The present invention relates to microfluidic chips and/or nanofluidic chips, and more specifically, to fluidic cell designs (e.g., housings) that interface with microfluidic chips and/or nanofluidic chips.
Nanofluidics is the study of the behavior, manipulation, and control of fluids that are confined to structures of nanometer (typically 1-100 nanometers (nm)) characteristic dimensions. Fluids confined in these nanometer structures exhibit physical behaviors not observed in larger structures, such as those of micrometer dimensions and above, because the characteristic physical scaling lengths of the fluid (e.g., Debye length, hydrodynamic radius) very closely coincide with the dimensions of the nanostructure itself. In nanofluidics, fluids are moved, mixed, separated, or otherwise processed. Numerous applications employ passive fluid control techniques like capillary forces. In some applications external actuation means are additionally used for a directed transport of the fluids.
According to one embodiment, a fluidic cell configured to hold a nanofluidic chip is provided. The fluidic cell includes a first plate configured to hold the nanofluidic chip, and a second plate configured to fit on top of the first plate, such that the nanofluidic chip is held in place. The second plate has at least one first port and at least one second port, and the second plate has an entrance hole configured to communicate with an inlet hole of the nanofluidic chip. The at least one second port is angled above the at least one first port, such that the at least one first port and the at least one second port intersect to form a junction. The at least one second port is formed to have a line-of-sight to the entrance hole, such that the at least one second port is configured to receive input for extracting air trapped at a vicinity of the entrance hole.
According to one embodiment, a method of configuring a fluidic cell to enable air removal is provided. The method includes positioning a first plate configured to hold a nanofluidic chip, positioning a second plate configured to fit on top of the first plate, such that the nanofluidic chip is held in place. The second plate has at least one first port and at least one second port. The second plate has an entrance hole configured to communicate with an inlet hole of the nanofluidic chip, where the at least one second port is angled above the at least one first port, such that the at least one first port and the at least one second port intersect to form a junction. Also, the method includes arranging the at least one second port to have a line-of-sight to the entrance hole, such that the at least one second port is configured to receive input for extracting air trapped at a vicinity of the entrance hole.
According to one embodiment, a fluidic cell configured to hold a nanofluidic chip is provided. The fluidic cell includes a mounting base plate configured to hold the nanofluidic chip, and multiple connector plates positioned on top of the mounting base plate. The multiple connector plates include a first connector plate positioned on top of the mounting base plate to communicate fluidly with the nanofluidic chip, a next connector plate positioned on top of the first connector plate, through a last connector plate positioned on top of the next connector plate. The next connector plate is configured to communicate fluidly with the nanofluidic chip through the first connector plate. The last connector plate is configured to communicate fluidly with the nanofluidic chip through the next connector plate and the first connector plate.
According to one embodiment, a method of configuring a fluidic cell with multiple stages is provided. The method includes positioning a mounting base plate configured to hold a nanofluidic chip, and positioning multiple connector plates on top of the mounting base plate. The multiple connector plates including a first connector plate positioned on top of the mounting base plate to communicate fluidly with the nanofluidic chip, a next connector plate positioned on top of the first connector plate, through a last connector plate positioned on top of the next connector plate. The next connector plate is configured to communicate fluidly with the nanofluidic chip through the first connector plate. The last connector plate is configured to communicate fluidly with the nanofluidic chip through the next connector plate and the first connector plate.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with the advantages and the features, refer to the description and to the drawings.
Nanofluidics is a field of nanotechnology and engineering that manipulates fluids using devices where the critical structure dimensions are the order of nanometers. Their importance stems from the ability to manipulate samples in minute quantities, allowing the miniaturization of analytical and preparative methods that are normally carried out on the milliliter or greater scale. Many important biological, chemical, and material entities, such as proteins, organelles, plastids, supramolecular complexes, and colloids, function in fluids, and their manipulation and analysis can be facilitated with nanofluidic devices which can handle small sample sizes.
