The technology disclosed herein relates generally to electronic devices incorporating fluidic conductors and/or floated solid conductors.
Electronic systems and components, particularly those that operate in radio-frequency (RF) ranges, are sensitive to the physical size of the constituent components and interconnects. Thus, changes in the geometry or layout of a transmission line, capacitor, antenna, tuning stub, filter, or other components will affect the performance and/or operating frequency of the RF system. These geometrical features are typically viewed as permanent characteristics of a system once the design, fabrication, and assembly is completed. In order to optimize the system after construction, engineers often tune components by physically removing metal from components (a typical approach for tuning planar antennas), adding bond wires, turning tuning screws, or changing lengths of other adjustable interconnections. These methods are not only time-intensive, but require manual implementation each time a change is desired. If the RF electronic system is installed in an environment that influences its performance, then additional tuning after installation is often required. Conventional methods for physically adjusting the topology or layout of a system are not dynamic and do not enable dynamic adjustments to the system.
In order to allow for dynamic tuning (as opposed to geometric reconfiguration), RF engineers often use tunable capacitors and/or electrical switches. Such devices allow engineers to adjust the system for environmental changes and also give a new capability to provide real-time steering, tuning, band-switching, and other changes to the RF system. However, these lumped-element individual components introduce performance drawbacks including electrical loss, and also require power to hold a given configuration.
In the specific case of RF antennas, due to the limitations of conventional technologies, today's personal and miniature communications systems generally over-specify the physical size, spectral bandwidth, and/or aerial coverage of the antenna. A great deal of effort in the microwave community is being dedicated to antenna miniaturization, but generally only towards minimizing the antenna footprint. Typically, the thickness of the antenna substrate remains unchanged, which is problematic for ultra-miniature applications. The research community has not in general taken on the challenge of reducing this dimension since doing so tends to reduce the antenna bandwidth.
In general, antenna bandwidth is over-specified so that even if the antenna is detuned, it will still capture the desired signal band. The signal bandwidth for the commercial CA-code GPS signal is only about 2 MHz wide but typical GPS patch antennas have a bandwidth of 20 MHz or more to accommodate temperature variations and proximity effects. The bandwidth of a patch antenna is roughly proportional to the substrate thickness, so that if the antenna can be kept on frequency with an active tuning system, the bandwidth and substrate thickness may be reduced by an order of magnitude. Standard approaches to antenna tuning (like those described above), however, generally degrade the antenna's performance. This is because antennas that are tuned via adjustable loading must typically be designed for operation confined to some portion of the tunable band, thereby degrading efficiency. The ability to tune the actual antenna geometry is not typically pursued.
Miniature antennas are, generally, also not adaptable to spatial variations in the external signal. The spatial signal profile and its polarization can vary dramatically due to “multipath” propagation and other environmental effects. Directionally specific, steerable antennas have long been used in complex systems where power and space are available for both the antenna and associated components to operate it. Both analog and digital approaches (e.g., beamforming) may be used, even in strapped-down cellular base stations. However, steerable antennas have generally not been leveraged into miniature communications systems due to the complexity of mechanical and electrical support.
As a result, communications systems generally transmit orders of magnitude more power and require more spectrum usage than they would if it were possible to stay within the signal bandwidth and transmit to the precise location needed.
A common method of adjusting narrow-bandwidth patch antennas is to add solid tuning “fingers” to the edges of the patch. The fingers are usually trimmed by hand with a knife. The size and number of fingers may be selected to allow for very fine control of the patch frequency and input impedance even with relatively coarse adjustments to the length of the fingers. Again, however, such tuning fingers are themselves not dynamically adjustable, and provision and/or manual trimming of such fingers a multitude of times is unwieldy and impractical.
The use of varactor diodes to tune a microstrip patch antenna has also been explored. Numerous researchers have expanded on this approach with multiple-diode configurations, and other antenna geometries. However, although well-suited to receive applications, varactor diodes are highly non-linear and can generate significant unwanted harmonics even at moderate transmit power levels. More recently, MEMS varactors have also been applied in antenna tuning applications. In order to achieve larger frequency shifts for band-switching applications, changes in polarization or antenna pattern, PIN diodes, FETs, and MEMS switches have been used. However, these and other techniques typically produce discrete steps in performance, not continuous, analog tuning, and typically require applied power to maintain a specific configuration.
In accordance with various embodiments of the invention, microfluidic technology, utilizing conductive liquids and/or floated conductive solids, is used to form a variety of reconfigurable and/or steerable electronic components such as antennas. Furthermore, in some embodiments the technology is utilized to form “overlay” structures that impart reconfigurability to existing components. Embodiments of the invention advantageously require no applied power to maintain a selected configuration.
