The various embodiments of the invention can be understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Also, in the drawings, like reference numerals designate corresponding parts throughout the several views.
The tank 12, as shown, is located at an elevated position relative to the destination of the fluid 16 at the various fluid outlets. Fluid 16 can be gravity-fed through a conduit 30 to one or more downstream valves, for example, through a valve 32 in a direction of flow indicated by an arrow 34. In a residential application, for example, the tank 12 can be mounted on the roof 36 of a house so that the fluid 16 is able to flow by gravity through the conduit 30 above the roof 36 and through a conduit 38 below the roof 36. The conduit 30 and the conduit 38 can be joined by a coupling 39. The fluid 16 can flow to various plumbing fixtures, such as a sink, a toilet, and a shower, for example, inside of the house. The flow of fluid due to gravity may be sufficient to dispense fluid for many uses at various destinations (e.g., sinks). However, in some cases, additional fluid pressure or “fluid velocity” is needed (e.g., showers).
A pump activation assembly 40 can be positioned downstream from the tank 12 and the pump 22 and upstream from the valve 32. The pump activation assembly 40 can control the motor 24 and the pump 22. The pump activation assembly 40 can control whether the pump 22 is turned on to pressurize fluid flowing through the conduits 30 and 38 toward the valve 32, or whether the motor 24 and/or the pump 22 are off, allowing a gravity feed of fluid through the conduits 30 and 38.
In some embodiments, the motor 24 of the pump apparatus 20 can include or be connected to a motor switch 50. The motor switch 50 can be electrically connected to the proximity switch 48 via a conductor 52 and can also be electrically connected to the motor 24 via a conductor 54. When the activation device 48 is moved close enough to the proximity switch 48 to close the proximity switch 48, an electrical connection is made to the motor switch 50 which turns on the motor 24. The motor 24 drives the impeller of the pump 22 and additional fluid pressure is created within the conduits 30 and 38 so that fluid flow through the valve 32 has increased fluid velocity. The type of motor 24 and the power rating of the motor 24 can vary. For example, the horsepower (hp) of the motor 24 can range from about 0.05 hp to about 10 hp, from about 0.5 hp to about 8 hp, and from about 0.1 hp to about 5 hp, etc.
The activation assembly 40 of the pump apparatus 20 can operate as follows. Fluid flow through fluid delivery system 10 can be initiated by opening the valve 32, which can be located at a remote location for dispensing fluid, for example, a sink, toilet or shower. The magnet 56 (as shown in
In some embodiments, the activation device 46 can extend from a vertical position that is substantially perpendicular to the flow of fluid (as indicated by arrow 34) to a position that is substantially parallel to the flow of fluid, in which case the angle alpha is approximately 90 degrees. Depending upon the flow rate of fluid causing the activation device 46 to rotate, the activation device 46 reaches an activation position at which the magnetic field created by the magnet 56 causes the proximity switch 48 to close. The activation device 46 can be rotated at some angle of rotation less than angle alpha, for example angle alpha minus angle beta, at which the activation device 46 is in the activation position. The activation position can depend upon several factors, including but not limited to, the type and/or strength of the magnet 56, the type of proximity switch 48, the weight of the activation device 46, and the tension between the activation device 46 and the axis 41 about its pivot point, for example. The activation position need not be a single position and can be a full range of positions within the sweep of angle beta, for example, as the activation device 46 sweeps from a vertical position toward a horizontal position in the direction of fluid flow.
