cylindrical flange at the upper end of the sleeve, the flange having a connecting surface adapted to mate with a complementary connecting surface on a lid, the flange of the shell supporting the lip of the disposable cup, the shell being adapted to receive the disposable cup;a disposable lid adapted to fit over the disposable cup, the disposable lid having a fitting with an opening therethrough; anda reusable outer lid adapted to mate with the flange of the shell, the reusable outer lid having a fitting with an opening therethrough, the fitting of the disposable lid adapted to fit into the fitting of the reusable outer lid, and a complementary connecting surface on the reusable outer lid adapted to mate with the connecting surface of the shell to seal the shell and reusable outer lid together.
  • 17. The fluid supply assembly of claim 16 wherein the faces of the sleeve are curved.
  • 18. The fluid supply assembly of claim 16 wherein the sidewall of the disposable cup has a protrusion extending around the circumference of the disposable cup.
  • 19. The fluid supply assembly of claim 18 wherein the protrusion is a spiral around the disposable cup.
  • 20. The fluid supply assembly of claim 18 wherein the protrusion is at least one circle around the disposable cup.
  • 21. The fluid supply assembly of claim 16 wherein the lip of the disposable cup has at least two sealing beads, the sealing beads having a length; wherein the disposable lid has a sealing flange with at least two indentations, the indentations having a shape matching a shape of the sealing beads, a length of the indentations being smaller than the length of the sealing beads; and wherein the sealing beads on the lip of the disposable cup engage the indentations on the sealing flange of the disposable lid, and the sealing beads spread the indentations, each sealing bead forming at least two sealing points.
  • 22. The fluid supply assembly of claim 21 wherein the shape of the sealing beads is selected from half of an ellipse along the longer axis, or a hemisphere.
  • 23. A fluid supply assembly comprising: a flexible, disposable cup having a side wall, an open outlet end, and a closed bottom defining an interior, and a lip extending outward from an edge of the outlet end of the disposable cup, wherein the lip of the disposable cup has at least two sealing beads, the sealing beads having a length;a reusable shell for a fluid supply assembly, the shell having an open bottom and a flange at the upper end, the flange having a connecting surface adapted to mate with a complementary connecting surface on a lid, the flange supporting the lip of the disposable cup, the shell being adapted to receive the disposable cup;a disposable lid adapted to fit over the disposable cup, the disposable lid having a fitting with an opening therethrough, wherein the disposable lid has a sealing flange with at least two indentations, the indentations having a shape matching a shape of the sealing beads, a length of the indentations being smaller than the length of the sealing beads; and wherein the sealing beads on the lip of the disposable cup engage the indentations on the sealing flange of the disposable lid, and the sealing beads spread the indentations, each sealing bead forming at least two sealing points; anda reusable outer lid adapted to mate with the flange of the shell, the reusable outer lid having a fitting with an opening therethrough, the fitting of the disposable lid adapted to fit into the fitting of the reusable outer lid, and a complementary connecting surface on the reusable outer lid adapted to mate with the connecting surface of the shell to seal the shell and reusable outer lid together.
  • 24. The fluid supply assembly of claim 23 wherein the shape of the sealing beads is selected from half of an ellipse along the longer axis, or a hemisphere.
  • 25. The fluid supply assembly of claim 23 wherein a pair of ribs extends toward each other on the shell.
  • 26. The fluid supply assembly of claim 23 wherein the sidewall of the disposable cup has a protrusion extending around the circumference of the disposable cup.
  • 27. The fluid supply assembly of claim 26 wherein the protrusion is a spiral around the disposable cup.
  • 28. The fluid supply assembly of claim 26 wherein the protrusion is at least one circle around the disposable cup.
Parent Case Info

This application is a continuation-in-part application of U.S. Ser. No. 11/405,082, filed Apr. 17, 2006, now U.S. Pat. No. 7,344,040, entitled Fluid Supply Assembly, which is a continuation of U.S. application Ser. No. 10/759,352, filed Jan. 16, 2004, entitled Fluid Supply Assembly, now U.S. Pat. No. 7,086,549.

