The disclosure of Japanese Patent Application No. 2013-223769 filed on Oct. 28, 2013 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates to a fluid transmission device for a vehicle in which a drive plate is coupled.
2. Description of Related Art
There is a well-known fluid transmission device that includes a cover coupled with a drive plate that is fixed to an output rotational member of a driving source in a relatively non-rotatable manner. As an example of the fluid transmission device, a torque converter that includes a torque-converter case coupled with a drive plate is described in Japanese Patent Application Publication No. 2001-241531 (JP 2001-241531 A). JP 2001-241531 A discloses a vehicle that includes an engine, and a motor that is arranged on the engine side relative to the torque converter. In this vehicle, a boss is provided. The boss is formed so as to protrude from the torque-converter case. The outer surface of the boss, which comes into contact with the radially-outer portion of the drive plate, is inclined at a predetermined angle. The boss includes a through hole between its outer and inner peripheral surfaces. The drive plate is fixed to the boss by screwing a bolt, inserted from the drive-plate side through the through hole, into a nut arranged on the inner surface. With the structure as described above, even when the motor and the like are arranged on the engine side, fastening of the drive plate with the torque-converter case can still be easily performed, as disclosed in JP 2001-241531 A.
As described for the boss in JP 2001-241531 A, a coupling portion that couples a drive plate with a cover (hereinafter, referred to as “fastening portion”) is provided so as to protrude from the cover. Thus, depending on the shape of the fastening portion, for example when it is necessary to ensure a space for inserting a bolt, a fluid transmission device may have a larger overall length in the axis direction accordingly. Further, depending on the arrangement position of the fastening portion, the fastening portion may be more likely to interfere with other constituent components located on the radially outer side relative to the outer periphery of the cover. Because the problems as described above have not been publicly known, there is room for improvement in the ease of mounting.
The present invention provides a fluid transmission device for a vehicle, which can reduce its overall length in the axis direction, and can also suppress interference with other constituent components.
A first aspect of the present invention is directed to a fluid transmission device for a vehicle. The vehicle includes a driving source, and a drive plate that is fixed to an output rotational member of the driving source. The fluid transmission device for a vehicle includes a cover and a positioning member. The cover is configured to be driven rotatably about an axis of the fluid transmission device integrally with the drive plate. The drive plate includes a positioning hole that positions the drive plate and the cover. The positioning member is a columnar member. The positioning member is provided on a surface side of the cover, which is opposed to the drive plate, at a radially outer position of the cover. The positioning member is configured to protrude to a drive-plate side in a state where the positioning member is arranged in the positioning hole. The positioning member is configured to protrude from the drive plate obliquely with respect to an axis direction of the fluid transmission device. A radially outermost position of the positioning member is located on a radially inner side relative to a radially outermost position of the cover.
According to the above aspect, the cover includes the positioning member that is provided so as to protrude to the drive-plate side obliquely with respect to the axis direction of the fluid transmission device. Thus, it is unnecessary to ensure a space for inserting a positioning member (or a fastening member such as a bolt) on the cover side. Accordingly, the overall length of the fluid transmission device in the axis direction can be reduced. Further, the radially outermost position of the positioning member is located on the radially inner side relative to the radially outermost position of the cover. Thus, interference of the fluid transmission device with other constituent components located on the radially outer side relative to the cover can be suppressed.
In the above aspect, the positioning member may be configured to protrude to an outside of the drive plate obliquely with respect to the axis direction of the fluid transmission device. According to the above aspect, while a drive-plate-side portion (a protruding portion) of the positioning member that protrudes to the outside of the drive plate obliquely with respect to the axis direction is more likely to interfere with other constituent components located on the radially outer side relative to the cover, the radially outermost position of the positioning member is located on the radially inner side relative to the radially outermost position of the cover. This is useful in suppressing interference of the fluid transmission device with the other constituent components described above.
In the above aspect, the positioning hole may be provided on a portion of the drive plate that is opposed to the positioning member in the axis direction of the fluid transmission device. According to the above aspect, when the drive plate and the cover are moved in a direction parallel to the axis and are positioned, the positioning member is provided so as to protrude obliquely with respect to the axis direction. Thus, assuming that a hole with a size just large enough to accommodate therein a member with a size equal to the circumference of the positioning member is provided as the positioning hole, the positioning member cannot be inserted through the positioning hole. To address this, the positioning-hole portion that is opposed to the positioning member in the axis direction is a space, and therefore the positioning member can be inserted through the positioning hole without interfering with the positioning hole.
