The present invention is directed generally to a fluid supply assembly for a fluid applicator, and more particularly to a fluid supply assembly with a disposable cup and lid, and a reusable shell and outer lid.
Some fluid applicators, such as gravity feed paint spray guns, have a fluid supply cup mounted on top of the fluid applicator. The fluid supply cup is typically reusable. Fluid, such as paint, is generally measured and mixed in a separate container, and then poured into the fluid supply cup for use. The container for measuring and mixing must be either cleaned or disposed of. During fluid application, the user must be careful not to tip the fluid applicator too much, or fluid will leak out a vent in the fluid supply cup. In addition, the user cannot use all of the fluid because it moves around in the fluid supply cup and air can be drawn into the drain hole.
Attempts have been made to provide fluid supply assemblies which reduce the amount of cleaning required after use. For example, U.S. Pat. No. 5,582,350 describes a hand held spray gun with a top mounted paint cup which extends from the rear of the gun body at an angle of 30°±10°. The paint can be sealed in a collapsible closed bag in the paint cup. Using the closed bag, the gun can be operated at all angles without the paint leaking. The use of the closed bag also allows more of the paint to be used. In addition, it reduces cleanup time and cost because the bag keeps the paint cup clean. Thus, U.S. Pat. No. 5,582,350 represented a significant advance in the art.
The use of the combination of an exterior container and a collapsible cup-shaped liner as a fluid supply assembly is also known. For example, U.S. Pat. No. 6,820,824 describes a spray gun with a fluid reservoir containing a removable liner. The liner, which may be thermo/vacuum-formed from a plastics material, has a shape corresponding to, and is a close fit within, the interior of the reservoir and collapses as fluid is withdrawn from within the liner during operation of the gun. Preferably, the liner has a comparatively-rigid base and is capable of standing, unsupported, outside the reservoir. The side walls of the liner are preferably thin in comparison to the base and can be collapsed for disposal of the liner. The reservoir has a removable lid and is capable of standing, inverted, on its own so that it can be filled with fluid. The lid also functions to secure the liner in the reservoir and, at the end of a spraying operation, the lid and the liner are removed together from the reservoir and discarded, thereby simplifying the cleaning of the spray gun.
These containers typically have a frustum configuration matching the shape of the thin, smooth-walled liner. The frustum shape results from the nature of the manufacturing process which requires a draft angle. However, the fact that the container and liner have a corresponding shape can cause excessive friction between the liner and the container wall during collapse. Furthermore, the smooth walled liner does not provide assistance in the collapsing of the liner, which can cause difficulties, particularly at the beginning of the application process. These problems can lead to diminished surface quality on the painted object.
In addition, the fluid supply assembly must have a fluid tight seal. There are several known sealing methods used in the paint industry. The most common is internal sizing. In this arrangement, there is a circular rib on the bottom of the lid that fits inside the liner. The seal relies on the uniform compression of the rib against the sidewall of the liner. While this method is adequate in many cases, even minor deviations from a perfectly cylindrical shape on either part can cause seal failure. Another method relies on additional facial sealing using the liner lip as a gasket. The liner lip can be compressed directly (matching surfaces), or through a circular protrusion, which localizes the sealing. This method is an improvement over cylindrical compression alone. However, under certain conditions, it may still allow seepage, particularly with low viscosity fluids.
The various paint components must be provided in the appropriate amounts. One method of ensuring the proper mixture is to use a measuring guide. The measuring guide can be located on the inside or on the outside of the container. When the measuring guide is inside the container, there is direct contact between the liner as it collapses and the measuring guide. This contact can cause unintended movement of the measuring guide during use. Movement can also occur when the liner is replaced. Improper location of the measuring guide can lead to improper paint mixtures. External measuring guides have wide longitudinal protrusions which are positioned beyond the natural perimeter of the container. The protrusions can create an awkward grip on the container during use.
Therefore, there remains a need for an improved fluid supply assembly.
The present invention meets this need by providing a fluid supply assembly and components for use therein. One aspect of the invention is a flexible, disposable cup which includes a side wall, an open outlet end, and a closed bottom defining an interior, the sidewall having a protrusion extending around the circumference of the disposable cup, and a lip extending outward from an edge of the outlet end of the disposable cup, the disposable cup collapsing as fluid is dispensed, the protrusion facilitating the collapse of the disposable cup.
