In the pharmaceutical, biotechnology and even food, beverage and cosmetic industries, it is often desired to provide large scale processing systems that are capable of handling fluids in a sterile manner. These large scale processing systems are designed to prevent unwanted and often dangerous organisms, such as bacteria, as well as unwanted and potentially harmful environmental contaminants, such as dust, dirt and the like from entering into the process stream and/or end product. In order to prevent these types of outside contaminants from entering these systems it is desirable to have a completely sealed processing system. However, completely closed processing systems are not always possible since there is a need for the introduction or removal of materials from the process stream in order to add components of the product, such as media or buffers to a bioreactor; withdraw samples from the process stream to check for microbial contamination, quality control, process control, etc; and to collect the product into its final container such as vials, syringes, sealed boxes, bottles and the like.
Traditionally, processing systems have been made of stainless steel, wherein the stainless steel systems are exposed to live steam before use, and then cleaned with chemicals such as caustic solutions after use, to ensure that all contaminants and the like are removed. Steaming is the most effective means of sterilization. The use of steam in a set system is known as steaming in place or SIP. Saturated steam carries 200 times the BTU heat transfer capacity of heated air because of the latent heat released by the steam as it changes from vapor to liquid.
However, several disadvantages exist with the use of steam. Any connection to, or opening of, the processing system made after the system has been steamed in place is an aseptic (but not sterile) connection or opening. This increases the risk of contamination of the entire system. Typically alcohol wipes or an open flame are used to clean the components intended to be connected to the system, (e.g., connecting a sample collection bag to a system after SIP has occurred) and thus minimizes the risk of contamination.
Also, the high temperatures and pressure differentials associated with steam make the selection of filter materials and other components difficult and limited. Additionally, accidental pressure differential at high temperatures can cause a filter, membrane or other non-steel component to fail.
Processing systems that are reused need to undergo rigorous testing and validation to prove to the necessary regulatory authorities that the system is sterile before each use. The validation process and the required cleaning regiment of a previously used system are expensive and time consuming, typically taking up to 1 to 2 years for approval. In addition, certain components are difficult to adequately clean after use in preparation for their next use. Since manufacturers are often looking for ways to reduce both the costs and the time to market for their products, one possible approach at reducing costs and time to market for a product is to adopt an all disposable system that is set up in a sterile fashion, used once and then discarded.
Another possible approach to alleviating the time and expense associated with a systems' cleaning regiment is the use of disposable components for certain reusable components that are more expensive and/or time consuming to clean than other components.
Additionally, disposable components that are used in place of time consuming to clean reusable components should be easy to remove and replace. For example, the ease with which large scale disposable fluid transfer devices, such as valves or connectors, can be removed and replaced, and the manner in which large scale disposable assemblies are integrated into traditional stainless steel processing systems via disposable fluid transfer devices, have the potential to reduce processing costs and improve the efficacy and productivity of these systems.
The present invention relates to a sterile transfer device for fluids, wherein the fluids are liquids or gases. In one embodiment, the transfer device includes a body, a bore formed through at least a portion of the interior of the body, and a linearly moveable plunger contained within the bore. In one embodiment, the bore is a lateral central bore formed through the entire interior length of the body, wherein the body is formed from a rotating first section and a stationary second section, such that the first section rotates around a portion of the stationary second section and the plunger. The rotation of the first section engages the stationary second section and the plunger, driving the plunger linearly within the bore, thereby actuating (i.e., opening/closing) the fluid transfer device. One end of the body includes a connecting component for attaching the device to an upstream component, and one end of the plunger includes a connecting component for attaching the device to a downstream component. In one embodiment, the plunger includes first and second openings, and a fluid channel in at least a portion of the interior of the plunger, connecting the first and second openings, thereby forming a pathway for fluid to travel from an upstream component to a downstream component when the fluid transfer device is in the opened position. When the device is in the closed position, the first end of the plunger is in alignment with the connecting component at one end of the body, forming a seal against fluid in the upstream component from entering the device, thereby forming a steamable face and a sterile barrier against environmental contaminants for any downstream component.
In another embodiment, the present invention relates to a fluid transfer device in use, wherein the device is in the closed position and attached to a downstream component(s), such as tubing connected to a bag, at one end of the plunger at a connecting component. Next, the entire fluid transfer device and the attached downstream component are sterilized, such as with gamma radiation or the like. Next, an upstream component (s), such as a filter outlet, a tank outlet, or a pipe is attached to a face formed at another end of the device when the device is the closed position. This face is formed when a connecting component at one end of the body is in alignment with the bottom portion. Next, the upstream component attached to the device at the face, are then steam sterilized in place (SIP). Finally, the device is then opened when needed, establishing a sterile pathway for fluids traveling from the upstream component through the fluid transfer device to the downstream component.
In another embodiment, the present invention relates to a disposable fluid transfer device for use in traditional stainless steel processing systems or disposable processing systems. The fluid transfer device of the present invention provides a steam sterilizing mating point between the transfer device and an upstream component, and a sterilizeable mating point between the transfer device and a downstream component. Additionally, the transfer device can be conveniently removed from the processing system and discarded after use, thereby not requiring a cleaning regiment.
In another embodiment, the present invention also relates to disposable large scale fluid transfer devices for the integration of large scale disposable upstream and/or downstream assemblies into traditional stainless steel systems or disposable systems. The fluid transfer device of the present invention provides a steam sterilizing mating point between the transfer device and an upstream component, and a sterilizeable mating point between the transfer device and a downstream component. Additionally, the transfer device can be conveniently removed from the processing system and discarded after use, thereby not requiring any cleaning regiment.
The present invention will become more fully understood from the detailed description given herein below and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
a is a cross sectional view of an embodiment of the present invention in a closed position;
b is a cross section taken along line 1b-1b;
a and 3b are perspective views of additional embodiments of the present invention of
a and 4b are perspective views of an embodiment of the present invention of
In general, the present invention is a sterile fluid transfer device, such as a flow-through connector or valve, wherein the fluids are liquids and/or gases. In one embodiment, the fluid transfer device has a body, a bore located in the interior of the body, and a linearly movable plunger contained within the bore. The body is formed from a first and a second section. The first section has a first end containing a first opening and a termination attachment component, such as a flange or the like surrounding the first opening for attaching the body to an upstream component(s). The second section has a second end containing a second opening, wherein the bore connects the first and second openings. The first section rotates around a portion of the second section.
The linearly movable plunger includes a first end containing a first opening, a second end containing a second opening, a fluid channel located in the interior of the plunger connecting the first and second openings of the plunger. In one embodiment, the plunger includes a component for inhibiting its rotation, while promoting its linear movement within the bore during rotation of the first section of the body when the device is actuated (i.e., opened/closed).
The fluid transfer device is in the closed position when the first end of the plunger is in alignment with the termination attachment component surrounding the first opening of the body, thereby forming a fluid resistant seal and a steamable face. The device is in the opened position when the first end of the plunger is not in alignment with the termination attachment component surrounding the first opening of the body, thereby permitting fluids to enter the device from an upstream component.
To the extent that the same reference numbers apply to the figures they have been kept the same.