The application of silicon (Si) nanofabrication to the field of biotechnology is opening opportunities in producing nanoscale fluidic devices. With the ability to produce small element features, in high densities at manufacturable volumes, silicon based nanofluidics allows integration of biochemical and molecular biological techniques with on-chip sensors and logic. This miniaturization of biological techniques to lab-on-a-chip technology allows merging of sophisticated diagnostics with high mobility, for broad applications in medicine, agriculture, manufacturing, and environmental monitoring.
In all nanofluidic applications based on Si nanofabrication, a particular engineering aspect is the interfacing between the nanofluidic device on the chip and either (1) the external environment (macroscopic world) or (2) other on-chip components such as sensors, logic, reservoirs, etc. Fluidic samples are to be loaded into the chip, and auxiliary fluids, such as buffers, cleaning agents, reagents, etc., are metered out and injected into the fluid flow at desired intervals.
In addition, for practical applications, nanofluidic chips are to be insulated from the external environment to prevent damage and contamination, and this requires a module for both housing the chip and allowing the various inputs and outputs to be connected to the chip in a secure, functional, and reproducible manner. Embodiments are configured to address one or more of the issues.
Embodiments provide nanofluidic cells that (1) house nanofluidic chips, (2) allow external fluid inputs to be connected to the chip for interfacing and operation, (3) allow facile removal of excess air (e.g., air bubbles) or contamination from the fluid inputs, (4) allow multiple fluid inputs to be switched and directed to different nanofluidic devices, (5) provide a protective encasing for mobile nanofluidic applications, and/or (6) allow output fluids to be collected and removed from the nanofluidic chip(s).
Micro-connector ports 20A, 20B feed into holes 22A, 22B on the connector plate's bottom face, which interface directly with the nanofluidic chip 18 via coverslip holes 26A, 26B of a chip coverslip 32. For these purposes the coverslip 32 is structured with a pattern of holes 26A, 26B that match the top plate's hole (22A, 22B) configuration. The micro-connector ports 20A, 20B allow fluid to interface with the nanofluidic devices 102 on the nanofluidic chip 18. The chip coverslip 32 and the nanofluidic chip 18 may be considered as one piece (i.e., the nanofluidic chip), as the coverslip 32 may be a very thin film or glass attached to the nanofluidic chip 18 for protection and sealing.
For these nanofluidic devices 102, the nanofluidic chip 18 has open regions 24A that co-locate with the coverslip holes 26A and interface with the connector plate holes 22A, allowing fluid injection to occur from the connector plate 14 through the coverslip holes 26A and into the chip 18. This is termed front-side fluidic loading. O-rings 30, or other sealing options, provide a liquid-tight seal between the connector plate 14 and chip 18, providing a single flow path between the external input, i.e., the micro-connector ports 20A, 20B, and the chip 18. The O-rings 30 are mechanical gaskets, in the shape of a ring, designed to be provide a liquid-tight seal.
The configuration of threaded ports 20A, 20B may be for a one-to-one input to output system. For example, for each nanofluidic device 102 (e.g., where there are a total of six nanofluidic devices 102 shown in
As discussed herein, several features are beneficial in using the nanofluidic cell 10 according to embodiments.
In
The radial connector portion 404 is configured with a curvature (e.g., circular shape) that allows multiple micro-connectors to be hooked to the micro-connector ports 20A, 20B of the nanofluidic cell 10 at one time. The input micro-connector ports 20A of the radial connector portion 404 allows for the multiple fluid input operation.