Another aspect of the invention is a shell for a fluid supply assembly. The shell includes a tubular, polygon-shaped sleeve having at least three faces, the sleeve having an open bottom; and a cylindrical flange at the upper end of the sleeve, the flange having a connecting surface adapted to mate with a complementary connecting surface on a lid.
Another aspect of the invention is a fluid supply assembly. The fluid supply assembly includes a flexible, disposable cup having a side wall, an open outlet end, and a closed bottom defining an interior, and a lip extending outward from an edge of the outlet end of the disposable cup; a reusable shell for a fluid supply assembly comprising a tubular, polygon-shaped sleeve having at least three faces, the sleeve having an open bottom; and a cylindrical flange at the upper end of the sleeve, the flange having a connecting surface adapted to mate with a complementary connecting surface on a lid, the flange of the shell supporting the lip of the disposable cup, the shell being adapted to receive the disposable cup; a disposable lid adapted to fit over the disposable cup, the disposable lid having a fitting with an opening therethrough; and a reusable outer lid adapted to mate with the flange of the shell, the reusable outer lid having a fitting with an opening therethrough, the fitting of the disposable lid adapted to fit into the fitting of the reusable outer lid, and a complementary connecting surface on the reusable outer lid adapted to mate with the connecting surface of the shell to seal the shell and reusable outer lid together.
Another aspect of the invention is a method of preparing a fluid supply assembly for use with a fluid supply applicator. The method includes providing a fluid supply assembly comprising: a flexible, disposable cup having a side wall, an open outlet end, and a closed bottom defining an interior, and a lip extending outward from an edge of the outlet end of the disposable cup; a reusable shell for a fluid supply assembly comprising a tubular, polygon-shaped sleeve having at least three faces, the sleeve having an open bottom; and a cylindrical flange at the upper end of the sleeve, the flange having a connecting surface adapted to mate with a complementary connecting surface on a lid, the flange of the shell supporting the lip of the disposable cup, the shell being adapted to receive the disposable cup; a disposable lid adapted to fit over the disposable cup, the disposable lid having a fitting with an opening therethrough; and a reusable outer lid adapted to mate with the flange of the shell, the reusable outer lid having a fitting with an opening therethrough, the fitting of the disposable lid adapted to fit into the fitting of the reusable outer lid, and a complementary connecting surface on the reusable outer lid adapted to mate with the connecting surface of the shell to seal the shell and reusable outer lid together; placing the disposable cup in the shell; filling the disposable cup with fluid; placing the disposable lid on the disposable cup; and placing the reusable outer lid on the shell.
A fluid supply assembly attached to a fluid applicator is shown in
Referring to
Compressed air from air connector 50 is delivered through an internal passage (not shown) to nozzle assembly 20 and the compressed air acts to atomize paint and deliver it through nozzle assembly 20 to spray paint about paint axis 55. Paint is delivered to nozzle assembly 20 from paint supply assembly 45.
As shown in
The faces 80 can be inwardly curved (concave, as shown) or outwardly curved (convex, not shown) around their longitudinal axis, creating scalloped faces, if desired. The inwardly scalloped faces 80 ergonomically match the human hand during the locking/unlocking process, reducing or eliminating slippage, particularly when the user's hands are wet or dirty.
There is a connecting surface 85 on the flange 70 which mates with a complementary connecting surface on the outer lid. Suitable connecting surfaces and complementary connecting surfaces include, but are not limited to, threaded connections, lugs and grooves, and pins and slots, or combinations thereof, if desired.
The shell 50 has an open bottom 90. This provides unobstructed access to atmospheric pressure during use. Access to atmospheric pressure is necessary for the disposable cup to collapse. The scalloped faces provide sufficient rigidity to the shell to allow the bottom to be completely open. The frustum-shaped prior art containers typically require either a whole or a partial bottom, or a flange at the bottom to reinforce the container during handling.
The shell 50 can be made of a rigid plastic, including, but not limited to, polypropylene or high density polyethylene. Desirably, the plastic selected is strong enough that the shell can withstand the clamping force of a paint shaker machine. The plastic is desirably transparent or translucent, although it could be opaque.
Typically, the faces of the shell are in the range of from about 0.05 in. to about 0.120 in. thick. Because of the relatively thin wall thickness, the inside faces of the shell have the same curvature as the outside. As a result, the disposable cup has minimal surface contact with the shell. Therefore, the disposable cup will encounter only a negligible friction force during its collapse.