US Referenced Citations (177)
Number Name Date Kind
856361 Neiburg Jun 1907 A
D47721 Haley Aug 1915 S
1253065 Looze Jan 1918 A
1476668 Agnew, Sr. Dec 1923 A
1560938 Lund Nov 1925 A
1562196 Abrams Nov 1925 A
1590172 Thorberg Jun 1926 A
1703384 Birkenmaier Feb 1929 A
1722101 Little Jul 1929 A
1800459 Maclean Apr 1931 A
1843269 Capser Feb 1932 A
2263843 Gross Nov 1941 A
2612404 Anderson Sep 1952 A
2770706 Vogtle et al. Nov 1956 A
2972438 Kimbrough Feb 1961 A
3157360 Heard Nov 1964 A
3206429 Broyles et al. Sep 1965 A
3228555 Pinto Jan 1966 A
3236459 McRitchie Feb 1966 A
3255972 Hultgreen et al. Jun 1966 A
3378183 Ferrer Apr 1968 A
3401842 Morrison Sep 1968 A
3432104 Kaltenbach Mar 1969 A
3464590 Giannettino Sep 1969 A
3554450 D'Muhala Jan 1971 A
3593921 Boltic Jul 1971 A
3595464 Harrison Jul 1971 A
3604602 Lee Sep 1971 A
3672645 Terrels et al. Jun 1972 A
3674074 Lavis Jul 1972 A
3757718 Johnson Sep 1973 A
3773169 Zahuranec et al. Nov 1973 A
3776408 Wald Dec 1973 A
3780950 Brennen Dec 1973 A
3796366 Hahn Mar 1974 A
3892306 Bertaud Jul 1975 A
3934746 Lilja Jan 1976 A
3940052 McHugh Feb 1976 A
4043510 Morris Aug 1977 A
4087021 Cotugno May 1978 A
4094432 Ziebert Jun 1978 A
4122973 Ahern Oct 1978 A
4140279 Hawkins Feb 1979 A
4151929 Sapien May 1979 A
4159081 Demler et al. Jun 1979 A
4258862 Thorsheim Mar 1981 A
4269319 Rubens May 1981 A
4283082 Tracy Aug 1981 A
4298134 Lewis, Jr. Nov 1981 A
4300684 Smith et al. Nov 1981 A
4356930 Roper Nov 1982 A
4379455 Deaton Apr 1983 A
4383635 Yotoriyama May 1983 A
4388997 Grime Jun 1983 A
4405088 Gray Sep 1983 A
4433812 Grime Feb 1984 A
4442003 Holt Apr 1984 A
4534391 Ventimiglia et al. Aug 1985 A
4586628 Nittel May 1986 A
4609113 Seki Sep 1986 A
4634003 Ueda et al. Jan 1987 A
4658958 McNulty et al. Apr 1987 A
4752146 Buckle Jun 1988 A
4760962 Wheeler Aug 1988 A
4773569 Larsson Sep 1988 A
4805799 Robbins, III Feb 1989 A
4811904 Ihmels et al. Mar 1989 A
4909409 Shreve Mar 1990 A
4930644 Robbins, III Jun 1990 A
4936511 Johnson et al. Jun 1990 A
4946075 Lundback Aug 1990 A
4951875 Devey Aug 1990 A
4971251 Dobrick et al. Nov 1990 A
5035339 Meyersburg Jul 1991 A
5059319 Welsh Oct 1991 A
5060816 Robbins, III Oct 1991 A
5067518 Kosmyna Nov 1991 A
5069389 Bitsakos Dec 1991 A
5094543 Mursa Mar 1992 A
5143294 Lintvedt Sep 1992 A
5163580 Beach et al. Nov 1992 A
5167327 Mondello Dec 1992 A
5195794 Hummel, Jr. et al. Mar 1993 A
5209365 Wood May 1993 A
