The present disclosure relates to shrouded fluid turbines, wherein the turbine shroud includes inward and outward curving elements that define a trailing edge of the turbine shroud. The fluid turbines may be used to extract energy from fluids such as air (i.e. wind) or water. The aerodynamic principles of a mixer ejector wind turbine also apply to hydrodynamic principles of a mixer ejector water turbine.
Conventional horizontal axis wind turbines (HAWTs) used for power generation have two to five open blades arranged like a propeller, the blades being mounted to a horizontal shaft attached to a gear box which drives a power generator. HAWTs will not exceed the Betz limit of 59.3% efficiency in capturing the potential energy of the wind passing through it. It would be desirable to increase the efficiency of a fluid turbine by collecting additional energy from a larger volume of fluid without increasing the rotor diameter of the fluid turbine.
The present disclosure relates to shrouded fluid turbines having a turbine shroud formed with both inward and outward curving elements along a trailing edge of the turbine shroud. There are no sidewalls between the inward and outward curving elements, allowing fluid flow to be mixed transversely and radially.
Disclosed in embodiments is a fluid turbine shroud, comprising a forward ring and a plurality of mixing elements. The forward ring defines a leading edge of the shroud. The plurality of mixing elements defines a trailing edge of the turbine shroud. The plurality of mixing elements comprises inward curving elements and outward curving elements configured in an alternating pattern. The inward curving elements and outward curving elements are not physically connected along the trailing edge.
Generally, each inward curving element has two exposed lateral surfaces, and wherein each outward curving element has two exposed lateral surfaces. In particular embodiments, the plurality of mixing elements has a total of nine inward curving elements and nine outward curving elements.
Optionally, the outward curving elements are wider in the circumferential direction than the inward curving elements.
In some constructions, each mixing element comprises a front end and a mixing end, and the front ends of the plurality of mixing elements form the forward ring. In addition, the front end of each mixing element may include a groove on an interior surface.
Also disclosed is a fluid turbine shroud, comprising a plurality of inward curving elements and a plurality of outward curving elements. Each inward curving element has a front end, a mixing end, and two lateral surfaces. Each outward curving element has a front end, a mixing end, and two lateral surfaces. Each inward curving element is located between two outward curving elements. Each outward curving element is located between two inward curving elements. The front ends of the inward curving elements and the front ends of the outward curving elements form a forward ring defining a leading edge of the shroud. The mixing ends of the inward curving elements and the mixing ends of the outward curving elements form a plurality of mixing elements that define a trailing edge of the shroud. The two lateral surfaces of the inward curving elements and the two lateral surfaces of the outward curving elements are exposed along the trailing edge.
Also disclosed in embodiments is a shrouded fluid turbine comprising an impeller and a turbine shroud surrounding the impeller. The turbine shroud comprises a forward ring and a plurality of mixing elements. The forward ring defines a leading edge of the shroud. The plurality of mixing elements defines a trailing edge of the turbine shroud. The plurality of mixing elements comprises inward curving elements and outward curving elements configured in an alternating pattern. Two lateral surfaces of the inward curving elements and two lateral surfaces of the outward curving elements are exposed along the trailing edge.
Each mixing element may comprise a front end and a mixing end, where the front ends of the plurality of mixing elements form the forward ring. The front end of each mixing element may also include a groove on an interior surface.
In further embodiments, the fluid turbine further comprises an ejector shroud, wherein the trailing edge of the turbine shroud extends into an inlet end of the ejector shroud.
The ejector shroud generally has the shape of a ring airfoil.
A plurality of support members may extend between the turbine shroud and the ejector shroud, each support member being aligned with an outward curving element.
In embodiments, the impeller comprises a nacelle body and a plurality of stator vanes extending between the nacelle body and the turbine shroud. In further embodiments, the nacelle body comprises a central passageway.
These and other non-limiting features or characteristics of the present disclosure will be further described below.
The following is a brief description of the drawings, which are presented for the purposes of illustrating the disclosure set forth herein and not for the purposes of limiting the same.
A more complete understanding of the components, processes, and apparatuses disclosed herein can be obtained by reference to the accompanying figures. These figures are intended to demonstrate the present disclosure and are not intended to show relative sizes and dimensions or to limit the scope of the exemplary embodiments.