One embodiment of the invention shown in
As shown in
In
As shown in
As shown in
Plunger 62 also has at least two openings, a first opening 64 and a second opening 66. A channel 68 is located in the interior of the plunger and connects the first and second openings (62, 64), thereby forming a fluid pathway to a downstream component. As shown in
One embodiment of the invention as depicted in
As shown in
As shown in
Additionally, by preventing the plunger from rotating when the device is opened or closed, the problem of torsion between device 12 and an attached upstream or downstream component can be averted, since it is not necessary to twist or turn the upstream or downstream components, or the device, when removing or actuating the device since the plunger moves within the bore linearly, and not rotationally.
As shown in
As shown in
As shown in
By way of example, the downstream components attached to the device by the termination connection feature on the plunger can be plastic tubing 72 and the like, as shown in
By way of example, the upstream component attached to the device can be a pipe, a stainless steel or disposable plastic tank having an outlet, and the like, having an attachment flange 88 (as depicted in
When using device 12 to fill a downstream component such as a bag, or any collection vessel attached the tubing 72, the device is opened by rotating section 28 of the body, which moves the plunger 62 linearly (see
One or more seals are arranged along the length and end of the plunger 62 to form a fluid tight seal between various portions of the plunger 62 and the bore 20 when the device is in the closed or opened positions. As shown in
As shown in
Other embodiments of the present invention are also contemplated, such as molding the device 12 into a disposable plastic container such as a disposable process bag for the manufacture and transfer of biotech products and the like. Such bags are readily available from companies such as HyClone (which is part of Thermo Fisher Scientific) of Logan, Utah and Stedim Biosystems of Concord, Calif.
Since the fluid transfer device 12 is preferably provided in a sterile condition, (i.e., the interior of the system and any component connected downstream of the device is pre-sterilized such as with gamma radiation, ethylene gas or the like and shipped in a sterile condition), some type of use indicator (not shown) may be helpful, and capable of informing a user when a system has been used. As an alternative, or in addition to any of the indicator mechanisms discussed above, a shrink wrap indicator (not shown) may be located over the device or at least over the rotating first section of the device to indicate whether the device had been used.
The device is preferably formed a plastic material and may be formed by machining the body and plunger assemblies and then applying the necessary seals and the like, or preferably by molding the body and the plunger separately and assembling them together with the necessary seals and other components. Alternatively, the body may be molded into two separate halves and assembled by attaching the plunger component with the necessary seals and other components to one half of the body, followed by the attaching the remaining half of the body to the plunger, necessary seals, other components, and the first half of the body.
The device may be made of any plastic material capable of withstanding in line steam sterilization. The temperature and pressure of such sterilization is typically about 121° C. and 1 bar above atmospheric pressure. In some instances, it may be desirable to use even harsher conditions such as 142° C. and up to 3 bar above atmospheric pressure. The body and at least the face of the plunger should be capable of withstanding these conditions. Preferably, the entire device is made of the same material and is capable of withstanding these conditions. Suitable materials for this device include but are not limited to PEI (polyetherimide), PEEK, PEK, polysulphones, polyarlysulphones, polyalkoxysulphones, polyethersulphones, polyphenyleneoxide, polyphenylenesulphide and blends thereof. Alternatively, one can make the face portion from ceramic or metal inserts alone, or that are overmolded with a plastic cover. One can also form a polymeric face with a metal outer layer using plasma coating processes.
The seals of the present invention can be made of a variety of materials typically used for making resilient seals. These materials include but are not limited to natural rubber, synthetic rubbers, such as silicone rubbers, including room temperature vulcanizable silicone rubbers, catalyzed (such as by platinum catalysts) silicone rubbers and the like, thermoplastic elastomers such as SANTOPRENE® elastomers, polyolefins such as polyethylene or polypropylene, especially those containing gas bubbles introduced either by a blowing agent or entrained gas such as carbon dioxide, PTFE resin, thermoplastic perfluoropolymer resins such as PFA and MFA resins available from Ausimont, USA Inc., of Thorofare, N.J. and E.I. DuPont de Nemours of Wilmington, Del., urethanes, especially closed cell foam urethanes, KYNAR® PVDF resin, VITON® elastomer, EPDM rubber, KALREZ resin and blends of the above.
Suitable materials for molded in place seals can be curable rubbers, such as room temperature vulcanizable silicone rubbers, thermoplastic elastomers such as SANTOPRENE® elastomers, polyolefins such as polyethylene or polypropylene, especially those containing gas bubbles introduced either by a blowing agent or entrained gas such as carbon dioxide and elastomeric fluoropolymers
Other materials used in the devices should also be FDA grade components such as FDA grade silicones, PTFE resins and the like.
The present invention provides a sterile and steam sterilizable in place connecting device for fluid transfer. It may be single actuation (one open one close) or it may be multiple actuations with a single sterile connection (multiple openings and closings) so long as the sterile connection upstream and downstream is maintained. Additionally, with the use of multiple seals or seals of long length, one is able to ensure that the sterility of the device is maintained even with multiple actuations.
Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only and are not meant to be limiting in any way. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/003,364, filed on Nov. 16, 2007 the entire contents of which are incorporated by reference herein. The present invention relates to a fluid transfer device. More particularly, it relates to a disposable, sterile, fluid transfer device in the form of a flow-through connector or valve for use in the pharmaceutical and biopharmaceutical industries.