The shell can be manufactured in one piece, or in more than one piece, if desired. In a two piece assembly, the flange 70 can be separate from the sleeve 75, as shown in
Alternatively, the reusable shell could be made in other shapes, including, but not limited to, generally cylindrical, elliptical, etc., if desired.
The paint supply assembly can include one or more measuring guides 95, as shown in
The measuring guide 95 can be held in place by external ribs 100 on one or more faces 65a, as shown in
The measuring guide 95 can be flat, as shown in
When the measuring guide is located on the outside the shell, it is typically positioned so that the indicia face the inside of the shell. The user reads the measuring guide through the disposable cup and the shell. In most cases, this arrangement works quite well. However, if the shell becomes dirty, then the user may not be able see the indicia through the shell properly, which could lead to measuring errors.
Alternatively, the measuring guide can be located on the inside of the shell. Internal ribs 110 extend toward one another from the edge of internal face 65b, as shown in
The paint supply assembly 45 includes disposable cup 55, shown in
The disposable cup 55 is typically generally cylindrical for ease of manufacturing. However, it can have other shapes, if desired, including, but not limited to, generally polygonal, with at least three sides, alternatively at least four sides, alternatively at least five sides, alternatively at least six sides, alternatively at least seven sides, or alternatively at least eight sides, or more.
The disposable cup 55 can be made of transparent or translucent plastic if desired. Suitable plastics include, but are not limited to, low density polyethylene. The disposable cup has flexible side walls which allow the disposable cup to collapse as paint is dispensed. The side walls can be thin, for example in the range of about 0.003 in. to about 0.008 in. The bottom can be slightly thicker, in the range of about 0.003 to about 0.02 in., so that the bottom will remain substantially flat as the side walls collapse, if desired. The disposable cup does not need an air vent because the side walls collapse. This allows the user to discharge the paint sprayer at any angle without leaks and to use more of the paint in the disposable cup than is possible with conventional gravity feed paint cups.
The disposable cup 55 can optionally include a corrugation (not shown) where the bottom 125 meets the sidewall 115. The corrugation helps to stiffen the bottom so that it collapses less when the sidewalls collapse during use. In this way, fewer paint traps are formed during use, resulting in increased paint usage.
In another embodiment shown in
The disposable cup can have a flat bottom (not shown) or a concave bottom (shown in
The disposable cup can extend the full length of the sleeve, or it can be shorter than the sleeve, if desired.
As shown in
There is an integral generally cylindrical fitting 170 integrally connected to the generally frustoconical portion 150. The fitting 170 has an opening 175 extending through it.
The disposable lid can have a optional lifting tab located near the outer edge, if desired. The lifting tab extends upward from the lid. The lifting tab can be used in conjunction with the removal tab on the disposable cup to aid in removing the disposable lid. The user would grasp the lifting tab, preferable while holding the removal tab on the disposable cup, and remove the lid from the disposable cup. The lifting tab can have any suitable shape, including, but not limited to, square, rectangular, triangular, and semicircular.
The disposable lid 60 can be made of a transparent, translucent, or opaque plastic. Suitable plastics include, but are not limited to, polypropylene or high density polyethylene.
An alternative embodiment of the disposable lid is shown in
The sealing flange 195 mates with the lip 135 of the disposable cup 55 forming one seal. The upwardly extending portion 190 fits inside the outlet end 120 the disposable cup 55 forming an additional seal. The sealing flange 195 can include a sealing bead 210, if desired.
Alternatively, a dual bead construction can be used as shown in
As shown in
The reusable outer lid 65 has an integral generally cylindrical fitting 275 connected to the generally frustoconical portion 260. The fitting 275 has an opening 280 extending through it. The fitting 175 (or 205) of the disposable lid 60 (or 180) fits into the fitting 275 of the reusable outer lid 65.
The reusable outer lid 65 can be made of a strong, tough plastic. Desirably, the plastic selected is strong enough that the reusable outer lid can withstand the clamping force of a paint shaker machine. Examples of suitable plastic include, but are not limited to, acetal. Acetal is not typically transparent. The reusable outer lid 65 can include one or more sight holes so that the paint level is visible to the user, if desired. The sight hole can also allow the user to write the name of the name of the paint type on the disposable lid, and it permits easy removal of the disposable lid from the reusable outer lid.