In the above aspect, the positioning member may be a columnar member with a male thread, and the cover and the drive plate may be fastened by tightening a nut to the positioning member arranged in the positioning hole. According to the above aspect, the cover and the drive plate are positioned by inserting the positioning member through the positioning hole, and then are appropriately fastened with the nut that is tightened (screwed) to the positioning member.
In the above aspect, the positioning hole may include a circular portion, and a notched portion that is formed in order that a radially outer side of the circular portion communicates with an outer periphery of the drive plate. The notched portion may have a width in a circumferential direction larger than a width of the positioning member in a circumferential direction. According to the above aspect, the positioning member can be reliably inserted through the positioning hole without interfering with the drive plate. Further, at the time of positioning the cover and the drive plate, some misalignment can be permitted.
In the above aspect, the positioning member may be a columnar member with a male thread. The cover and the drive plate may be fastened by tightening the nut to the positioning member arranged in the positioning hole. According to the above aspect, the cover and the drive plate are positioned by inserting the positioning member through the positioning hole, and then are appropriately fastened with the nut that is tightened (screwed) to the positioning member.
In the above aspect, the notched portion may have a width in the circumferential direction smaller than a diameter of the circular portion. According to the above aspect, when the nut is tightened, the surface area of the nut, which comes into contact with the drive plate, can be increased as much as possible. Thus, the surface pressure applied to a portion of the drive plate, where the nut is tightened, can be reduced.
In the above aspect, a radially outermost position of the positioning hole may be located on a radially outer side relative to the radially outermost position of the positioning member. According to the above aspect, the positioning member can be reliably inserted through the positioning hole without interfering with the drive plate. Further, enlargement of the positioning hole caused by a centrifugal force can be prevented.
In the above aspect, the cover may include a polyhedron-shaped seat. The polyhedron-shaped seat may be provided on the surface side of the cover, which is opposed to the drive plate, at a radially outer position. The polyhedron-shaped seat may be provided so as to protrude toward the drive plate in the axis direction of the fluid transmission device. The polyhedron-shaped seat may include a fixing surface that is perpendicular to the positioning member, and that fixes the positioning member to the polyhedron-shaped seat. A first portion of the drive plate may be bent so as to extend along the fixing surface of the seat. The positioning hole may be provided in the first portion. According to the above aspect, the cover and the drive plate are appropriately positioned by inserting the positioning member through the positioning hole.
In the above aspect, a second portion of the drive plate, which is located on a radially outer side relative to the radially outermost position of the cover, may be bent so as to extend along an outer periphery of the cover. The second portion may be a portion located on the radially outer side relative to the radially outermost position of the cover. According to the above aspect, interference of the drive plate with other constituent components located on the radially outer side relative to the cover can be suppressed.
Features, advantages, and technical and industrial significance of exemplary embodiments of the invention will be described below with reference to the accompanying drawings, in which like numerals denote like elements, and wherein:
A first embodiment of the present invention is described below in detail with reference to the accompanying drawings.
The drive plate 20 is arranged between the clutch K0 (or the electric motor MG) and the torque converter 10. The drive plate 20 is fixed to a connecting shaft 32 that serves as an output rotatable member of the driving source (the engine 16 and the electric motor MG). The drive plate 20 is a disk-shaped rotatable member that is driven rotatably about an axis C by power of the driving source. The drive plate 20 connects the connecting shaft 32 and the torque converter 10 to transmit power of the driving source to the torque converter 10. The axis C is the rotation axis of the connecting shaft 32, and is common to the rotation axis of a transmission input shaft 34 that serves as an input rotatable member of the automatic transmission 22.
The torque converter 10 is coupled with the drive plate 20. The torque converter 10 includes a cover 36 that is driven rotatably about the axis C integrally with the drive plate 20 by power of the driving source. The cover 36 is an input-side rotatable member of the torque converter 10, and rotates integrally with the connecting shaft 32. The transmission input shaft 34 is an output-side rotatable member of the torque converter 10. Thus, the rotation axis of the torque converter 10 is the axis C. The axis of the drive plate 20 and the axis of the cover 36 are concentric.
As shown in
The drive plate 20 is screwed with a plurality of bolts to the end of the connecting shaft 32, and then the drive plate 20 and the cover 36 (particularly, the front cover 36a) are fastened with each other. A fastening structure of the drive plate 20 and the cover 36 is explained below in detail.