Number | Name | Date | Kind |
---|---|---|---|
214367 | Colvin | Apr 1879 | A |
988378 | Olson | Apr 1911 | A |
1503132 | Prator | Jul 1924 | A |
1585163 | Milner | May 1926 | A |
1831457 | Larsen | Nov 1931 | A |
1852445 | Calkins et al. | Apr 1932 | A |
2012836 | Talbot et al. | Aug 1935 | A |
2122991 | Polston | Jul 1938 | A |
2240888 | Hageline | May 1941 | A |
2426808 | Auer | Sep 1947 | A |
2642256 | Stehlin | Jun 1953 | A |
2712881 | Mathisen | Jul 1955 | A |
2736201 | Ohlsen et al. | Feb 1956 | A |
2767587 | Perkins | Oct 1956 | A |
2776473 | Dailey et al. | Jan 1957 | A |
2779350 | Owens | Jan 1957 | A |
2844964 | Guibert | Jul 1958 | A |
2859932 | Mackal | Nov 1958 | A |
2865394 | Presley | Dec 1958 | A |
2872817 | Pitts | Feb 1959 | A |
2952269 | Stehlin | Sep 1960 | A |
2994224 | Brown | Aug 1961 | A |
3038485 | Hosek | Jun 1962 | A |
3039482 | Goldberg | Jun 1962 | A |
3097532 | Brown et al. | Jul 1963 | A |
3219047 | Kircher, III et al. | Nov 1965 | A |
3223100 | Koenig et al. | Dec 1965 | A |
3244376 | Thompson | Apr 1966 | A |
3260120 | Stilwell | Jul 1966 | A |
3276447 | Hamilton et al. | Oct 1966 | A |
3319622 | Shiner | May 1967 | A |
3390677 | Razimbaud | Jul 1968 | A |
3424181 | Morse | Jan 1969 | A |
3479880 | Mutter et al. | Nov 1969 | A |
3525350 | Hosek | Aug 1970 | A |
3621719 | Goodman et al. | Nov 1971 | A |
3633621 | Myers | Jan 1972 | A |
3638499 | Saint-Andre | Feb 1972 | A |
3678959 | Liposky | Jul 1972 | A |
3696932 | Rosenberg | Oct 1972 | A |
3736099 | Begg et al. | May 1973 | A |
3747411 | McDermott et al. | Jul 1973 | A |
3776042 | Werra et al. | Dec 1973 | A |
3779082 | Galloway | Dec 1973 | A |
3802782 | Natelson | Apr 1974 | A |
3848581 | Cinqualbre et al. | Nov 1974 | A |
3858449 | Singer | Jan 1975 | A |
3921456 | Newcomb, Jr. et al. | Nov 1975 | A |
3985332 | Walker | Oct 1976 | A |
4015631 | Hayes | Apr 1977 | A |
4018059 | Hatch | Apr 1977 | A |
4034775 | Slagel | Jul 1977 | A |
4055179 | Manschot et al. | Oct 1977 | A |
4061709 | Miller et al. | Dec 1977 | A |
4064003 | Newton | Dec 1977 | A |
4094197 | Harris, Sr. et al. | Jun 1978 | A |
4207922 | Andrieux et al. | Jun 1980 | A |
4244224 | Conn | Jan 1981 | A |
4294247 | Carter et al. | Oct 1981 | A |
4296759 | Joslin et al. | Oct 1981 | A |
4325401 | Ukai et al. | Apr 1982 | A |
4346609 | Diesel | Aug 1982 | A |
4353386 | Slagel | Oct 1982 | A |
4378824 | Carder, Sr. | Apr 1983 | A |
4423641 | Ottung | Jan 1984 | A |
4423642 | Kuboichi | Jan 1984 | A |
4454772 | Brunner et al. | Jun 1984 | A |
4458543 | Mieth | Jul 1984 | A |
4479393 | Shores | Oct 1984 | A |
4525127 | Welker | Jun 1985 | A |
4527436 | Jones | Jul 1985 | A |
4537593 | Alchas | Aug 1985 | A |
4557151 | Welker | Dec 1985 | A |
4569236 | Kitchen et al. | Feb 1986 | A |
4580452 | Masson | Apr 1986 | A |
4584887 | Galen | Apr 1986 | A |
4587856 | Otis | May 1986 | A |
4587887 | Shibayama et al. | May 1986 | A |
4622457 | Bradley et al. | Nov 1986 | A |
4630847 | Blenkush | Dec 1986 | A |
4657027 | Paulsen | Apr 1987 | A |
4669312 | Maurer | Jun 1987 | A |
4669321 | Meyer | Jun 1987 | A |
4704910 | Conrad | Nov 1987 | A |
4826055 | Stull | May 1989 | A |
4836236 | Ladisch | Jun 1989 | A |
4838877 | Massau | Jun 1989 | A |
4861239 | Simmons et al. | Aug 1989 | A |
4913185 | Mattei | Apr 1990 | A |
4941517 | Galloway | Jul 1990 | A |
4942901 | Vescovini | Jul 1990 | A |
4944875 | Gaignet | Jul 1990 | A |
4997108 | Hata | Mar 1991 | A |
5058619 | Zheng | Oct 1991 | A |
5095765 | Filbey et al. | Mar 1992 | A |
5117872 | Yie | Jun 1992 | A |
5158558 | Melker et al. | Oct 1992 | A |
5161417 | Strong et al. | Nov 1992 | A |
5177872 | Lewis et al. | Jan 1993 | A |
5246204 | Ottung | Sep 1993 | A |
5285999 | Scholz | Feb 1994 | A |
5296197 | Newberg et al. | Mar 1994 | A |
5360413 | Leason et al. | Nov 1994 | A |
5375477 | Neill et al. | Dec 1994 | A |
5398557 | Shimizu et al. | Mar 1995 | A |
5435339 | Hayes | Jul 1995 | A |
5452746 | Hoobyar et al. | Sep 1995 | A |
5463908 | Rosolia | Nov 1995 | A |
5468388 | Goddard et al. | Nov 1995 | A |
5474546 | Ambrisco et al. | Dec 1995 | A |
D366935 | Arthun et al. | Feb 1996 | S |
5520218 | Hlavinka et al. | May 1996 | A |
5525301 | Newberg et al. | Jun 1996 | A |
5533983 | Haining | Jul 1996 | A |
5535635 | Shaw | Jul 1996 | A |
5542305 | Hollinger | Aug 1996 | A |
5549568 | Shields | Aug 1996 | A |
5585576 | Jaeger | Dec 1996 | A |
D381067 | Karmalm | Jul 1997 | S |
5730418 | Feith et al. | Mar 1998 | A |
5747708 | Weiberth | May 1998 | A |
5755155 | Buesing | May 1998 | A |
5766462 | Jones | Jun 1998 | A |
5786209 | Newberg et al. | Jul 1998 | A |
5820614 | Erskine et al. | Oct 1998 | A |
5829425 | Woods et al. | Nov 1998 | A |
5868433 | Matkovich | Feb 1999 | A |
5885255 | Jaeger, Jr. et al. | Mar 1999 | A |
5897526 | Vaillancourt | Apr 1999 | A |
5911252 | Cassel | Jun 1999 | A |
5948998 | Witte et al. | Sep 1999 | A |
6009684 | Buesing | Jan 2000 | A |
6030578 | McDonald | Feb 2000 | A |
6032543 | Arthun et al. | Mar 2000 | A |
6068617 | Richmond | May 2000 | A |
6096011 | Trombley, III et al. | Aug 2000 | A |
6133022 | Newberg | Oct 2000 | A |
6145810 | Connolly et al. | Nov 2000 | A |
6156025 | Niedospial, Jr. et al. | Dec 2000 | A |
6162206 | Bindokas et al. | Dec 2000 | A |
6170800 | Meloul et al. | Jan 2001 | B1 |
6196522 | Yuen et al. | Mar 2001 | B1 |
6210372 | Tessmann et al. | Apr 2001 | B1 |
6221041 | Russo | Apr 2001 | B1 |
6237639 | Jougla et al. | May 2001 | B1 |
6254773 | Biltoft | Jul 2001 | B1 |
6273869 | Vaillancourt | Aug 2001 | B1 |
6306191 | McInerney et al. | Oct 2001 | B1 |
6314987 | Hay | Nov 2001 | B1 |
6345640 | Newberg et al. | Feb 2002 | B1 |
6345645 | Kenna et al. | Feb 2002 | B1 |
D454173 | Almasian et al. | Mar 2002 | S |
6354466 | Karpisek | Mar 2002 | B1 |
6357306 | Jaeger | Mar 2002 | B1 |