The activation position can be set or predetermined based upon the fluid flow rate or the fluid velocity demanded by the fluid delivery system 10. For example, when the valve 32 is closed and the flow rate of the fluid is zero, the activation device 46 can be spaced a distance from the proximity switch 48, the proximity switch 48 can be open, and the motor 24 and the pump 22 can be off. When the valve 32 is opened, the fluid pushes against the activation device 46. Depending upon the extent to which the valve 32 is opened, the velocity head of the fluid can cause the activation device 46 to rotate or pivot about the axis 41, which may or may not cause the activation device 46 to reach the activation position. The fluid 16 may push the activation device 46 toward the proximity switch 48, or may flow around the activation device 46 through the annular clearance 59 (as shown in
When the proximity switch 46 reaches the activation position and is oriented at an angle beta, relative to the direction of fluid flow, the proximity switch 48 can close and the motor switch 50 can be turned on to operate the motor 24 and the pump 22. For example, the activation device 46 can be oriented along an angle, such as less than about 90 degrees, less than about 60 degrees, less than about 30 degrees, etc., relative to the direction of flow. When the proximity switch 48 closes, the pump 22 can pressurize the fluid 16 within the fluid delivery system 10 to increase the flow rate or flow velocity of the fluid through the conduits 30 and 38. When the demand for fluid downstream is decreased, for example, by partially or completely closing the valve 32, the activation device 46 can rotate away from the activation position toward its vertical resting position. The magnet 56 can fall to a resting position due to its weight and gravity, causing the magnet 56 to move away from the proximity switch 48. The magnetic field created by the activation device 46 is no longer strong enough to cause the proximity switch 48 to be maintained in a closed position. The proximity switch 48 can open and electrical current to the motor switch 50 can cease in order to turn the motor 24 and the pump 22 off.
The activation position can be predetermined so that the activation device 46 reaches the activation position when the flow rate of the fluid is, for example, at least about one liter per minute, at least about two liters per minute, at least about three liters per minute, at least about ten liters per minute, etc. For example, the activation position can be predetermined so that the activation device 46 reaches the activation position when the flow rate ranges from about one liter per minute to about ten liters per minute. The flow rate of the fluid can be controlled by the size of the orifice or opening within the valve 32, or the degree to which the valve 32 is opened. Thus, smaller valve openings can be chosen for fluid destinations that require a relatively low flow rate (e.g., a sink), whereas larger valve openings can be chosen for fluid destinations that require a relatively high flow rate (e.g., showers or toilets). The weight of the magnet 56 and housing 58 in
In one embodiment, the proximity switch 48 can include a reed switch. The proximity switch 48 can operate with a current that ranges from about 0.1 milliamps to about ten milliamps, from about one milliamp to about eight milliamps, from about three to about five milliamps, etc. The magnet 56 of the activation device 46 can create a magnetic field that causes the conductors within the proximity switch 48 to close to complete the circuit. When the circuit within the proximity switch 48 is closed, it sends a current to the motor switch 50 which then turns on the motor 24. In some embodiments, the motor switch 50 can be a triac switch, a solid state switch, a relay, etc. The motor switch 50 can operate with a higher current than the proximity switch 48, and can operate with a current that ranges, for example, from about 0.1 amps to about fifty amps, from about 0.5 amps to about twenty amps, from about 0.5 amps to about ten amps, etc.
The activation assembly 94 can be located in a vertical section of the conduit 38. An expanded view (dotted lines) illustrates the activation assembly 94 positioned within a coupling 96 connected by threads 98 of the conduit 38. The activation assembly 94 can include an activation device 100 with a magnet 104 in a housing 102. The activation device 100 can move in a substantially axial direction (with the flow of fluid indicated by an arrow 112) through the coupling 96. The magnet 104 can be located at d1 and can be movable in a substantially linear direction to a terminating position d2 (in phantom in
The movement of the activation device 100 by a predetermined flow rate can cause the proximity switch 100 to close in the activated position. When the proximity switch 100 closes, an electrical signal is sent to the motor switch 50 via a conductor 108 to turn on the motor 24 and the pump 22 via another conductor 54. The distance the activation device 100 travels upward to reach an activation position depends upon many factors, such as the strength of the magnetic field caused by magnet 104, the type of proximity switch 106, and the weight of the activation device 100. The proximity switch 106 is shown extending transverse across the diameter of the coupling 96 and can be used as a stop. However, the proximity switch 106 can be positioned along an inside surface of the coupling 96 or can be located external to the coupling 96.