For many RF elements, including antennas, the shape and/or orientation of the metallic structure thereof determines important performance properties. The microfluidic technology described herein offers a powerful ability to tune an antenna during operation so that the bandwidth and substrate thickness specifications may be relaxed. The ability to reconfigure RF components enables reconfigurable communications systems. Embodiments of the invention described herein are applicable to a range of reconfigurable component designs, such as antennas (e.g., GPS antennas and patch antennas), and to products (both consumer-based and military) in the growing wireless communications market.
In one aspect, embodiments of the invention feature a reconfigurable electronic component including or consisting essentially of a substantially planar conducting surface, a fluidic channel, a conductor disposed within the fluidic channel, and an actuating mechanism for displacing the conductor within the fluidic channel. The fluidic channel defines a path that at least partially overlies the conducting surface, and a portion of the path extends from and does not overlie the conducting surface. The electronic component may be an antenna, a phase shifter, a balun, a variable capacitor, a tunable inductor, a tunable stub, a tunable transmission line, a tunable frequency-selective surface, a tunable metamaterial, a tunable matching network, a moveable feed structure (e.g., for an antenna), and/or a reconfigurable switch, to name a few examples.
Embodiments of the invention may feature one or more of the following, in any of a variety of combinations. The path may only partially overlie the conducting surface. The conducting surface may be substantially continuous. The fluidic channel may be closed. The actuating mechanism may include or consist essentially of a second conductor disposed within a portion of the fluidic channel not disposed over the conducting surface, and may further include a plurality of electrodes for displacing the second conductor within the fluidic channel. The conducting surface may be at least a portion of an antenna, e.g., a patch antenna. An insulator, e.g., a fluidic or solid insulator, may be disposed within the fluidic channel. The insulator and the conductor may be substantially immiscible fluids. The fluidic channel and the actuating mechanism may be disposed within a cover layer that is physically separable from the conducting surface. A ground plane may be disposed beneath the conducting surface. The conductor may be a conductive fluid. The fluidic channel may contain a fluid, and the conductor may include or consist essentially of a conductive solid floating in the fluid. The fluidic channel may be elongated and/or the path may be tortuous.
In another aspect, embodiments of the invention feature a cover layer for imparting reconfigurability to an electronic component that includes a conducting surface. The cover layer includes or consists essentially of a substrate, a fluidic channel associated with (e.g., disposed over, on, or within) the substrate, a conductor disposed within the fluidic channel, and an actuating mechanism for displacing the conductor within the fluidic channel. The fluidic channel is disposable over the conducting surface so as to at least partially overlie, and to extend from, the conducting surface.
Embodiments of the invention may feature one or more of the following, in any of a variety of combinations. The fluidic channel may only partially overlie the conducting surface. An insulator may be disposed within the fluidic channel. The insulator and the conductor may be substantially immiscible fluids. The actuating mechanism may include or consist essentially of a second conductor disposed within a portion of the fluidic channel not overlapping the conducting surface, and may further include a plurality of electrodes for displacing the second conductor within the fluidic channel. The conductor may be a conductive fluid. The fluidic channel may contain a fluid, and the conductor may include or consist essentially of a conductive solid floating in the fluid.
In yet another aspect, embodiments of the invention feature a steerable antenna including or consisting essentially of a fluidic channel, a moveable driven element, and an actuating mechanism. The driven element comprises or consists essentially of a conductor and is disposed within the fluidic channel. The actuating mechanism displaces the driven element within the fluidic channel, thereby facilitating the redirection of a beam radiated from the antenna.
Embodiments of the invention may feature one or more of the following, in any of a variety of combinations. The fluidic channel may be disposed between a reflector and a director, and the beam may radiate in a direction substantially collinear with the reflector, driven element, and director. The reflector and the director may be disposed within additional discrete fluidic channels, and additional actuating mechanisms may displace the reflector and the director within their respective fluidic channels. The reflector and the director may be disposed on a substrate, and the fluidic channel and the actuating mechanism may be disposed on or within a cover layer that is physically separable from the substrate.
In a further aspect, embodiments of the invention feature a reconfigurable electronic component including or consisting essentially of a solid radiating structure floating in a fluidic channel, a conductor disposed beneath the radiating structure, a fluidic interconnect providing electrical and/or capacitive coupling between the radiating structure and the conductor, and an actuating mechanism for displacing (e.g., translating and/or rotating) the radiating structure within the fluidic channel.
In yet a further aspect, embodiments of the invention feature a radiating structure including or consisting essentially of a first channel containing a fluidic balun therein, a second channel containing a fluidic radiating antenna therein, and an actuating mechanism for displacing the fluidic balun and fluidic radiating antenna substantially in unison.