6360794 | Turner | Mar 2002 | B1 |
6386137 | Riche | May 2002 | B1 |
6390127 | Schick | May 2002 | B2 |
6477906 | Peterson | Nov 2002 | B1 |
6516677 | Suter | Feb 2003 | B1 |
6558365 | Zinger et al. | May 2003 | B2 |
6568844 | Arthun et al. | May 2003 | B1 |
6601823 | Newberg | Aug 2003 | B2 |
6623631 | Graus et al. | Sep 2003 | B1 |
6648006 | Ostergaard | Nov 2003 | B1 |
6672561 | Kerg et al. | Jan 2004 | B2 |
6699229 | Zinger et al. | Mar 2004 | B2 |
6715624 | Brockwell | Apr 2004 | B2 |
6779575 | Arthun | Aug 2004 | B1 |
6860162 | Jaeger | Mar 2005 | B1 |
6871669 | Meyer et al. | Mar 2005 | B2 |
6902144 | deCler | Jun 2005 | B2 |
6916012 | Newberg | Jul 2005 | B2 |
7137974 | Almasian et al. | Nov 2006 | B2 |
7195181 | Steingass et al. | Mar 2007 | B2 |
7272981 | Bigalke | Sep 2007 | B2 |
7273550 | Gutman et al. | Sep 2007 | B2 |
7293475 | Furey et al. | Nov 2007 | B2 |
7293477 | Furey et al. | Nov 2007 | B2 |
7350535 | Liepold et al. | Apr 2008 | B2 |
7473360 | Hoffman et al. | Jan 2009 | B2 |
7488446 | Meyer et al. | Feb 2009 | B2 |
7578205 | Belongia | Aug 2009 | B2 |
7578936 | Gaignet et al. | Aug 2009 | B2 |
7597683 | Myhrberg et al. | Oct 2009 | B2 |
RE41169 | Arthun | Mar 2010 | E |
7722733 | Tomasetti et al. | May 2010 | B2 |
7753340 | Liepold et al. | Jul 2010 | B2 |
7815362 | Myhrberg et al. | Oct 2010 | B2 |
7921740 | Furey et al. | Apr 2011 | B2 |
7927316 | Proulx et al. | Apr 2011 | B2 |
7959754 | Arthun | Jun 2011 | B2 |
8029023 | Arthun et al. | Oct 2011 | B2 |
8167480 | Myhrberg et al. | May 2012 | B2 |
8281961 | Martin | Oct 2012 | B2 |
8517998 | Proulx et al. | Aug 2013 | B2 |
8539988 | Guedon | Sep 2013 | B2 |
8544497 | Hillier et al. | Oct 2013 | B2 |
8549935 | Furey et al. | Oct 2013 | B2 |
8562572 | Proulx et al. | Oct 2013 | B2 |
8579871 | Proulx et al. | Nov 2013 | B2 |
20020129858 | Meyer et al. | Sep 2002 | A1 |
20030188588 | Jaeger | Oct 2003 | A1 |
20050016620 | Proulx et al. | Jan 2005 | A1 |
20050035597 | Bamberger et al. | Feb 2005 | A1 |
20050090797 | Almasian et al. | Apr 2005 | A1 |
20050132821 | Furey et al. | Jun 2005 | A1 |
20050150546 | Liepold et al. | Jul 2005 | A1 |
20050285066 | Huang | Dec 2005 | A1 |
20060081804 | Cong | Apr 2006 | A1 |
20060086922 | Jensen et al. | Apr 2006 | A1 |
20060091060 | Gutman et al. | May 2006 | A1 |
20060142730 | Proulx et al. | Jun 2006 | A1 |
20060201263 | Furey et al. | Sep 2006 | A1 |
20060211995 | Myhrberg et al. | Sep 2006 | A1 |
20060243942 | Liepold et al. | Nov 2006 | A1 |
20060272432 | Belongia | Dec 2006 | A1 |
20070106264 | Proulx et al. | May 2007 | A1 |
20070193375 | Pandori et al. | Aug 2007 | A1 |
20070253287 | Myhrberg et al. | Nov 2007 | A1 |
20080000820 | Mitchell | Jan 2008 | A1 |
20080022785 | Furey et al. | Jan 2008 | A1 |
20080087860 | Vaillancourt et al. | Apr 2008 | A1 |
20080103476 | Schulte | May 2008 | A1 |
20080185552 | Myhrberg et al. | Aug 2008 | A1 |
20080277878 | Arthun et al. | Nov 2008 | A1 |
20090019952 | Furey et al. | Jan 2009 | A1 |
20090054758 | Dunseath | Feb 2009 | A1 |
20090101575 | Alburty et al. | Apr 2009 | A1 |
20090250157 | Arthun | Oct 2009 | A1 |
20100123094 | Zumbrum | May 2010 | A1 |
20100133459 | Zumbrum | Jun 2010 | A1 |
20100154569 | Guedon | Jun 2010 | A1 |
20100158759 | Olivier | Jun 2010 | A1 |
20100290311 | Myhrberg et al. | Nov 2010 | A1 |
20100326212 | Furey et al. | Dec 2010 | A1 |
20110155258 | Zumbrum | Jun 2011 | A1 |
20110155274 | Zumbrum | Jun 2011 | A1 |
20110197989 | Proulx et al. | Aug 2011 | A1 |
20110253233 | Hillier et al. | Oct 2011 | A1 |
20130199639 | Hartnett et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
101022875 | Aug 2007 | CN |
2161702 | Jun 1973 | DE |
32 15799 | Nov 1983 | DE |
3 633 431 | Apr 1988 | DE |
3 701 250 | Jul 1988 | DE |
8812723 | Dec 1998 | DE |
100 39 196 | Feb 2002 | DE |
603 10 700 | Oct 2007 | DE |
0 103 396 | Mar 1984 | EP |
0107579 | May 1984 | EP |
0154002 | Sep 1985 | EP |
0 510 355 | Oct 1992 | EP |
0508749 | Oct 1992 | EP |
0 576 380 | Dec 1993 | EP |
0 468 957 | Jun 1994 | EP |
0 684 050 | Nov 1995 | EP |
0691492 | Jan 1996 | EP |
1008359 | Jun 2000 | EP |
1 231 699 | Aug 2002 | EP |
1321699 | Jun 2003 | EP |
1 329 210 | Jul 2003 | EP |
1548420 | Jun 2005 | EP |
1 370 788 | Nov 2005 | EP |
0858589 | Dec 2005 | EP |
1 499 382 | Dec 2006 | EP |
1 962 076 | Aug 2008 | EP |
943132 | Nov 1963 | GB |
1381391 | Jan 1975 | GB |
1418046 | Dec 1975 | GB |
1463303 | Feb 1977 | GB |
1479226 | Jul 1977 | GB |
1511240 | May 1978 | GB |
1573482 | Aug 1980 | GB |
2 327 369 | Jan 1999 | GB |
2365511 | Feb 2002 | GB |
42-15498 | Sep 1967 | JP |
44-4942 | Feb 1969 | JP |
49-112631 | Sep 1974 | JP |
58-131802 | Sep 1983 | JP |
59-38278 | Mar 1984 | JP |
2-052667 | Feb 1990 | JP |
2-71728 | Mar 1990 | JP |
02-118276 | May 1990 | JP |
2-121679 | Oct 1990 | JP |
03-141948 | Jun 1991 | JP |
6-010845 | Feb 1994 | JP |
6-023045 | Feb 1994 | JP |
06-327772 | Nov 1994 | JP |
07-051371 | Feb 1995 | JP |
8-502339 | Mar 1996 | JP |
08-168535 | Jul 1996 | JP |
9-154945 | Jun 1997 | JP |
9-512892 | Dec 1997 | JP |
11-141713 | May 1999 | JP |
11-270705 | Oct 1999 | JP |
11-514741 | Dec 1999 | JP |
2000-055792 | Feb 2000 | JP |
2001-170188 | Jun 2001 | JP |
2001-269401 | Oct 2001 | JP |
2002-510996 | Apr 2002 | JP |
2004-332797 | Nov 2004 | JP |
2005-181336 | Jul 2005 | JP |
2005-519825 | Jul 2005 | JP |
2006-516723 | Jul 2006 | JP |
2008-185218 | Aug 2008 | JP |
2009-2965 | Jan 2009 | JP |
2009-192540 | Aug 2009 | JP |
4332106 | Sep 2009 | JP |
649954 | Feb 1979 | SU |
8602450 | Apr 1986 | WO |
9012972 | Nov 1990 | WO |
9100215 | Jan 1991 | WO |
9408173 | Apr 1994 | WO |
9419086 | Sep 1994 | WO |
9530856 | Nov 1995 | WO |
9630076 | Oct 1996 | WO |
9716715 | May 1997 | WO |
9845188 | Oct 1998 | WO |
9850105 | Nov 1998 | WO |
9903568 | Jan 1999 | WO |