Although specific terms are used in the following description, these terms are intended to refer only to particular structures in the drawings and are not intended to limit the scope of the present disclosure. It is to be understood that like numeric designations refer to components of like function.
The term “about” when used with a quantity includes the stated value and also has the meaning dictated by the context. For example, it includes at least the degree of error associated with the measurement of the particular quantity. When used in the context of a range, the term “about” should also be considered as disclosing the range defined by the absolute values of the two endpoints. For example, the range “from about 2 to about 4” also discloses the range “from 2 to 4.”
A Mixer-Ejector Fluid/Water Turbine (MEWT) provides an improved means of generating power from fluid currents. A primary shroud contains an impeller which extracts power from a primary fluid stream. A mixer-ejector pump is included that ingests flow from the primary fluid stream and secondary flow, and promotes turbulent mixing of the two fluid streams. This enhances the power system by increasing the amount of fluid flow through the system, increasing the velocity at the rotor for more power availability, and reducing back pressure on turbine blades. Additional benefits include, among others, the reduction of noise propagating from the system.
The term “impeller” is used herein to refer to any assembly in which blades are attached to a shaft and able to rotate, allowing for the generation of power or energy from fluid rotating the blades. Exemplary impellers include a propeller or a rotor (which may be part of a rotor/stator assembly). Any type of impeller may be enclosed within the turbine shroud in the fluid turbine of the present disclosure.
The leading edge of a turbine shroud may be considered the front of the fluid turbine, and the trailing edge of an ejector shroud may be considered the rear of the fluid turbine. A first component of the fluid turbine located closer to the front of the turbine may be considered “upstream” of a second component located closer to the rear of the turbine. Put another way, the second component is “downstream” of the first component.
The shrouded fluid turbine of the present disclosure includes an impeller, a turbine shroud that surrounds the impeller, and an optional ejector shroud surrounding the trailing edge of the turbine shroud. Mixing elements are present on the trailing edge of the turbine shroud. In particular, the mixing elements include inward curving elements or surfaces, and outward curving elements or surfaces. Lateral surfaces on these curving elements are exposed along the trailing edge. This allows fluid passing through the turbine shroud to be mixed with fluid passing outside the turbine shroud to eventually be mixed in two directions, transversely and radially, as explained further herein. In particular, it is contemplated that the fluid turbines could be used to extract power/energy from moving air or water streams.
An exemplary turbine shroud is illustrated in
The structure of the mixing elements along the trailing edge allows fluid flowing through the interior of the turbine shroud to be mixed with fluid flowing along the exterior of the turbine shroud in two directions, radially and transversely (i.e. circumferentially). These mixing elements can also be referred to as mixing lobes. Efficiencies exceeding the Betz limit of 59.3% based on the sweep area of the rotor may be achieved.
As shown here, the mixing elements 118 also form the forward ring 112. In this regard, each inward curving element 120 can be considered as comprising a front end 122 and a mixing end 124. Similarly, each outward curving element 130 can be considered as comprising a front end 132 and a mixing end 134. The front ends 122, 124 of these mixing elements form the forward ring 112. The mixing ends 124, 134 of the mixing elements form the trailing edge 116.
The turbine shroud 110 surrounds an impeller 140. The turbine shroud also surrounds a nacelle body 150. Here, the impeller is a rotor/stator assembly. The stator 142, comprising a plurality of stator vanes 144, joins the turbine shroud 110 and the nacelle body 150. The rotor 146 rotates around the nacelle body 150 and is downstream of the stator 142. In some embodiments as depicted here, a central passageway 152 extends axially through the entirety of the nacelle body 150. The central passageway 152 allows fluid to flow through the nacelle body 150 and bypass the rotor 146 or impeller 140. This fluid is later mixed with other fluid streams to improve the efficiency of the wind turbine. A ring generator 160 converts the wind energy into electrical energy or power.