5209501 Smith May 1993 A
5253781 Van Melle et al. Oct 1993 A
5271683 Snetting et al. Dec 1993 A
5328486 Woodruff Jul 1994 A
5429263 Haubenwallner Jul 1995 A
5460289 Gemmell Oct 1995 A
5468383 McKenzie Nov 1995 A
5501365 Richiger et al. Mar 1996 A
5514299 Kalwara May 1996 A
5553748 Battle Sep 1996 A
5569377 Hashimoto Oct 1996 A
5582350 Kosmyna et al. Dec 1996 A
5601212 Lee Feb 1997 A
5617972 Morano et al. Apr 1997 A
5628428 Calhoun et al. May 1997 A
5655714 Kieffer et al. Aug 1997 A
D386654 Kosmyna Nov 1997 S
5713519 Sandison et al. Feb 1998 A
5727699 Gilcrease Mar 1998 A
5769266 Willbrandt Jun 1998 A
5797520 Donahue Aug 1998 A
5803367 Heard et al. Sep 1998 A
5806711 Morano et al. Sep 1998 A
5810258 Wu Sep 1998 A
5816501 LoPresti et al. Oct 1998 A
5853102 Jarrett Dec 1998 A
5865341 Martin Feb 1999 A
5894927 Bennett Apr 1999 A
5918815 Wu Jul 1999 A
5975346 Imperato et al. Nov 1999 A
6012651 Spitznagel Jan 2000 A
6019294 Anderson et al. Feb 2000 A
6053314 Pittman Apr 2000 A
6053429 Chang Apr 2000 A
6123222 Richiger et al. Sep 2000 A
6136396 Gilmer Oct 2000 A
6165159 Blanton Dec 2000 A
6189809 Schwebemeyer Feb 2001 B1
6196410 Hocking Mar 2001 B1
6213410 Spitznagel Apr 2001 B1
6257429 Kong Jul 2001 B1
6302445 Kugele Oct 2001 B1
6331334 Trepte et al. Dec 2001 B1
6382449 Kazmierski et al. May 2002 B1
6401967 Rabe et al. Jun 2002 B1
6435426 Copp, Jr. Aug 2002 B1
6516799 Greenwood et al. Feb 2003 B1
6536687 Navis et al. Mar 2003 B1
6572179 Dahl et al. Jun 2003 B2
6588681 Rothrum et al. Jul 2003 B2
6595441 Petrie et al. Jul 2003 B2
6663018 Rothrum et al. Dec 2003 B2
6698670 Gosis et al. Mar 2004 B1
6702143 Wang Mar 2004 B2
6718664 Williams Apr 2004 B2
6736538 Bittner May 2004 B2
6796514 Schwartz Sep 2004 B1
6820824 Joseph et al. Nov 2004 B1
6886707 Giraud May 2005 B2
7086549 Kosmyna et al. Aug 2006 B2
7090455 Lamb Aug 2006 B2
7093714 Huang Aug 2006 B2
7165732 Kosmyna et al. Jan 2007 B2
7219811 Kong May 2007 B2
20020084273 Ming Jul 2002 A1
20020134861 Petrie et al. Sep 2002 A1
20020175171 Stewart et al. Nov 2002 A1
20030006310 Rothrum et al. Jan 2003 A1
20030006311 Rothrum et al. Jan 2003 A1
20030209568 Douglas et al. Nov 2003 A1
20030209573 Bouic Nov 2003 A1
20030213857 Schmon et al. Nov 2003 A1
20040016825 Petrie et al. Jan 2004 A1
20040046051 Santa Cruz et al. Mar 2004 A1
20040069791 Neal Apr 2004 A1
20040217201 Ruda Nov 2004 A1
20040256484 Joseph et al. Dec 2004 A1