9906089 | Feb 1999 | WO |
9926580 | Jun 1999 | WO |
0078472 | Dec 2000 | WO |
03090842 | Nov 2003 | WO |
03090843 | Nov 2003 | WO |
2005012775 | Feb 2005 | WO |
2006022816 | Mar 2006 | WO |
2006026253 | Mar 2006 | WO |
2008042285 | Apr 2008 | WO |
2008048511 | Apr 2008 | WO |
2008136720 | Nov 2008 | WO |
2010008395 | Jan 2010 | WO |
2010008396 | Jan 2010 | WO |
2013011231 | Jan 2013 | WO |
Entry |
---|
Extended European Search Report received for EP Patent Application No. 08253748.1, mailed on Dec. 21, 2010, 8 pages. |
International Search Report for PCT/US03/12924, dated Aug. 6, 2003, 2 pages. |
International Search Report for PCT/US03/12927 dated Aug. 6, 2003, 3 pages. |
International Search Report for PCT/US03/13073 dated Aug. 6, 2003, 7 pages. |
International Preliminary Examination Report for PCT/US03/12927 dated Feb. 11, 2004, 2 pages. |
International Preliminary Examination Report for PCT/US03/12924 dated Jul. 8, 2004, 11 pages. |
International Preliminary Report on Patentability (Appln. No. PCT/US2008/070482, filed Jul. 18, 2008) mailed Jan. 27, 2011, pp. 1-6. |
International Preliminary Report on Patentability (Appln. No. PCT/US2008/070488, filed Jul. 18, 2008) mailed Jan. 27, 2011, pp. 1-6. |
European Search Report EP 1548420 A3, regarding EP App. No. 04029883, dated Mar. 13, 2006, 4 pages. |
Greene, R., et al., “Disposable Equipment: A Mainstay in Bioprocessing”, Chemical Engineering Progress, vol. 98, Issue 11, (Nov. 2002), 9 pages. |
Haughney, H., et al., “Taking Disposable Processing to the Next Level”, Clean Rooms, (Jun. 2004), 5 pages. |
Colder Products—Quick Couplings & Fittings for Industrial Applications—Industrial Products, http://www.colder.com/Markets/Industrial/IndustrialProducts/tabid/821/Default.aspx?ProductId=22, dated Oct. 30, 2009, 17 pages. |
Daily Business Briefing—“Entegris Introduces the First All TEFLON PFA/Process Tee Valve”, dated Apr. 16, 2002, 2 pages. |
ESP Sanitary Sample Valves Operation and Maintenance Instructions dated Nov. 1995 (WLG-DEL00039664-WLG-DEL00039678), Millipore Corporation, 16 pages. |
Fluid Line Technology Corporation, FLT Bleed/Sample Valve Maintenance, Nov. 10, 2008. Datasheet [online], Fluid Line Technology. Retrieved from the Internet: www.fluidlinetech.com (1 page). |
Lynx ST Connectors http://www.millipore.com/catalogue/module/c9131 dated Oct. 30, 2009, 9 pages. |
Lynx Trademark Reg. No. 2,831,931, first use Apr. 1, 2003, registered Apr. 13, 2004, 3 pages. |
NovAseptic—How to Use NA sampling system, http://www.novaseptic.se/main.asp?typ=6, dated Feb. 13, 2002, 2 pages. |
NovAseptic, Novaseptum Liquid Sampling System—Totally Enclosed System/ No Cross Contamination/ Presterilized Disposable Unit/ Pyrogen Free, p. 1-4, Feb. 2003. |
Opticap Valve: Millipore Application Note, Jul. 2000, “Gamma Compatible Sterilizing Grade Filter Capsules for Use with Disposable Manufacturing Containers”; 6-pages. |
Opticap Vent; Millipore Data Sheet, Apr. 2005, “Gamma Compatible Sterilizing-grade Durapore 0.1 um and 0.22 um Filters”, 8-pages. |
Opticap3; Millipore Corporation, Nov. 2001, “Opticap TM Capsules with Millistak+™. Media User Guide”, 4-Pages. |
Janetschek, R., “Capsule Filters & Disposable Sterile Processing Systems”, Pharmaceutical Processing, vol. 18, No. 11, p. 8 (Jan. 2001), 4 pages. |
“New quality of data for bioprocessing bags. (Application Area).” Pharmaceutical Processing, Jan. 2002, Charter Medical, Ltd., Bioprocess Products, Retrieved from the Internet on Feb. 16, 2010 from accessmylibrary: <URL: http://www.accessmylibrary.com/coms2/summary—0286-25022745—ITM>, pp. 1-2. |
Pharmenta AptiPort Sampling Valve, http://www.web.archive.org/web/20031029084907/http://www.pharmenta.com/aptiport.htm, 1 page, last modified Mar. 29, 2004, retrieved from internet May 8, 2012. |
ITT, Pure-Flo Hygienic diaphragm valves, actuators, and switch packages, http://www.ittpureflo.com/valvetype.html dated May 8, 2012 and Oct. 30, 2009, 12pages. |
Pure-Flo: Sample and Bleed Valves for the pharmaceutical and bioprocessing industries, dated Sep. 1992, ITT Fluid Tech. Corp., (Bates stamp WLG=DEL00039389-WLG-DEL00039394), 6 pages. |
Sani-Tech Globe & Angle Valve product information, dated Aug. 1989 (Bates stamp WLG-DEL00040302-WLG-DEL00040304), 3 pages. |
Steam-In-Place Bag Connector, http://www.fluidcomponents.net/tc—tech.html, download on Feb. 18, 2010, 1 page. |
“Rapid Aseptic Fluid Transfer System Introduction” Stedim Blosystems. [online]. Retrieved from the Internet: <URL: http: www.stedim.com/p2A—IDC—introduction.php> (2 pages), dated Nov. 21, 2007. |
Valves, Gemu Valves and Distributor, Diaphragm Valves, Sanitary Valves, Aseptic Valves, Valves and Fittings, Casella Sales and Marketing, Inc., http://www.casellasales.com, dated May 8, 2012 and Oct. 30, 2009, 13 pages. |
Waukesha Cherry-Burrell Manual Valves, dated May 2000 (Bates stamp CSMI000044-CSMI000066), 23 pages. |
Office Action dated Sep. 22, 2005 in co-pending U.S. Appl. No. 10/500,077. |
Final Rejection dated Apr. 21, 2006 in co-pending U.S. Appl. No. 10/500,077. |
Office Action dated Nov. 16, 2006 in co-pending U.S. Appl. No. 10/500,077. |
Final Rejection dated Sep. 10, 2007 in co-pending U.S. Appl. No. 10/500,077. |
Office Action dated Apr. 15, 2008 in co-pending U.S. Appl. No. 10/500,077. |
Office Action dated Nov. 28, 2008 in co-pending U.S. Appl. No. 10/500,077. |
Final Rejection dated Apr. 14, 2009 in co-pending U.S. Appl. No. 10/500,077. |
Notice of Allowance dated Jan. 25, 2010 in co-pending U.S. Appl. No. 10/500,077. |
Notice of Allowance dated Apr. 15, 2010 in co-pending U.S. Appl. No. 10/500,077. |
Office Action dated Aug. 12, 2010 in co-pending U.S. Appl. No. 10/500,077. |
Notice of Allowance dated Dec. 7, 2010 in co-pending U.S. Appl. No. 10/500,077. |
Office Action dated Aug. 19, 2009 in co-pending U.S. Appl. No. 11/350,384. |