From the front as seen in
From the front as seen in
The outward curving elements 300 are also wider in the circumferential direction than the inward curving elements 200. Put another way, each outward curving element has a frontal width 315, and each inward curving element has a frontal width 215, and the frontal width 315 of the outward curving elements are greater than the frontal widths 215 of the inward curving elements. All of the outward curving elements have the same frontal width 315, and all of the inward curving elements have the same frontal width 215. Similarly, the rear width 317 of the outward curving elements are greater than the rear widths 217 of the inward curving elements. All of the outward curving elements have the same rear width 317, and all of the inward curving elements have the same rear width 217.
The grooves 220, 320 in the curving elements can be used to place or locate a power or energy generation system. The grooves 220, 320 on the inward and outward curving elements are aligned with each other to form a ring when the shroud is assembled.
An inward curving element can be distinguished from an outward curving element based on their appearance from the front. As seen when comparing
In some embodiments, the outward curving elements are wider in the circumferential direction than the inward curving elements. In different embodiments, the inward curving elements are wider in the circumferential direction than the outward curving elements. Alternatively, the inward and outward curving elements may have the same width. The grooves on the interior surface of the curving elements can interface with, for example, a ring generator that captures energy/power from the fluid.
Again, the shroud 410 is made up of a plurality of mixing elements 418. The mixing elements 418 include a plurality of inward curving elements 420 and a plurality of outward curving elements 430. The inward curving elements and outward curving elements are configured in an alternating pattern. The lateral surfaces 424, 434 of the inward curving elements and outward curving elements are exposed along the trailing edge 416 of the shroud. The front ends 422, 432 of the mixing elements form the forward ring 412 at the leading edge 414 of the turbine shroud. The shroud 410 surrounds an impeller 440 and a nacelle body 450 having a central passageway 452. A first end 454 of the central passageway is visible in
The wind turbine further includes an ejector shroud 460. The ejector shroud 460 has a cambered ring airfoil shape. Support members 470 join the ejector shroud 460 to the turbine shroud 410. As shown here, the support members 470 are aligned with the outward curving elements 430. However, the support members 470 could be aligned with the inward curving elements 420, or in other embodiments may be engaged with the forward ring 412 of the turbine shroud. The trailing edge 416 or the rear end 417 (see
Referring now to
One advantage of using mixing lobes of the shapes disclosed herein is that the axial length of the ejector shroud can be reduced. High and low energy fluid streams begin mixing at the point where the inward and outward curving elements separate, allowing for mixing to begin earlier along the axial length of the turbine than in a similar turbine without such a separation between the curving elements. Earlier mixing allows for similar overall mixing with a shorter ejector shroud. As a result, better mixing of the low energy fluid stream from the interior of the turbine shroud with the high energy fluid streams from the exterior of the turbine shroud can be achieved over a shorter axial distance. Shorter shrouds also reduce cost and weight, allowing the tower supporting the fluid turbine to also be reduced in size and weight, achieving further cost savings without sacrificing safety. In
A segmented shroud provides a means of manufacturing identical, interchangeable, repeatable components instead of one large complicated component. A turbine shroud comprised of identical paired segments, including inwardly curving segments and outwardly curving segments as disclosed, provides ease of manufacturing by utilizing a comparatively smaller tooling repeatedly, as opposed to one large complex manufacturing method. Such segments can also be transported separately, thus allowing for segmented assembly and repair as compared to the transport, installation and maintenance of a single larger, heavier item, thus reducing the costs and complexity of moving the shrouded fluid turbine to a suitable location.
Though not shown here, the ejector shroud may also comprise segmented mixing lobes along an outlet end.
Referring now to
The turbine shroud 410 has the cross-sectional shape of an airfoil with the suction side (i.e. low pressure side) on the interior of the shroud. The turbine shroud further comprises mixing lobes on a terminus region (i.e., end portion) of the turbine shroud. The mixing lobes extend downstream beyond the rotor blades to form the rear or downstream end 417 of the turbine shroud. The mixing lobes are formed from the inward curving elements 420 and the outward curving elements 430. Inward curving elements 420 extend inwardly towards the central axis 405 of the turbine shroud; and outward curving elements 430 extend outwardly away from the central axis. The mixing lobes extend downstream and into an inlet end 462 of the ejector shroud. Support members 470 extend axially to join the turbine shroud 410 to the ejector shroud 460.