20040256485 Joseph et al. Dec 2004 A1
20050242107 Kosmyna et al. Nov 2005 A1
20050263614 Kosmyna et al. Dec 2005 A1
20050263617 Kosmyna et al. Dec 2005 A1
20050279748 Kosmyna Dec 2005 A1
20060003059 Tabora Jan 2006 A1
20060017286 Kosmyna et al. Jan 2006 A1
20060043217 Kosmyna et al. Mar 2006 A1
20060049277 Joseph et al. Mar 2006 A1
20060102550 Joseph et al. May 2006 A1
20060144960 Kosmyna et al. Jul 2006 A1
20060180075 Kosmyna et al. Aug 2006 A1
20060180584 Kosmyna et al. Aug 2006 A1
20060226145 Kosmyna et al. Oct 2006 A1
20060249597 Kosmyna et al. Nov 2006 A1
20060283861 Kosmyna et al. Dec 2006 A1
Foreign Referenced Citations (69)
Number Date Country
1 192 852 Sep 1985 CA
2 099 763 Jul 1992 CA
540 159 Feb 1972 CH
688 082 May 1997 CH
204036 Nov 1908 DE
29 00 998 Jul 1980 DE
3507 734 Sep 1986 DE
41 02 326 Jul 1992 DE
42 09 258 Sep 1993 DE
196 18 514 Nov 1997 DE
201 17 496 Feb 2002 DE
0 636 548 Feb 1995 EP
0 678 334 Oct 1995 EP
0 987 060 Mar 2000 EP
0987060 Mar 2000 EP
1 210 181 Oct 2003 EP
1 415 719 May 2004 EP
1 424 135 Jun 2004 EP
1 435 265 Jul 2004 EP
1 368 129 Jun 2005 EP
1 611 960 Jan 2006 EP
1 282 085 Dec 1960 FR
2 639 324 May 1990 FR
2 774 928 Aug 1999 FR
2774922 Aug 1999 FR
2798868 Mar 2001 FR
961 183 Jun 1964 GB
2 103 173 Feb 1983 GB
2 170 471 Aug 1986 GB
06 335643 Dec 1994 JP
7 289959 Nov 1995 JP
8 192851 Jul 1996 JP
10 7170 Jan 1998 JP
2001 252599 Sep 2001 JP
92 11930 Jul 1992 WO
95 07762 Mar 1995 WO
95 11170 Apr 1995 WO
95 22409 Aug 1995 WO
9715935 May 1997 WO
98 00796 Jan 1998 WO
98 32539 Jul 1998 WO
99 06301 Feb 1999 WO
99 50153 Oct 1999 WO
01 12337 Feb 2001 WO
02 072276 Sep 2002 WO
02 085533 Oct 2002 WO
03 006170 Jan 2003 WO
03 045575 Jun 2003 WO
03 082475 Oct 2003 WO
03 095101 Nov 2003 WO
03095100 Nov 2003 WO
2004037431 May 2004 WO
2004037432 May 2004 WO
2004037433 May 2004 WO
2004 052552 Jun 2004 WO
2004060574 Jul 2004 WO
2004060575 Jul 2004 WO
2004082848 Sep 2004 WO
2004 087332 Oct 2004 WO
2004094072 Nov 2004 WO
2004098785 Nov 2004 WO
2005018815 Mar 2005 WO
2005068220 Jul 2005 WO
2005070557 Aug 2005 WO
2005 075097 Aug 2005 WO
2005077543 Aug 2005 WO
2005118151 Dec 2005 WO
2006041589 Apr 2006 WO
2006065850 Jun 2006 WO
Related Publications (1)
Number Date Country
20070158348 A1 Jul 2007 US
Continuations (1)
Number Date Country
Parent 10759352 Jan 2004 US
Child 11405082 US
Continuation in Parts (1)
Number Date Country
Parent 11405082 Apr 2006 US
Child 11671622 US