The radial connector portion 404 allows enough room to accommodate different size micro-connectors for different applications, while each radial feed/capillary line of the input micro-connector ports 20A connects to its own input hole 22A, such that input hole 22A interfaces with its own hole 24A, 26A on the chip 18. In one implementation, the radial connector portion 404 may extend from an edge of the connector plate 14 a distance D1 in the y-axis, and the distance D1 may range from 1-2 centimeters (cm). The radial connector portion 404 does not require a larger distance separating the input holes 22A from each other in the x-axis (separating the input holes 22B from each other), as compared to a non-radial design (such as shown in
In loading nanofluidic chips into the cell and priming the chips with fluid, one of the particular issues is the introduction of bubbles into the connections, leading to stoppage of the fluid flow due to the high hydrodynamic resistance of the bubbles. This is especially of concern with nanofluidic devices, since even larger input pressures, which would normally clear the bubbles in microfluidic systems, are not sufficient. The pressure difference ΔP across a bubble's surface is inversely proportional to its radius, r: ΔP˜2γ/r, which implies that smaller sized bubbles have a greater pressure difference. For a water/air surface tension, γ=72 mNm−1 (milliNewton/meter), for a bubble of r=1 μm, the ΔP˜3 atm (standard atmosphere), three times the atmospheric pressure. At r=500 nm, ΔP˜6 atm. To compress and eliminate a bubble requires an applied pressure equal to ΔP, which can be difficult to obtain within the nanofluidic network. Alternatively, bubbles can be purged by flowing them out of the array; however, this is hampered by the fact that the bubbles have hydrodynamic capacitance, which acts to reduce the effective pressure in the array and slow down the fluid flow, making it difficult to clear them. Strong surface interactions can also pin and stabilize bubbles within the nanofluidic structures, increasing the pressure/flow needed to drive the bubbles out. In addition, the flow rate, Q, in a nanofluidic channel scales by the fourth power of the channel width, w: Q∝w4 for a given ΔP, so that as the channel width is reduced to the nanoregime, the flow through the channel drops substantially, making it difficult to clear bubbles. Overall, avoidance of bubble entrainment within the nanofluidic chip is optimal because once bubbles enter the fluidic network, it may be difficult to remove the bubble, therefore diminishing or halting device operation.
Now turning to
The micro-connector lower ports 20A may include and/or be connected a larger line 520 and smaller line 522, and the micro-connector upper ports 502 may include and/or be connected to a larger line 530 and smaller line 532. In one implementation, the diameter of the larger line 520 and the lager line 530 may range from about 3-4 mm. In one implementation, the diameter of the smaller line 522 and the smaller line 532 may range from about 0.5-1.0 mm.
The two micro-connector lower and upper ports 20A and 502 intersect to form a tee junction 550 at their intersection. Fluid is introduced into the lower port 20A and allowed to wet up to the chip interface 560 (between the chip 18 and the connector plate 14). Although the nanofluidic chip 18 may have the chip coverslip 32, the chip coverslip 32 is considered as part of the chip 18 and is not shown in
Typically, a single air bubble 540 forms within the hole 22a at the chip interface 560, effectively blocking the fluid flow into the chip 18 (i.e., block fluid flow into holes 24A, 26A). This is eliminated through the upper port 502 that is designed with a bore (lines 530 and 532) wide enough so that a micro-connecter 506 (e.g., syringe, pipet tip, tube, etc.) can be inserted down to the chip 18, and the remaining air bubbles 540 sucked out. This clears the entire feed (including the lines 530, 532 and lines 520, 522, along with the tee junction 550) of any air bubbles and allows uninhibited injection of sample into the chip 18. The sample is the fluid (e.g., a buffer) containing the nanoparticles to be tested by the nanofluidic device 102. Samples may be loaded through the upper port 502 by directly injecting at the chip interface 560 (e.g., in and/or through the hole 22). The upper port 502 may be sealed or capped off to allow pressurization of the fluid path during operation. The arrangement of the two ports 20A and 502 can be set at any angle so as to allow clearance for imaging equipment 110 to approach the chip 18 in the nanofluidic cell 10. A different arrangement for the two ports 20A and 502 is illustrated in
In
Of particular interest in nanofluidic devices on a chip is the device density, in which more nanofluidic devices can be placed per area on a nanofluidic chip, with the inputs/outputs of these nanofluidic devices linked to allow more sophisticated manipulations. This can lead to more robust or complex analyses, diagnostics, or processing operations on chip 18. To obtain high densities, nanofluidic devices are shrunk down and spaced closer together. This introduces the problem of interfacing between the chip 18 and the external environment, both because the inputs are small (small sized holes and feeds) and spaced closer together. According to an embodiment, the cell designs discussed herein may be integrated together to produce a hierarchical approach, in which several connector plates are stacked together to allow a step-wise integration of macroscopic inputs (e.g., of fluid samples), microscale feeds, and nanoscale devices.