Final Rejection dated May 12, 2010 in co-pending U.S. Appl. No. 11/350,384. |
Office Action mailed Aug. 25, 2011 in co-pending U.S. Appl. No. 11/350,384. |
Final Rejection mailed Mar. 5, 2012 in co-pending U.S. Appl. No. 11/350,384. |
Office Action dated Mar. 16, 2010 in co-pending U.S. Appl. No. 11/584,301. |
Millipore's Initial Infringement Contentions, Document No. 19, filed Oct. 8, 2009 in the United States District Court for the District of Massachusetts, Civil Action No. 09-10765 DPW, 16 pages. |
Gore's Preliminary Non-Infringement Contentions to Plaintiff Millipore Corporation, Document No. 20, filed Oct. 29, 2009 in the United States District Court for the District of Massachusetts, Civil Action No. 09-10765 DPW, 30 pages. |
Gore's Preliminary Invalidity Contentions to Plaintiff Millipore Corporation, Document No. 21, filed Oct. 29, 2009 in the United States District Court for the District of Massachusetts, Civil Action No. 09-10765 DPW, 108 pages. |
Preliminary Noninfringement and Invalidity Disclosures of Allpure Technologies, Inc., Document 22, filed Jul. 20, 2011 in the United States District Court for the District of Massachusetts, Civil Action No. 11-cv-10221-DPW, 15 pages. |
Gore's First Supplemental Response to Millipore's First Set of Interrogatories [Interrogatory Nos. 11, 15 and 16] dated Nov. 1, 2011, United States District Court for the District of Delaware, Civil Action No. 11-346-SLR, 86 pages. |
Gore's Third Supplemental Response to Millipore's First Set of Interrogatories [Interrogatory No. 11], Civil Action No. 11-346-SLR, United States District Court for the District of Delaware, dated Dec. 21, 2011, part 1—pp. 1-43; part 2—pp. 44-85 with Exhibits A-E (334 pages), Exhibits F-G (115 pages) and Exhibits H-I (114 pages). |
Gore's Fourth Supplemental Response to Millipore's First Set of Interrogatories [Interrogatories Nos. 11 and 12], Civil Action No. 11-346-SLR in the USDC for the District of Delaware, dated May 9, 2012, 172 pages. |
Memorandum and Order, Document No. 70, dated Sep. 20, 2010, in the United States District Court for the District of Massachusetts, Civil Action No. 09-10765-DPW, 59 pages. |
Correspondence from T. Pender to C. Burrell dated Dec. 2, 2011 regarding C.A. No. 11-CV-346-SLR (Bates Stamp GF000001-GF000008), 8 pages. |
Documents Produced by Third Party Casella Sales and Marketing Inc., Bates No. CSMI000001 through CSMI000066, 65 pages, Nov. 2011. |
Allegheny Bradford Corporation's Objections and Responses to Subpoena, Civil Action No. 1:11-cv-00346-SLR, dated Dec. 15, 2011 in the USDC for the District of Delaware, and Bates # ABC00001 through Bates # ABC000012, 19 pages. |
Fluid Line Technology Corporation Documents produced in Gore v. Millipore, Nov. 28, 2011, Bates # FLT000001 through Bates # FLT000103, 48 pages. |
File history of U.S. Trademark U.S. Appl. No. 78/140,217, filed Jul. 1, 2002, 53 pages. |
File history of U.S. Appl. No. 60/375,747, filed Apr. 26, 2002, Document 53-2, Case 1:09-cv-10765-Dpw, filed May 25, 2010, 50 pages. |
File history of U.S. Appl. No. 60/500,024, filed Sep. 4, 2003, 23 pages. |
About Fluid Line Technology, http://www/fluidlinetech.com/aboutus.html, dated May 8, 2012 and Oct. 30, 2009, 35 pages. |
Allegro Single-use Systems—Recommended Capsule Filters and Membranes, http://www.pall.com/main/Biopharmaceuticals/Product.page?id-48022 and http://www.pall.com/variants/print/biopharm—48022.asp, dated May 8, 2012 and Oct. 30, 2009, 51 pages. |
Tingley, S., “Plastic factory: Disposable biopharmaceutical manufacturing takes a giant leap forward”, Alternative Manufacturing, Clean Rooms, pp. S4-S9, (Feb. 2003), 6 pages. |
Tingley, S., “Plastic factory, Part II: The final pieces of the disposable puzzle”, Alternative Manufacturing, Clean Rooms, pp. 12-14 (Jun. 2003), 4 pages. |
Wendt, D., “BioTrends: Disposable Processing Systems: How Suppliers Are Meeting Today's Biotech Challenges from Fluid Handling to Filtration”, Biopharm International, p. 18 (Jul. 2003), 7 pages. |
Haughney, H. and H. Aranha, “Disposable Processing Gains you a Competitive Edge: Enhancing Manufacturing Capacity with Disposable Filters, Connectors, and Membrane Chromatagraphy”, Biopharm International, p. 50 (Oct. 2003), 7 pages. |
Final Rejection dated Oct. 7, 2010 in co-pending U.S. Appl. No. 11/584,301. |
Office Action mailed Sep. 30, 2011 in co-pending U.S. Appl. No. 12/638,242. |
Notice of Allowance mailed Feb. 16, 2012 in co-pending U.S. Appl. No. 12/638,242. |
Office Action dated Jan. 30, 2009 in co-pending U.S. Appl. No. 11/878,126. |
Final Rejection dated Jul. 26, 2009 in co-pending U.S. Appl. No. 11/878,126. |
Office Action dated Aug. 12, 2009 in co-pending U.S. Appl. No. 11/878,126. |
Office Action dated Sep. 25, 2009 in co-pending U.S. Appl. No. 11/878,126. |
Final Rejection dated Apr. 6, 2010 in co-pending U.S. Appl. No. 11/878,126. |
Notices of Allowance dated Feb. 16, 2011 in co-pending U.S. Appl. No. 11/878,126. |
Notice of Allowance dated Mar. 1, 2011 in co-pending U.S. Appl. No. 11/878,126. |
Office Action dated Mar. 19, 2010 in co-pending U.S. Appl. No. 12/284,666. |
Notice of Allowance dated Oct. 1, 2010 in co-pending U.S. Appl. No. 12/284,666. |
Supplemental Notice of Allowance dated Oct. 7, 2010 in co-pending U.S. Appl. No. 12/284,666. |
Supplemental Notice of Allowance dated Oct. 15, 2010 in co-pending U.S. Appl. No. 12/284,666. |
Supplemental Notice of Allowance dated Oct. 20, 2010 in co-pending U.S. Appl. No. 12/284,666. |
Notice of Allowance mailed Mar. 29, 2012 in co-pending U.S. Appl. No. 12/284,666. |
Miscellaneous Communication mailed Apr. 18, 2012 and Apr. 16, 2012 in co-pending U.S. Appl. No. 12/284,666. |
Office Action mailed Jun. 26, 2012 in co-pending U.S. Appl. No. 12/872,436. |
Office Action mailed Aug. 29, 2012 in co-pending U.S. Appl. No. 12/902,430. |