The turbine shroud and ejector shroud are aerodynamically cambered to increase flow through the turbine rotor. The axial length of the turbine shroud LM is equal or less than the turbine shroud's maximum outer diameter DM. Also, the axial length of the ejector shroud LE is equal or less than the ejector shroud's maximum outer diameter DE. The exterior surface of the nacelle body is aerodynamically contoured to minimize the effects of flow separation downstream of the fluid turbine. The nacelle body may be configured to be longer or shorter than the turbine shroud or the ejector shroud, or their combined lengths.
The turbine shroud's entrance area and exit area will be equal to or greater than that of the annulus occupied by the impeller. The internal flow path cross-sectional area formed by the annulus between the nacelle body and the interior surface of the turbine shroud is aerodynamically shaped to have a minimum area at the plane of the turbine and to otherwise vary smoothly from their respective entrance planes to their exit planes. The cross-sectional area of the ejector shroud inlet end is greater than the cross-sectional area of the rear end of the turbine shroud.
The area ratio, as defined by the ejector shroud exit area over the turbine shroud exit area, will be in the range of 1.5-3.0. The number of each type of curving elements can be between 6 and 14. The height-to-width ratio of the lobe channels will be between 0.5 and 4.5. The lobe penetration will be between 50% and 80%. The nacelle body plug trailing edge angles will be thirty degrees or less. The length to diameter (L/D) of the overall turbine will be between 0.5 and 1.25.
Referring now to
In
In
Referring to
Referring now to
Referring now to the rear view of
However, the wind turbine of
The present disclosure has been described with reference to exemplary embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the present disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application is a continuation-in-part from U.S. patent application Ser. No. 12/914,509, filed on Oct. 28, 2010, which claimed priority to U.S. Provisional Patent Application Ser. No. 61/332,722 filed May 7, 2010. U.S. patent application Ser. No. 12/914,509 is also a continuation-in-part from U.S. patent application Ser. No. 12/054,050, filed Mar. 24, 2008, which claimed priority from U.S. Provisional Patent Application Ser. No. 60/919,588, filed Mar. 23, 2007. U.S. patent application Ser. No. 12/914,509 is also a continuation-in-part from U.S. patent application Ser. No. 12/749,341, filed Mar. 29, 2010, which is a continuation-in-part of three different patent applications. First, U.S. patent application Ser. No. 12/749,341 is a continuation-in-part of U.S. patent application Ser. No. 12/054,050, filed Mar. 24, 2008, which claimed priority from U.S. Provisional Patent Application Ser. No. 60/919,588, filed Mar. 23, 2007. Second, U.S. patent application Ser. No. 12/749,341 is a continuation-in-part of U.S. patent application Ser. No. 12/629,714, filed Dec. 2, 2009, which claimed priority to U.S. Provisional Patent Application Ser. No. 61/119,078, filed Dec. 2, 2008. Third, U.S. patent application Ser. No. 12/749,341 is a continuation-in-part of U.S. patent application Ser. No. 12/425,358, filed Apr. 16, 2009, which is a continuation-in-part of two different patent applications. First, U.S. patent application Ser. No. 12/425,358 claimed priority to U.S. Provisional Patent Application Ser. No. 61/119,078, filed Dec. 2, 2008. Second, U.S. patent application Ser. No. 12/425,358 is a continuation-in-part of U.S. patent application Ser. No. 12/053,695, filed Mar. 24, 2008, which claimed priority to U.S. Provisional Patent Application Ser. No. 60/919,588, filed Mar. 23, 2007. The disclosures of each of these patent applications are hereby fully incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61303339 | Feb 2010 | US | |
61332722 | May 2010 | US | |
61303339 | Feb 2010 | US | |
60919588 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12914509 | Oct 2010 | US |
Child | 12983082 | US | |
Parent | 12054050 | Mar 2008 | US |
Child | 12914509 | US | |
Parent | 12749341 | Mar 2010 | US |
Child | 12914509 | US | |
Parent | 12054050 | Mar 2008 | US |
Child | 12749341 | US | |
Parent | 12629714 | Dec 2009 | US |
Child | 12054050 | US | |
Parent | 12425358 | Apr 2009 | US |
Child | 12629714 | US | |
Parent | 12053695 | Mar 2008 | US |
Child | 12425358 | US |