As a step-wise integration macroscopic inputs of fluid, microscale feeds, and nanoscale devices,
The nanofluidic cell 700 is an example of a multi-connector plate stacked cell for stepping down fluid inputs for high density device interfacing. Stepping down fluid inputs means transferring fluid from a larger (wider) channel into multiple smaller (narrower) channels, effectively allowing a single input stream of fluid to be distributed to many smaller channels that can then feed into a larger number of nanofluidic devices. The practical motivation for this design is to allow a small number of macroscopic inputs (e.g., from micro-connectors that can be easily attached and controlled by an operator) to be used to operate a larger number of nanofluidic devices simultaneously. To explain further by way of an example, assume a standard micro-connector has an effective footprint of approximately 5 mm2. If each nanofluidic device had to be plumbed to its own micro-connector, this implies a device density of approximately 20 devices/cm2, assuming a square lattice packing of connectors. However, a typical nanofluidic separator device footprint can be approximately 0.025 mm2, giving a device density of approximately 4,000 devices/cm2. Using a one-to-one correspondence of micro-connector to nanofluidic device would use 0.5% of the available chip surface. One solution is to use smaller micro-connectors, but this requires physically connecting larger banks of micro-connectors to input ports. The same effect can be realized by producing the “small micro-connectors” within the cell itself, and using larger micro-connectors to feed fluid to these ports according to embodiments. Accordingly, embodiments provided configurations of stepping down fluid in stages to distribute sample to high densities of nanofluidic devices.
Referring to
In the multiple state connector plate 14, fluid samples are injected through/into micro-connector ports 20A (using micro-connectors (such as micro-connectors 504 and 506)) into the top connector plate 703 (level 1). This top connector plate 703 has millimeter wide feeds 730 (i.e., holes) which flow fluid into through vias 732 of a middle connector plate 702, thereby injecting fluid into the middle connector plate 702 (level 2). In one implementation, the feeds 730 may be approximately 2 millimeters (mm) in diameter, and correspondingly, the through vias 732 receiving the fluid in the middle connector plate 702 may be approximately 2 millimeters (mm) in diameter. In another implementation, the diameter of the feeds 730 may range from about 2-3 mm, and correspondingly, the diameter of through vias 732 in the middle connector plate 702 may range from about 2-3 mm. In one implementation, the micro-connector ports 20A may be have a diameter that ranges from 3-4 mm. In this example, four micro-connector ports 20A connected by respective lines to holes 730 are shown. It is appreciated that more or fewer micro-connector ports 20A can be utilized.
At the middle connector plate 702 (level 2), the fluid is distributed from the through vias 732 into reservoirs 736 having micron wide feeds 734. The feeds 734 inject fluid into through vias 738 in a bottom connector plate 701 (level 3). In other words, the middle connector plate 702 comprises a set of reservoirs 736 that distribute the feed of fluid from the through vias 732 into a series of holes 734. The holes 734 feed into the bottom connector plate 701. In one implementation, the feeds 734 may be approximately 10 microns (μm) in diameter, and correspondingly, the through vias 738 receiving the fluid in the bottom connector plate 701 may be approximately 10 μm in diameter. In another implementation, the diameter of the feeds 734 may range from about 0.2-1 mm, and correspondingly, the diameter of through vias 738 in the bottom connector plate 701 may range from about 0.12-1 mm. Although two reservoirs 736 connected by respective lines to through via 732 are shown in this example, it is appreciated that more or fewer reservoirs 736 may be utilized, and each reservoir 736 may have fewer or more than four feeds 734. In one implementation, the reservoirs 736 may have a width in the x-axis of about 1-10 mm, a depth in the y-axis of about 1-10 mm, and a height in the z-axis of about 500 nm up to 10 μm.