In
In the torque converter 1 shown as the comparative example in
The torque converter 10 and the drive plate 20 according to the first embodiment have a fastening structure that can prevent or suppress the concerns described above in the comparative example in
As described above, according to the first embodiment, the cover 36 includes the positioning member 40 that is provided so as to protrude obliquely outward with respect to the direction of the axis C of the torque converter 10 to the side of the drive plate 20. Thus, as it is unnecessary to ensure a space for inserting a positioning member (or a fastening member such as a bolt) on the side of the cover 36, the overall length of the torque converter 10 in the direction of the axis C can be reduced accordingly. The radially outermost position “a” of the positioning member 40 is located on the radially inner side relative to the radially outermost position “b” of the cover 36. This can suppress interference of the torque converter 10 with the transmission case 18 located on the radially outer side relative to the cover 36. When the positioning member 40 is provided so as to protrude obliquely outward with respect to the direction of the axis C, a portion (a protruding portion) of the positioning member 40, which is located on the drive plate side, is more likely to interfere with the transmission case 18. To address this, the radially outermost position “a” of the positioning member 40 is located on the radially inner side relative to the radially outermost position “b” of the cover 36. This is useful in suppressing interference of the torque converter 10 with the transmission case 18.
According to the first embodiment, the cover 36 includes the seat 50 that includes the fixing surface 52 that fixes the positioning member 40 thereto. A portion of the drive plate 20, which is formed with the positioning hole 60, is bent so as to extend along the fixing surface 52. Thus, the cover 36 and the drive plate 20 are appropriately positioned by inserting the positioning member 40 through the positioning hole 60.
Next, other embodiments of the present invention are explained. In the following explanations, common components between the embodiments are designated with like numerals, and therefore their explanations are omitted.
The drive plate 20 and the cover 36 according to the first embodiment previously described are moved in a direction parallel to the axis C so as to shorten their relative distance, for example, and are then positioned by inserting the positioning member 40 through the positioning hole 60. In addition, the positioning member 40 is provided so as to protrude obliquely outward with respect to the axis direction. Thus, in the case in which the positioning hole 60 has a size just large enough to accommodate therein a member with a size equal to the circumference of the positioning member 40, the positioning member 40 interferes with a drive plate, and thus cannot be inserted through the positioning hole 60. Therefore, the positioning hole 60 is a hole in which a portion that is opposed to the positioning member 40 in the direction of the axis C (a portion of the drive plate 20, which is interfered with by the positioning member 40 when the drive plate 20 and the cover 36 are moved in a direction parallel to the axis C, and are positioned) is a space.
Specifically, as shown in
The positioning member 40 is a stud bolt with a male thread, for example. The cover 36 and the drive plate 20 are fastened by tightening a nut 70 to the positioning member 40 inserted through the positioning hole 60.
As described above, according to a second embodiment of the present invention, the positioning hole 60 is provided on a portion that is opposed to the positioning member 40 in the direction of the axis C. Thus, a portion of the drive plate 20, which is opposed to the positioning member 40 in the direction of the axis C when the drive plate 20 and the cover 36 are moved in a direction parallel to the axis C and are positioned, is a space. Accordingly, the positioning member 40 can be inserted through the positioning hole 60 without interfering with the positioning hole 60.
According to the second embodiment, the positioning hole 60 includes the circular portion 62 and the notched portion 64, and the width “w” of the notched portion 64 in the circumferential direction is larger than the diameter “d” of the positioning member 40. Therefore, the positioning member 40 can be reliably inserted through the positioning hole 60 without interfering with the positioning hole 60. Further, at the time of positioning the cover 36 and the drive plate 20, some misalignment can be permitted.
According to the second embodiment, the cover 36 and the drive plate 20 are positioned by inserting the positioning member 40 through the positioning hole 60, and then are appropriately fastened with the nut 70 that is tightened (screwed) to the positioning member 40.
In the second embodiment previously described, the width “w” of the notched portion 64 in the circumferential direction is substantially equal to a diameter “r” of the circular portion 62. Pressure, generated by tightening the nut 70, is applied to the periphery of the positioning hole 60. Thus, it is desirable that the pressure per unit area, to be applied to the periphery of the positioning hole 60, is low. Accordingly, in a third embodiment of the present invention, as shown in
As described above, according to the third embodiment, when the nut 70 is tightened, the surface area of the nut 70, which comes into contact with the drive plate 20, can be increased as much as possible. Therefore, the surface pressure applied to a portion of the drive plate 20, where the nut 70 is tightened, can be reduced.