As shown in
In order to use the fluid supply assembly, the disposable cup 55 is placed into the shell 50. The lip 135 of the disposable cup 55 mates with the flange 70 of the shell 50. The flange 70 centers the disposable cup 55 in the shell 50.
Optionally, there can be indicia on either the disposable cup 55 or the shell 90 or both. The indicia can be molded in the side, printed on the side, a label can be attached to the side, or the indicia can be supplied in some other fashion. The indicia can be used to measure paint components. Alternatively, the disposable cup and shell can be used on a scale, with a measuring stick to measure the paint components, or with a measuring guide, as discussed above.
After the disposable cup 55 is filled with paint (either before or after the disposable cup is placed into the shell), the disposable lid 60 is placed on top of the disposable cup 55. The downward extending rib 160 on the inside of the disposable lid 60 (or the upwardly extending portion 190 of the lid 180) fits inside the disposable cup 55.
The reusable outer lid 65 is placed on top of the disposable lid 60. It is tightened to the shell 65 using the connecting surface 85 of the shell 50 and the complementary connecting surface 250 of the reusable outer lid 65.
Tightening the reusable outer lid 65 to the shell 50 clamps the edge 165 of disposable lid 60 (or sealing flange 195 of lid 180) and lip 135 of disposable cup 55 together between edge 245 of reusable outer lid 65 and flange 70 of shell 50.
Lip 135 of disposable cup 55, edge 165 (or sealing flange 195) of disposable lid 60, flange 70 of shell 50, and edge 265 of reusable outer lid 65 can be at an angle to the top of the disposable cup or shell or to the bottom of the disposable lid or reusable outer lid. The angle is generally in the range of about 10° to about 70° from the respective axis, typically about 20° to about 60°, more typically about 30° to about 50°, more typically about 35° to about 45°.
The fluid supply assembly of the present invention is strong enough to be placed in a paint shaker machine without any additional support.
The conduit 285 is placed into the fitting 280 in the reusable outer lid 65. An optional filter 295 is inserted in the opening 290 of the conduit 285. Alternatively, the filter 295 could be placed in the fitting 170 of the disposable lid 60 or the fitting 275 of the reusable outer lid 65. The filter 295 can have a projection 300, if desired, which prevents the collapsing disposable cup 55 from blocking the opening 175 through to the conduit 285. Projection 300 can also be used to remove the filter 295 for cleaning or disposal. The conduit 285 can be filled with solvent and plugged for storage, if desired.
The fluid supply assembly is attached to the conduit 285. The conduit 285 connects to the reusable outer lid 65 and the paint sprayer 10 and provides a flow path from the interior 130 of the disposable cup 55 to the paint sprayer 10.
Various types of conduits could be used, as are well known to those of skill in the art. For example, U.S. Ser. No. 10/458,436, filed Jun. 10, 2003, entitled “Friction Fit Paint Cup Connection,” U.S. Ser. No. 10/760,079, filed Jan. 16, 2004, entitled “Adapter Assembly for a Fluid Supply Assembly,” U.S. Ser. No. 11/368,715, filed Mar. 6, 2006, entitled “Adapter Assembly for a Fluid Supply Assembly,” U.S. Ser. No. 10/860,631, filed Jun. 4, 2004, entitled “Adapter Assembly for a Fluid Supply Assembly,” and U.S. Ser. No. 11/235,717, filed Sep. 26, 2005, entitled “Adapter Assembly for a Fluid Supply Assembly,” all of which are incorporated herein by reference, describe suitable conduits.
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the compositions and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.
This application is a continuation-in-part application of U.S. Ser. No. 11/405,082, filed Apr. 17, 2006, now U.S. Pat. No. 7,344,040, entitled Fluid Supply Assembly, which is a continuation of U.S. application Ser. No. 10/759,352, filed Jan. 16, 2004, entitled Fluid Supply Assembly, now U.S. Pat. No. 7,086,549.