The magnet 104 can be at least partially surrounded by a housing 102 of the activation device 100. The magnet 104 can be fully enclosed by the housing 102, as long as the wall thickness of the housing 102 allows transmission of magnetic waves. The housing 102 can be constructed of many different types of materials, for example, a polymeric material, such as thermoset and/or thermoplastic materials.
There are many alternative arrangements in which the activation device 100 can move between an activated position and an inactivated position relative to the proximity switch 106 and depending upon the fluid flow. For example, in another embodiment, the activation assembly 94 can include a spring attached to the activation device 100 on one end and directly or indirectly anchored to the coupling 96. When the flow rate is great enough to either elongate or compress the spring, the magnet 104, and/or the housing 102, can move in a horizontal or vertical position to create a magnetic field with the proximity switch 106. The spring can be selected with a predetermined spring constant that can cause the activation device 100 to close the proximity switch 106 at a desired or predetermined flow rate of fluid 16 through the fluid delivery system 90.
An activation assembly housing 222 can be position in the channel 216 and can include a flange 224 for securing the activation assembly housing 222 to the pump and motor housing 206. The activation assembly housing 222 can include a first portion 226 forming a channel 228, as shown in
The activation assembly 212 can further include a proximity switch 250 that can be positioned within the pump and motor housing 206 as shown in
As shown in
In some embodiments, the activation assembly housing 222 can be separate from and mounted to the pump and motor housing 206. This arrangement can facilitate manufacture of the pump apparatus 200 and assembly of the activation assembly 212 with the pump apparatus 200. However, in other embodiments, the activation assembly housing 222 is integral to the pump and motor housing 206 so that the housing 232 is pivotably coupled to the channel 216 and the curved ledge 260 is formed on an inner surface of the channel 216.
The housing 232 can be positioned at an initial angle alpha when the valve is closed or the fluid flow rate is zero. Angle alpha can correspond to the position of the activation device 212 in
The curved ledge 260 can provide greater control of the flow rate at which the pump 202 is activated. As the valve is opened and fluid flows through the channel 216, substantially no fluid is allowed beyond the housing 232 until the housing 232 has pivoted beyond the angle beta. However, once the fluid flow is sufficient to pivot the housing 232 beyond the angle beta, only a small increase in additional fluid flow is needed to pivot the housing 232 to a position sufficiently close to the proximity switch 250 to activate the proximity switch 250 and turn the motor 204 on. This can reduce the necessary flow rate through the channel 216 at which the motor 204 is turned on to drive the pump 202. In other words, the pump 202 is engaged to pressurize fluid flowing through the channel 216 at a lower fluid flow rate. As a result, the pump apparatus 200 can be used in conjunction with flow delivery systems in which the fluid flow rate at which the pump apparatus 200 is desired to be engaged is relatively low. While a variety of factors can be adjusted to select the pump turn-on flow rate (e.g., the strength of the magnet 234 and/or the distance between the housing 232 and the proximity switch 250), the curved ledge 260 can provide a mechanism for reducing the pump turn-on flow rate without using a stronger magnet or a more sensitive proximity switch.
The curved ledge 260 can also provide a more robust pump apparatus 200 after installation. The pump apparatus 200 can be installed on, for example, an unleveled or uneven wall or floor, without substantially affecting the fluid flow rate at which the motor 204 is turned on.
Thus, the invention provides, among other things, a fluid delivery system which increases fluid pressure through the fluid delivery system in response to the flow of fluid through the fluid delivery system. Various features and advantages of the invention are set forth in the following claims.
This application claims the benefit of Provisional U.S. Patent Application Ser. No. 60/840,285, filed Aug. 25, 2006, the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60840285 | Aug 2006 | US |