International Search Report on PCT/US2008/070482, date of mailing: Apr. 16, 2009, 2 pages. |
Written Opinion of the International Searching Authority (Appln. No. PCT/US2008/070482, filed Jul. 18, 2008) mailed Apr. 16, 2009, 4 pages. |
International Search Report on PCT/US2011/021341, date of mailing: Sep. 27, 2011, 4 pages. |
English translation of Chinese Communication issued Aug. 29, 2012 in co-pending Chinese patent application No. CN 201010531386.0. |
Japanese Communication, with English translation, dispatched Aug. 21, 2012 in co-pending Japanese patent application No. JP 2010-245357. |
Office Action mailed Oct. 3, 2012 in co-pending U.S. Appl. No. 13/092,566. |
Final Rejection mailed Oct. 10, 2012 in co-pending U.S. Appl. No. 12/872,436. |
Sanitary Inline Bleed and Sample Valves. Datasheet [online], Fluid Line Technology, Retrieved from the Internet: www.fluidlinetech.com (1 page), document created on Mar. 2, 2009 according to document properties. |
ITT Dualrange Control Valve. Data Sheet [online], Pure-Flo. Retrieved from the Internet: www.ittpureflo.com (2 pages), document created Jan. 12, 2007 according to document properties. |
ITT Sample & Bleed Valves. Datasheet [online], ITT Corporation, Retrieved from the Internet: www.ittpureflo.com (4 pages), document created Feb. 20, 2006 according to document properties. |
Block, S.S., Disinfection, Sterilization, and Preservation (Fourth Edition), Chapter 11, Alcohols, pp. 191-203, by Larson, et al., Lea & Febiger, ISBN:0-8121-1364-0, 1991 (only the year was cited on the publication), 15 pages. |
Guidelines for Using The Lynx ST Connector. Technical Brief [online], Millipore Corporation, Rev. A, Lit. No. TB2137EN00, Apr. 2008, Retrieved from the Internet: www/millipore.com (2 pages). |
Microbiological Analysis (Sampling Equipment)—Sampling Ports, p. 130, 1989 (only the year is available for this publication). |
“Connecting the Sanitary Flange,” Datasheet [online], Millipore Corporation, Rev. A, 00102085PU, May 2007 (pp. 1-2). |
Landon, R., et al., “Bridging the Gap: A case study in the validation of hybrid connectors”, Process PharmaTEC International, issue Jun. 2004 (RP1007EN00), pp. 16-17, Nov. 2004, 3 pages. |
Pure-Flo Solutions, Pure-Flo Radial Seated Tank Bottom Diaphragm Valve, Datasheet [online], ITT Industries, 2001 (only the year was cited on the publication), (2 pages). |
Risk Free Connection of Sterilized Single-Use Fluid Path Assemblies to Stainless Steel SIP Systems with Lynx ST (Steam-To) Connectors [online], Millipore Corporation Application Note, Rev. A, Lit. No. AN7428EN00, May 2008. Retrieved from the Internet: www.millipore.com (8 pages). |
“Sip-Able Sample Valve,” Datasheet [online]. Retrieved from the Internet: www.fluidlinetech.com (1 page), product offered online as early as Jun. 26, 2007, according to URL search performed on http://web.archive.org. |
Casella Sales & Marketing Inc., CSMI Sample Valves. Datasheet [online]. Retrieved from the Internet: www.casellasales.com (2 pages), product offered online as early as Aug. 2008, according to URL search performed on http://web.archive.org. |
Office Action mailed Nov. 30, 2012 in co-pending U.S. Appl. No. 12/284,666. |
Office Action mailed Dec. 21, 2012 in co-pending U.S. Appl. No. 12/638,283. |
Entegris Impact Asymmetric Disposable Filters, Product Information brochure, 4414-5723ENT-0511, 2006, 6 pages. |
Entegris Impact Mini Disposable Filters, Product Information brochure, 4414-2646ENT-1006, 2006, 4 pages. |
Millipore Corporation, Milli-Q Direct Water Purification System brochure, Lit. No. PB1032EN00, Jan. 2012, 8 pages. |
Millipore Corporation, Milli-Q Advantage A10 Water Purification Systems brochure, Lit. No. PB0001EN00, 2013, 12 pages. |
Millipore Publication, NovAseptic, NovaSeptum Liquid Sampling System, dated Nov. 2001, P75185, Rev. B (Bates stamp—WLG-DEL00040809-WLG-DEL00040813), 6 pages. |
Notice of Allowance mailed Oct. 11, 2013 in co-pending U.S. Appl. No. 12/872,436. |
Japanese Communication, with English translation, mailed Feb. 5, 2013 in corresponding Japanese Patent Application No. JP 2011-179614. |
Japanese Communication, with English translation, mailed Mar. 26, 2013 in corresponding Japanese Patent Application No. 2008-288424. |
Memorandum and Order Denying Millipore's Motion to Alter Judgment and for Reconsideration, U S District Court for the District of Massachusetts, EMD Millipore Corporation v. W. L. Gore & Associates, Inc., Civil Action No. 09-10765-DPW, Document 83, Dated Mar. 20, 2012, 16 pages. |
Gore's Prior Art Statement with Exhibits A through I (entire document), U S District Court for the District of Delaware, W. L Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR, Dated Dec. 21, 2011, 55 pages. |
Millipore's List of Claim Terms to Be Construed and Proposed Constructions, U S District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR, Dated May 30, 2012, 8 pages. |
Gore's List of Claim Terms and Proposed Constructions, U S District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR, Dated May 30, 2012, 4 pages. |
Millipore's Responsive Constructions of Claim Terms, U S District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR, Dated Jun. 20, 2012, 5 pages. |
Gore's List of Responsive Claim Constructions, U S District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR, Dated Jun. 27, 2012, 8 pages. |
Gore's Motion for Leave to Amend Its Complaint for Declaratory Judgment, US District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR-MPT, Document 71, Dated Aug. 8, 2012, 3 pages. |
Exhibits 1 and 2 to Gore's Motion for Leave to Amend Its Complaint for Declaratory Judgment, US District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR-MPT, Document 75, Redacted-Public Version, Dated Aug. 15, 2012, 241 pages. |