Number | Name | Date | Kind |
---|---|---|---|
856361 | Neiburg | Jun 1907 | A |
D47721 | Haley | Aug 1915 | S |
1253065 | Looze | Jan 1918 | A |
1476668 | Agnew, Sr. | Dec 1923 | A |
1560938 | Lund | Nov 1925 | A |
1562196 | Abrams | Nov 1925 | A |
1590172 | Thorberg | Jun 1926 | A |
1703384 | Birkenmaier | Feb 1929 | A |
1722101 | Little | Jul 1929 | A |
1800459 | Maclean | Apr 1931 | A |
1843269 | Capser | Feb 1932 | A |
2263843 | Gross | Nov 1941 | A |
2612404 | Anderson | Sep 1952 | A |
2770706 | Vogtle et al. | Nov 1956 | A |
2972438 | Kimbrough | Feb 1961 | A |
3157360 | Heard | Nov 1964 | A |
3206429 | Broyles et al. | Sep 1965 | A |
3228555 | Pinto | Jan 1966 | A |
3236459 | McRitchie | Feb 1966 | A |
3255972 | Hultgreen et al. | Jun 1966 | A |
3378183 | Ferrer | Apr 1968 | A |
3401842 | Morrison | Sep 1968 | A |
3432104 | Kaltenbach | Mar 1969 | A |
3464590 | Giannettino | Sep 1969 | A |
3554450 | D'Muhala | Jan 1971 | A |
3593921 | Boltic | Jul 1971 | A |
3595464 | Harrison | Jul 1971 | A |
3604602 | Lee | Sep 1971 | A |
3672645 | Terrels et al. | Jun 1972 | A |
3674074 | Lavis | Jul 1972 | A |
3757718 | Johnson | Sep 1973 | A |
3773169 | Zahuranec et al. | Nov 1973 | A |
3776408 | Wald | Dec 1973 | A |
3780950 | Brennen | Dec 1973 | A |
3796366 | Hahn | Mar 1974 | A |
3892306 | Bertaud | Jul 1975 | A |
3934746 | Lilja | Jan 1976 | A |
3940052 | McHugh | Feb 1976 | A |
4043510 | Morris | Aug 1977 | A |
4087021 | Cotugno | May 1978 | A |
4094432 | Ziebert | Jun 1978 | A |
4122973 | Ahern | Oct 1978 | A |
4140279 | Hawkins | Feb 1979 | A |
4151929 | Sapien | May 1979 | A |
4159081 | Demler et al. | Jun 1979 | A |
4258862 | Thorsheim | Mar 1981 | A |
4269319 | Rubens | May 1981 | A |
4283082 | Tracy | Aug 1981 | A |
4298134 | Lewis, Jr. | Nov 1981 | A |
4300684 | Smith et al. | Nov 1981 | A |
4356930 | Roper | Nov 1982 | A |
4379455 | Deaton | Apr 1983 | A |
4383635 | Yotoriyama | May 1983 | A |
4388997 | Grime | Jun 1983 | A |
4405088 | Gray | Sep 1983 | A |
4433812 | Grime | Feb 1984 | A |
4442003 | Holt | Apr 1984 | A |
4534391 | Ventimiglia et al. | Aug 1985 | A |
4586628 | Nittel | May 1986 | A |
4609113 | Seki | Sep 1986 | A |
4634003 | Ueda et al. | Jan 1987 | A |
4658958 | McNulty et al. | Apr 1987 | A |
4752146 | Buckle | Jun 1988 | A |
4760962 | Wheeler | Aug 1988 | A |
4773569 | Larsson | Sep 1988 | A |
4805799 | Robbins, III | Feb 1989 | A |
4811904 | Ihmels et al. | Mar 1989 | A |
4909409 | Shreve | Mar 1990 | A |
4930644 | Robbins, III | Jun 1990 | A |
4936511 | Johnson et al. | Jun 1990 | A |
4946075 | Lundback | Aug 1990 | A |
4951875 | Devey | Aug 1990 | A |
4971251 | Dobrick et al. | Nov 1990 | A |
5035339 | Meyersburg | Jul 1991 | A |
5059319 | Welsh | Oct 1991 | A |
5060816 | Robbins, III | Oct 1991 | A |
5067518 | Kosmyna | Nov 1991 | A |
5069389 | Bitsakos | Dec 1991 | A |
5094543 | Mursa | Mar 1992 | A |
5143294 | Lintvedt | Sep 1992 | A |
5163580 | Beach et al. | Nov 1992 | A |
5167327 | Mondello | Dec 1992 | A |