At the bottom connector plate 701 (level 3), through vias 738 distribute fluid from feeds 734 of the middle connector plate 702 into reservoirs 742 having nanometer wide feeds 740 (holes). The nanometer wide feeds 740 inject fluid into the nanofluidic chip 18. For example, the third plate reservoirs 742 fill with fluid and then feed, through nanometer holes 740, into holes 24A, 26A of the nanofluidic chip 18. In one implementation, the feeds 740 may be approximately 500 nm in diameter, and correspondingly, the holes 24A, 26A of the nanofluidic chip 18 may be approximately 500 nm in diameters. In another implementation, the diameter of the feeds 740 may range from about 0.12-0.4 mm, and correspondingly, the diameter of holes 24A, 26A in the nanofluidic chip 18 may range from about 0.12-0.4 mm. The stepping down and distributing of fluid by stages (levels 1-3) allows a high density of feed-ins (i.e., feeds 730, 734, 740), which in turn allows a high density of devices 102 on each nanofluidic chip 18. The use of multiple levels (stages) allows a geometric progression in the input distribution, allowing a practical method of building the flow cell and controlling the distribution density. In the embodiment in
The above example scenario traces the distribution of fluid from one port 22A, showing the step-wise distribution of fluid. The example only illustrates the fluid distribution in, e.g., section 750A in the top connector plate 703, which feeds section 750B in the middle connector plate 702, which then feeds section 750C in the bottom connector plate 701. The section 750C in the bottom connector plate 701 feeds a corresponding section of holes 24A, 26A in the nanofluidic chip 18. Although sections 750A, 750B, and 750C are highlighted for explanation purposes, it is appreciated that sections 751A-751C, sections 752A-752C, and sections 753A-753C operate analogously as discussed for sections 750A-750C.
The stepping down (i.e., reduction) of the dimensions of the feeds 730, 734, 740 allows a smooth distribution of inputs from the practical-to-handle micro-connectors (e.g., micro-connectors 504, 506) in micro-connector ports 22A down to the high density microscopic holes (holes 734, 738, 740) and nanofluidic devices 102. The modularity of the plates 701, 701, 703 (which are various implementations of the connector plate 14) allows different stacks to be produced to handle different chips. The cell itself, consisting of the mounting base and connector plate stacks, may be made into a single housing module that can be used to encase and interface with the chip, and provide external connections for attachment to mobile devices or analytical equipment.
According to another embodiment,
An enlarged view 1502_1 has been magnified to show a portion of the level 2 connector plate 1502. An enlarged view 1503_1 has been magnified to show a portion of the level 3 connector plate 1503. Similarly, an enlarged view 18_1 has been magnified to show a portion of the example nanofluidic chip 18. A further enlarged view 18_2 has been magnified to show a portion of the enlarged view 18_1.
In
Now turning to
Within a connector plate 14 (such as connector plates 701, 702, 703), multiple feeds can be constructed to allow more advanced architectures for distributing, collecting, and mixing fluids outside the chip, and this is referred to as multiplexing. To illustrate multiplexing cells for distributing fluid samples,
The depth, connectivity, shape, and distribution of these channels 806 in the feed pattern 808 can be controlled through precise machining and/or lithography techniques. The resulting network of feeds is then sealed with the thin cover plate 802 using adhesive. The cover plate 802 is machined to fit exactly over the feed pattern 808, with a small trim that extends over the edge of the feed pattern 808. Particular to the sealing process is the ability to bond the cover plate 802 to the feed network/pattern 808 without contaminating or blocking pattern 808 with adhesive. The sealing process utilizes a careful application of a precise amount of selected adhesive to the rim of the cover plate 802, so that capillary force brings the adhesive just to the welding point of the connector plate 14 and cover plate 802. In one embodiment, the cell is produced from acrylate and sealed together using a solvent mixture of methylene chloride, trichloroethylene and methyl methacrylate monomer. The cover plate 802 is set on top of channel pattern 806 and the solvent mixture applied around the edge of 802 using a horse hair brush (typically 0.5 cm width). The solvent mixture capillary wicks into the crevice between the 802 and 806,808 surface. The amount of solvent applied to the brush and the amount applied to the 802 edge is modulated to ensure that the solvent wicks only to the joint of 802/806/808 and not into the cavity of 806 itself. By this method, complex connector plates 14 can be fabricated for multiplexing numerous fluid samples. As seen in
According to embodiments, multiplexing may be extended to include interconnecting cells 10 for distributed processing. The output of one cell 10 may be routed to another cell 10, allowing a modular design in which different nanofluidic chips 18, each carrying out a particular action such as separation or mixing, can be connected together to form a more complex process. In this manner, the cell/chip becomes a single module “building block” that can be connected together in different configurations for prototyping and product development. This can be useful for distributing functions. For example, in some cases, pumping and collection are not easy to implement on-chip, and therefore can be relegated to modules that are interlinked with cells/chips to form complete devices.