Plaintiff Gore's Brief in Support of Motion for Leave to Amend Its Complaint for Declaratory Judgment, US District Court for the District of Delaware, W. L. Gore & Associates, Inc. v. EMD Millipore Corporation, Civil Action No. 11-346-SLR-MPT, Document 76, Dated Aug. 15, 2012, Redacted—Public Version, 23 pages. |
Aesseal Environmental Technology P04U and PO5U Single Bellows Component Seal Range, Jan. 2006, (Exhibit 4 to the Affidavit of Alexander H. Slocum, Ph.D., US District Court for the District of Massachusetts, EMD Millipore Corporation v. AllPure Technologies, Inc., Civil Action No. 1:11-cv-10221-DPW,Document 66-4, dated May 2, 2012), 5 pages. |
Purdue University-School of Mechanical Engineering-International Compressor Engineering Conference, article by J. W. Abar, “End Face Seals for Air-Conditioning Compressors”, 1972 (Exhibit 5 to the Affidiavit of Alexander H. Solcum, PhD, US District Court for the District of Massachusetts, EMD Millipore Corporation v. AllPure Technologies, Inc., Civil Action No. 1:11-cv-10221-DPW,Document 66-5, dated May 2, 2012), 15 pages. |
Memorandum and Order regarding Claim Construction, U S District Court for the District of Massachusetts, EMD Millipore Corporation v. Allpure Technologies, Inc., Civil Action No. 11-10221-DPW, Document 81, Dated Oct. 11, 2012, 34 pages. |
Photographs (7 photos) of the Millipore commercially needleless sampling device; available at least as of Feb. 14, 2012, 7 pages. |
Photographs (3 photos) of the Millipore Opticap XLT base, commercially available in 2002, no earlier than Jan. 1, 2002, 3 pages. |
Photographs (3 photos) of the Millipore Opticap XL 300, commercially available in 2002, no earlier than Jan. 1, 2002, 3 pages. |
Brief for Plaintiff-Appellant, US Court of Appeals, Appeal Nos. 2011-1029, 2012-1371, EMD Millipore Corporation v. W. L. Gore & Associates, Inc., Document 40, dated Jul. 25, 2012 and filed Jul. 27, 2012 , 147 pages, submitted in 2 parts. |
Brief of Defendant-Appellee W. L. Gore & Associates, Inc., US Court of Appeals, Appeal Nos. 2011-1029, 2012-1371, EMD Millipore Corporation v. W. L. Gore & Associates, Inc., Document 52, filed Oct. 9, 2012, 75 pages. |
Reply Brief for Plaintiff-Appellant, US Court of Appeals, Appeal Nos. 2011-1029, 2012-1371, EMD Millipore Corporation v. W. L. Gore & Associates, Inc., Document 57, Dated Nov. 9, 2012, 42 pages. |
AllPure Takeone Aseptic Sampling System Overview, 2 pgs. (Deposition Exhibit dated Nov. 12, 2012). |
ASI Life Sciences, three 60, Single Use Aseptic Sampling System, www.asisus.com, Jan. 10, 2013, 8 pages. |
Fluid Line Technology Corporation, Product Catalog, 32 pages, Bates No. FLT000003-FLT000034, on information and belief available as of about Nov. 2009. |
Gore Single-Use Valve, for Steam-In-Place Applications, 4 pgs. 2009. |
Gore STA-PURE Fluid Sampling System, for Single-Use Aseptic Applications, Secure Sampling for Bioprocessing Fluids, Dec. 2008, 4 pages. |
Lynx ST Connectors, Millipore Data Sheet, Lit. No. 051750EN00, Rev. E, May 2008, 4 pages. |
International Application No. PCT/US03/13073, filed Apr. 25, 2003, and Request for Express Abandonment of U.S. Appl. No. 10/423,131, filed Sep. 11, 2003, 56 pages. |
MicropreSure Sanitary Sampling Valves, Millipore Data Sheet, Lit. No. DS1006EN00, May 2005, 4 pages. |
Millipore Express SHF Hydrophilic Cartridge Filters, Data Sheet, May 16, 2013, www.millipore.com/catalogue, 2 pages. |
Millipore, Hydrophilic Durapore Cartridges and Capsules User Guide, Lit. No. RF 1510EN00, Jan. 2002, 56 pages. |
Millipore, Milliflex-P Sanitary Sampling Valves, Operation and Maintenance Instructions, Jul. 2006, 17 pages. |
NovaSeptum sampling systems, EMD Millipore Data Sheet, Jun. 2012, Lit. # DS0050EN00, Rev. E., 10 pgs. |
NovaSeptum sampling systems, Merck Millipore Data Sheet, Apr. 2013, Lit. # DS0050EN00, Rev. H., 10 pgs. |
Millipore, NovaSeptum AV Sterile Sampling System, for liquid sampling, User Guide, Lit. No. 00000069TP, Rev. A., Jun. 2006, 2 pages. |
Millipore Opticap XL and XLT Disposable Capsules, Millipore Corporation, Lit. No. PB1700EN00, Rev. B, Jun. 2004, 4 pages. |
Pharmaceutical Engineering, vol. 23, No. 3, May/Jun. 2002, pp. 1-8, “Single-Use Disposable Filling for Sterile Pharmaceuticals”, Belongia, et al. |
Redacted email, dated Jun. 4, 2012, regarding Disposable Steam Connector, 2 pages. |
Millipore, Series 2000, Single Sanitary Cartridge Housing, Instructions for Installation and Maintenance, Lit. No. P35265, Rev. A, Feb. 2000, 12 pages. |
ThermoScientific, Data Sheet 053, Rev. 2, “Aseptic Connection Devices”, 2008, 2 pages. |
Notice of Allowance mailed Aug. 2, 2013 in co-pending U.S. Appl. No. 11/350,384. |
Notice of Allowance mailed Apr. 22, 2013 in co-pending U.S. Appl. No. 11/584,301. |
Notice of Allowance mailed Jul. 5, 2013 in co-pending U.S. Appl. No. 11/584,301. |
Notice of Allowance mailed Mar. 22, 2013 in co-pending U.S. Appl. No. 13/092,566. |
Notice of Allowance mailed Jul. 3, 2013 in co-pending U.S. Appl. No. 13/092,566. |
Notice of Allowance mailed Jun. 21, 2013 in co-pending U.S. Appl. No. 12/284,666. |
Notice of Allowance mailed Jul. 8, 2013 in co-pending U.S. Appl. No. 12/284,666. |
Office Action mailed May 3, 2013 in co-pending U.S. Appl. No. 12/872,436. |
Final Rejection mailed Sep. 12, 2013 in co-pending U.S. Appl. No. 12/872,436. |
Notice of Allowance mailed Apr. 8, 2013 in co-pending U.S. Appl. No. 12/902,430. |
Notice of Allowance mailed Jul. 16, 2013 in co-pending U.S. Appl. No. 12/902,430. |
Notice of Allowance mailed Jun. 3, 2013 in co-pending U.S. Appl. No. 12/638,283. |
Notice of Allowance mailed Jul. 18, 2013 in co-pending U.S. Appl. No. 12/638,283. |
Number | Date | Country | |
---|---|---|---|
20090229671 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
61003364 | Nov 2007 | US |