5195794 | Hummel, Jr. et al. | Mar 1993 | A |
5209365 | Wood | May 1993 | A |
5209501 | Smith | May 1993 | A |
5253781 | Van Melle et al. | Oct 1993 | A |
5271683 | Snetting et al. | Dec 1993 | A |
5328486 | Woodruff | Jul 1994 | A |
5429263 | Haubenwallner | Jul 1995 | A |
5460289 | Gemmell | Oct 1995 | A |
5468383 | McKenzie | Nov 1995 | A |
5501365 | Richiger et al. | Mar 1996 | A |
5514299 | Kalwara | May 1996 | A |
5553748 | Battle | Sep 1996 | A |
5569377 | Hashimoto | Oct 1996 | A |
5582350 | Kosmyna et al. | Dec 1996 | A |
5601212 | Lee | Feb 1997 | A |
5617972 | Morano et al. | Apr 1997 | A |
5628428 | Calhoun et al. | May 1997 | A |
5655714 | Kieffer et al. | Aug 1997 | A |
D386654 | Kosmyna | Nov 1997 | S |
5713519 | Sandison et al. | Feb 1998 | A |
5727699 | Gilcrease | Mar 1998 | A |
5769266 | Willbrandt | Jun 1998 | A |
5797520 | Donahue | Aug 1998 | A |
5803367 | Heard et al. | Sep 1998 | A |
5806711 | Morano et al. | Sep 1998 | A |
5810258 | Wu | Sep 1998 | A |
5816501 | LoPresti et al. | Oct 1998 | A |
5853102 | Jarrett | Dec 1998 | A |
5865341 | Martin | Feb 1999 | A |
5894927 | Bennett | Apr 1999 | A |
5918815 | Wu | Jul 1999 | A |
5975346 | Imperato et al. | Nov 1999 | A |
6012651 | Spitznagel | Jan 2000 | A |
6019294 | Anderson et al. | Feb 2000 | A |
6053314 | Pittman | Apr 2000 | A |
6053429 | Chang | Apr 2000 | A |
6123222 | Richiger et al. | Sep 2000 | A |
6136396 | Gilmer | Oct 2000 | A |
6165159 | Blanton | Dec 2000 | A |
6189809 | Schwebemeyer | Feb 2001 | B1 |
6196410 | Hocking | Mar 2001 | B1 |
6213410 | Spitznagel | Apr 2001 | B1 |
6257429 | Kong | Jul 2001 | B1 |
6302445 | Kugele | Oct 2001 | B1 |
6331334 | Trepte et al. | Dec 2001 | B1 |
6382449 | Kazmierski et al. | May 2002 | B1 |
6401967 | Rabe et al. | Jun 2002 | B1 |
6435426 | Copp, Jr. | Aug 2002 | B1 |
6516799 | Greenwood et al. | Feb 2003 | B1 |
6536687 | Navis et al. | Mar 2003 | B1 |
6572179 | Dahl et al. | Jun 2003 | B2 |
6588681 | Rothrum et al. | Jul 2003 | B2 |
6595441 | Petrie et al. | Jul 2003 | B2 |
6663018 | Rothrum et al. | Dec 2003 | B2 |
6698670 | Gosis et al. | Mar 2004 | B1 |
6702143 | Wang | Mar 2004 | B2 |
6718664 | Williams | Apr 2004 | B2 |
6736538 | Bittner | May 2004 | B2 |
6796514 | Schwartz | Sep 2004 | B1 |
6820824 | Joseph et al. | Nov 2004 | B1 |
6886707 | Giraud | May 2005 | B2 |
7086549 | Kosmyna et al. | Aug 2006 | B2 |
7090455 | Lamb | Aug 2006 | B2 |
7093714 | Huang | Aug 2006 | B2 |
7165732 | Kosmyna et al. | Jan 2007 | B2 |
7219811 | Kong | May 2007 | B2 |
20020084273 | Ming | Jul 2002 | A1 |
20020134861 | Petrie et al. | Sep 2002 | A1 |
20020175171 | Stewart et al. | Nov 2002 | A1 |
20030006310 | Rothrum et al. | Jan 2003 | A1 |
20030006311 | Rothrum et al. | Jan 2003 | A1 |
20030209568 | Douglas et al. | Nov 2003 | A1 |
20030209573 | Bouic | Nov 2003 | A1 |
20030213857 | Schmon et al. | Nov 2003 | A1 |
20040016825 | Petrie et al. | Jan 2004 | A1 |
20040046051 | Santa Cruz et al. | Mar 2004 | A1 |
20040069791 | Neal | Apr 2004 | A1 |