In the second embodiment previously described, the positioning hole 60 includes the notched portion 64, and thus a portion that is opposed to the positioning member 40 in the direction of the axis C is a space. However, the positioning hole 60 is not necessarily limited to the aspect as described above, and may be closed on its periphery as shown in
As described above, according to the fourth embodiment, the positioning hole 60 is a hole with its periphery closed, and the radially outermost position “c” of the positioning hole 60 is located on the radially outer side relative to the radially outermost position “a” of the positioning member 40. Thus, the positioning member 40 can be reliably inserted through the positioning hole 60 without interfering with the positioning hole 60. Further, enlargement of the positioning hole 60 caused by a centrifugal force can be prevented.
In the fourth embodiment previously described, the positioning hole 60 is a hole with its periphery closed, in which a portion that is opposed to the positioning member 40 in the direction of the axis C is a space. With this configuration, the drive plate 20 has a larger diameter, and is more likely to interfere with other constituent components (for example, the transmission case 18) located on the radially outer side relative to the cover 36. Thus, in a fifth embodiment of the present invention, as shown in
As described above, according to the fifth embodiment, preventing enlargement of the positioning hole 60 caused by a centrifugal force, and suppressing interference of the drive plate 20 with the transmission case 18 can both be achieved.
Although the embodiments of the present invention have been described above in detail with respect to the drawings, the present invention is also applied to other aspects.
For example, while each of the foregoing embodiments is separately implemented, each of the foregoing embodiments is not necessarily implemented separately. These embodiments may be appropriately implemented in combination. For example, the fifth embodiment previously described is used in addition to the fourth embodiment previously described. When the radially outermost position of the drive plate 20 in the first to third embodiments previously described is located on the radially outer side relative to the radially outermost position “b” of the cover 36, the fifth embodiment may be used in addition to the first to third embodiments.
Further, in the foregoing embodiments, the positioning member 40 is provided so as to protrude obliquely outward with respect to the direction of the axis C. However, the positioning member 40 is not limited thereto. For example, the positioning member 40 may be provided so as to protrude obliquely inward with respect to the direction of the axis C. With this configuration, the overall length of the torque converter 10 in the direction of the axis C can also be reduced in the same way as in the case in which the positioning member 40 is provided so as to protrude obliquely outward with respect to the direction of the axis C. The cover side portion (a fixed portion) of the positioning member 40 that protrudes obliquely inward with respect to the axis direction is more likely to interfere with the transmission case 18 located on the radially outer side relative to the cover 36. To address this, the radially outermost position of the positioning member 40 is located on the radially inner side relative to the radially outermost position of the cover 36. This is useful in suppressing interference of the torque converter 10 with the transmission case 18.
In the foregoing embodiments, the cover 36 includes the seat 50, and also includes the positioning member 40 by fixing the positioning member 40 to the seat 50. However, the cover 36 is not limited thereto. For example, the cover 36 may include the positioning member 40 that is directly provided on the surface 36a1.
While in the foregoing embodiments, the torque converter 10 is used as the fluid transmission device, other fluid transmission devices such as a fluid coupling that does not have a torque amplifying function may also be used.
In the foregoing embodiments, the vehicle 14 is a hybrid vehicle that is equipped with the engine 16 and the electric motor MG as a driving source. However, the vehicle 14 is not limited thereto. For example, the vehicle 14 may also be a vehicle that is only equipped with the engine 16 as a driving source. The vehicle 14 may also be a vehicle that is only equipped with the electric motor MG as a driving source. Further, while the clutch K0 and the automatic transmission 22 are provided in the vehicle 14, the clutch K0 and the automatic transmission 22 are not necessarily provided in the vehicle 14. The present invention is applicable to any vehicle as long as a fluid transmission device is provided in the vehicle, and includes a cover that is coupled with a drive plate, and that is driven rotatably about the axis integrally with the drive plate.
In the present invention, the fluid transmission device may constitute a part of a power transmission device provided in a vehicle. This power transmission device constitutes a power transmission path from an engine to drive wheels. The power transmission device includes a transmission located downstream of the fluid transmission device (on the drive-wheel side), for example. Examples of this transmission include various automatic transmissions (such as a planetary-gear automatic transmission, a synchromesh two-parallel-shaft automatic transmission, a DCT, and a CVT). As the driving source, an international combustion engine, such as a gasoline engine or a diesel engine, is used, for example. Another prime mover such as an electric motor can be solely employed, or can be employed in combination with the engine.
The above embodiments are merely intended to be illustrative. The present invention may be implemented in an aspect with various modifications and improvements added based on the knowledge of persons skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
2013-223769 | Oct 2013 | JP | national |