According to embodiments, a further design element is to incorporate valves, either micro-scale mechanical or electromechanical valves or fluidic valves. Micro-valves may comprise mechanical fittings such as plugs or screws, or more complicated multiple-port switches and tees. Fluidic valves may comprise junctions between feeds, where the path of the fluid is controlled by the relative pressure between each feed line. To illustrate a fluidic valve in a multiplexer connector plate 14,
Conversely, in the example illustrated in
The embodiments, consisting of the cell designs and their design elements, permit control of fluid sample delivery and extraction from nanofluidic cells and provide the interface and housing necessary for deploying nanofluidic chips into real world environments and mobile devices.
At block 1005, a first plate 12 (e.g., mounting base) is configured to hold the nanofluidic chip 18.
At block 1010, a second plate 14 (e.g., connector plate) is configured to fit on top of the first plate 12, such that the nanofluidic chip 18 is held in place, where the second plate has at least one first port 20A and at least one second port 502, where the second plate has an entrance hole 22A configured to communicate with an inlet hole 24A, 26A of the nanofluidic chip 18, where the at least one second port 502 is angled above the at least one first port 20A, such that the at least one first port and the at least one second port intersect to form a junction 550.
At block 1015, the at least one second port 502 is arranged to have a line-of-sight to the entrance hole 22, such that the at least one second port 502 is configured to receive input for extracting air trapped at a vicinity of the entrance hole 22A.
The entrance hole 22 of the second plate 14 is aligned to the inlet hole 24A, 26A of the nanofluidic chip 18. The at least one second port 502 is configured to accommodate input of a micro-connector 506 in order to extract the air 540 trapped at the vicinity of the entrance hole 22A.
The vicinity of the entrance hole 22A, from which the air bubble 540 is to be extracted, is at a chip interface 560 between the nanofluidic chip 18 and the second plate 14. The at least one second port 502 is configured with a reservoir 602. The reservoir 602 of the at least one second port 502 is configured to receive one or more air bubbles 540 in response to pressure forced into the junction 532, 550 via the at least one first port 20A.
The first plate and the second plate can comprise numerous materials including plastics, e.g. polyetheretherketone, acrylic, polytetrafluoroethylene, etc., metals, ceramics, or elastomers, e.g. crosslinked polysiloxanes. The choice of cell material depends on the application requirements, particularly the nature of the fluid to be used and the sample processed in the nanofluidic chip.
At block 1105, a mounting base plate 12 is configured to hold a nanofluidic chip 18.
At block 1110, multiple connector plates 14 are positioned on top of the mounting base plate 12, where the multiple connector plates 14 include a first connector plate 701 positioned on top of the mounting base plate 12 to communicate fluidly with the nanofluidic chip 18, a next connector plate 702 positioned on top of the first connector plate 701, through a last connector plate 703 positioned on top of the next connector plate 702.
At block 1115, the next connector plate 702 is configured to communicate fluidly with the nanofluidic chip 18 through the first connector plate 701, and the last connector plate 703 is configured to communicate fluidly with the nanofluidic chip 18 through the next connector plate 702 and the first connector plate 701.
The last connector plate 703 comprises at least one external port 20A configured to receive input and at least one last connector hole 730 configured to feed the next connector plate 702.