20040217201 | Ruda | Nov 2004 | A1 |
20040256484 | Joseph et al. | Dec 2004 | A1 |
20040256485 | Joseph et al. | Dec 2004 | A1 |
20050242107 | Kosmyna et al. | Nov 2005 | A1 |
20050263614 | Kosmyna et al. | Dec 2005 | A1 |
20050263617 | Kosmyna et al. | Dec 2005 | A1 |
20050279748 | Kosmyna | Dec 2005 | A1 |
20060003059 | Tabora | Jan 2006 | A1 |
20060017286 | Kosmyna et al. | Jan 2006 | A1 |
20060043217 | Kosmyna et al. | Mar 2006 | A1 |
20060049277 | Joseph et al. | Mar 2006 | A1 |
20060102550 | Joseph et al. | May 2006 | A1 |
20060144960 | Kosmyna et al. | Jul 2006 | A1 |
20060180075 | Kosmyna et al. | Aug 2006 | A1 |
20060180584 | Kosmyna et al. | Aug 2006 | A1 |
20060226145 | Kosmyna et al. | Oct 2006 | A1 |
20060249597 | Kosmyna et al. | Nov 2006 | A1 |
20060283861 | Kosmyna et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
1 192 852 | Sep 1985 | CA |
2 099 763 | Jul 1992 | CA |
540 159 | Feb 1972 | CH |
688 082 | May 1997 | CH |
204036 | Nov 1908 | DE |
29 00 998 | Jul 1980 | DE |
3507 734 | Sep 1986 | DE |
41 02 326 | Jul 1992 | DE |
42 09 258 | Sep 1993 | DE |
196 18 514 | Nov 1997 | DE |
201 17 496 | Feb 2002 | DE |
0 636 548 | Feb 1995 | EP |
0 678 334 | Oct 1995 | EP |
0 987 060 | Mar 2000 | EP |
0987060 | Mar 2000 | EP |
1 210 181 | Oct 2003 | EP |
1 415 719 | May 2004 | EP |
1 424 135 | Jun 2004 | EP |
1 435 265 | Jul 2004 | EP |
1 368 129 | Jun 2005 | EP |
1 611 960 | Jan 2006 | EP |
1 282 085 | Dec 1960 | FR |
2 639 324 | May 1990 | FR |
2 774 928 | Aug 1999 | FR |
2774922 | Aug 1999 | FR |
2798868 | Mar 2001 | FR |
961 183 | Jun 1964 | GB |
2 103 173 | Feb 1983 | GB |
2 170 471 | Aug 1986 | GB |
06 335643 | Dec 1994 | JP |
7 289959 | Nov 1995 | JP |
8 192851 | Jul 1996 | JP |
10 7170 | Jan 1998 | JP |
2001 252599 | Sep 2001 | JP |
92 11930 | Jul 1992 | WO |
95 07762 | Mar 1995 | WO |
95 11170 | Apr 1995 | WO |
95 22409 | Aug 1995 | WO |
9715935 | May 1997 | WO |
98 00796 | Jan 1998 | WO |
98 32539 | Jul 1998 | WO |
99 06301 | Feb 1999 | WO |
99 50153 | Oct 1999 | WO |
01 12337 | Feb 2001 | WO |
02 072276 | Sep 2002 | WO |
02 085533 | Oct 2002 | WO |
03 006170 | Jan 2003 | WO |
03 045575 | Jun 2003 | WO |
03 082475 | Oct 2003 | WO |
03 095101 | Nov 2003 | WO |
03095100 | Nov 2003 | WO |
2004037431 | May 2004 | WO |
2004037432 | May 2004 | WO |
2004037433 | May 2004 | WO |
2004 052552 | Jun 2004 | WO |
2004060574 | Jul 2004 | WO |
2004060575 | Jul 2004 | WO |
2004082848 | Sep 2004 | WO |
2004 087332 | Oct 2004 | WO |
2004094072 | Nov 2004 | WO |
2004098785 | Nov 2004 | WO |
2005018815 | Mar 2005 | WO |
2005068220 | Jul 2005 | WO |
2005070557 | Aug 2005 | WO |
2005 075097 | Aug 2005 | WO |
2005077543 | Aug 2005 | WO |
2005118151 | Dec 2005 | WO |
2006041589 | Apr 2006 | WO |
2006065850 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070158348 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10759352 | Jan 2004 | US |
Child | 11405082 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11405082 | Apr 2006 | US |
Child | 11671622 | US |