The next connector plate 702 comprises at least one through via 732 configured to receive input from the at least one last connector hole 730 and at least one next connector hole 734 configured to feed the first connector plate 701.
The first connector plate 701 comprises at least one through via 738 configured to receive input from the at least one next connector hole 734 and at least one first connector hole 740 configured to feed the nanofluidic chip 18.
It will be noted that various microelectronic device fabrication methods may be utilized to fabricate the components/elements discussed herein as understood by one skilled in the art. In semiconductor device fabrication, the various processing steps fall into four general categories: deposition, removal, patterning, and modification of electrical properties.
Deposition is any process that grows, coats, or otherwise transfers a material onto the wafer. Available technologies include physical vapor deposition (PVD), chemical vapor deposition (CVD), electrochemical deposition (ECD), molecular beam epitaxy (MBE) and more recently, atomic layer deposition (ALD) among others.
Removal is any process that removes material from the wafer: examples include etch processes (either wet or dry), and chemical-mechanical planarization (CMP), etc.
Patterning is the shaping or altering of deposited materials, and is generally referred to as lithography. For example, in conventional lithography, the wafer is coated with a chemical called a photoresist; then, a machine called a stepper focuses, aligns, and moves a mask, exposing select portions of the wafer below to short wavelength light; the exposed regions are washed away by a developer solution. After etching or other processing, the remaining photoresist is removed. Patterning also includes electron-beam lithography.
Modification of electrical properties may include doping, such as doping transistor sources and drains, generally by diffusion and/or by ion implantation. These doping processes are followed by furnace annealing or by rapid thermal annealing (RTA). Annealing serves to activate the implanted dopants.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
This application is a divisional of U.S. patent application Ser. No. 14/927,936, filed Oct. 30, 2015, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
8037902 | Strand et al. | Oct 2011 | B2 |
8075852 | Gao et al. | Dec 2011 | B2 |
8153059 | Trieu | Apr 2012 | B2 |
8343425 | Li et al. | Jan 2013 | B1 |
8376317 | Chuang et al. | Feb 2013 | B2 |
8889085 | Lee et al. | Nov 2014 | B2 |
8939171 | Zeng et al. | Jan 2015 | B2 |
10058861 | Pereira et al. | Aug 2018 | B2 |
10226767 | Pereira et al. | Mar 2019 | B2 |
20030136679 | Bohn et al. | Jul 2003 | A1 |
20040180425 | Weiblen | Sep 2004 | A1 |
20070217957 | Flachsbart | Sep 2007 | A1 |
20090238722 | Mora-Fillat et al. | Sep 2009 | A1 |
20100093016 | Kaufman | Apr 2010 | A1 |
20110027873 | Cho et al. | Feb 2011 | A1 |
20110296903 | Cao et al. | Dec 2011 | A1 |
20120160754 | Falk-Jordan | Jun 2012 | A1 |
20130333721 | Balagurusamy | Dec 2013 | A1 |
20150037890 | Mershin et al. | Feb 2015 | A1 |
20150346104 | Chou et al. | Dec 2015 | A1 |
20160320389 | Astier | Nov 2016 | A1 |
20170120247 | Pereira | May 2017 | A1 |
Entry |
---|
List of IBM Patents or Patent Applications Treated as Related; (Appendix P), Date Filed: May 31, 2019, 2 pages. |
Peng et al. Jounral of Vaccine Science Technology B, vol. 24(4), Jul./Aug. 2006, pp. 1941-1946. |
T. M. Squires et al.,“Microfluidics: Fluid physics at the nanoliter scale,” Reviews of Modem Physics, vol. 77, No. 3, Jul. 2005, pp. 977-1026. |
W. Sparreboom, et al.,“Principles and applications of nanofluidic transport,” Nature Nanotechnology, vol. 4, No. 11, Nov. 8, 2009, pp. 713-720. |
Number | Date | Country | |
---|---|---|---|
20190299208 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14927936 | Oct 2015 | US |
Child | 16427393 | US |