These and other objects, along with advantages and features of the invention, will become more apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations. As used herein, the term “substantially” means±10%, and, in some embodiments, ±5%. The term “consists essentially of” means excluding other materials that contribute to function, unless otherwise defined herein.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
In various embodiments of the present invention, microfluidic systems integrate fluidic or solid conductors with electronic components (such as antennas, phase shifters, baluns, variable capacitors, tunable inductors, tunable stubs, tunable transmission lines, tunable frequency-selective surfaces, tunable metamaterials, tunable matching networks, moveable feed structures (e.g., for antennas), and/or reconfigurable switches, etc.) to make such components reconfigurable. Such designs may be employed in ultra-small RF systems that may be tunable, ultra-wide band, or multi-band. While many of the components in accordance with embodiments of the invention are generally planar, a planar geometry is not a requirement of various embodiments. In particular, antenna frequency, bandwidth, and/or beam shape may be determined by the physical layout of the antenna together with the physical location of the feed network. The ability to tune the physical geometry in real-time enables real-time control over these key parameters.
In some embodiments, each microfluidic channel 120 is a generally elongated tubular structure whose longitudinal length typically greatly exceeds its width or diameter (e.g., having a ratio of length to width or diameter of greater than approximately 100:1, or even greater than approximately 1000:1), and any fluid therein generally does not directly contact conducting surface 110. However, microfluidic channels 120 need not be severely elongated (and may be, e.g., substantially rectangular or even square in shape) and may have sizes and ratios of length to width similar to those of an underlying electronic component or conducting surface. In various embodiments, the dimensions (e.g., length and width or diameter) of each microfluidic channel 120 generally depend upon the dimensions of an underlying electronic component or conducting surface 110. Such dimensions may be as large as one or more inches, and may be as small as 250 μm, or even smaller.
The inner surfaces of a microfluidic channel 120 may be substantially hydrophobic. Each microfluidic channel 120 may include portions disposed directly over conducting surface 110 (i.e., without metallic or electrical structures such as electrodes therebetween) and portions extending therefrom, as shown in
Each microfluidic channel 120 may also extend from the above-described portions to a peripheral region 130 of component 100 spaced apart from conducting surface 110, and connect to an actuating mechanism 140. Disposed within each microfluidic channel 120 are one or more conductors 150 that are positionable within the microfluidic channel 120 to alter the properties, e.g., frequency and/or bandwidth, of component 100. In various embodiments, conductors 150 are fluidic conductors, e.g., discrete portions of a conductive liquid. For example, conductors 150 may include or consist essentially of mercury, alloys including gallium, indium, and/or tin, and/or a colloid of metal particles suspended in a liquid (e.g., silver or copper particles suspended in a perfluorinated oil). In other embodiments, conductors 150 are solid, e.g., metal, and may be floated in a liquid contained within microfluidic channel 120. As utilized herein, references to “floated” or “floating” solids do not necessarily imply that the solid has a lower density than the liquid in which it is disposed, or that the solid is generally disposed at or near an upper surface of the liquid Likewise, references to solids being “immersed” within a liquid do not necessarily imply that the liquid is disposed on all sides of the solid, only that the solid is generally disposed within the same volume as the liquid and is generally moveable therewithin.
Solid conductors 150 may even include a non-metallic or non-conductive material, e.g., a polymeric material, coated with a layer of metal to impart conductivity thereto. As pictured in
In some embodiments, microfluidic channel 120 is “closed,” i.e., is not connected to a reservoir or other source or sink for fluid, and the total amount of fluid (and amount of conductors 150 and/or insulators 160) therewithin remains substantially constant during operation of component 100. Thus, reconfiguration of component 100 does not require the emptying and filling of discrete “cavities.”
There are several advantages to a closed-channel system. For example, the use of a pressure release valve is generally unnecessary, thereby minimizing the possibility of contamination and/or leakage. Moreover, because a fluidic pump need not work against a pressure, a lower power design is enabled. The displacement-based concept is inherently stable and does not require applied power or valves to hold a given position. Optionally, however, a normally closed valve may be employed to add stability against inertia.
The configuration of component 100 via the positioning of conductors 150 (and/or insulators 160) within microfluidic channel 120 is typically controlled by actuating mechanism 140. Actuating mechanism 140 is preferably removed from conducting surface 110 (so, e.g., any electrodes associated with actuating mechanism 140 do not interfere with the operation of component 100). In a preferred embodiment, microfluidic channel 120 is closed (and substantially filled with liquid), and actuating mechanism 140 includes or consists essentially of an actuating conductor 170 and a plurality of electrodes 175. During operation, the actuating conductor 170 is repositioned, e.g., between various pairs of electrodes 175, by, e.g., electrowetting. Specifically, by proper selection of a voltage placed across actuating conductor 170 via electrodes 175, the actuating conductor 170 is repositioned within microfluidic channel 120. Since microfluidic channel 120 is typically substantially filled with liquid, the movement of actuating conductor 170 results in the corresponding movement of the other conductor(s) 150 within microfluidic channel 120. (That is, voltage is not applied to conductors 150 directly by electrodes 175; rather, the voltage applied to actuating conductor 170 results in movement of conductors 150.) As shown in
In other embodiments of the invention, actuating mechanism 140 includes or consists essentially of a pump connected to microfluidic channel 120, which controls motion of conductors 150 via application of positive or negative hydraulic pressure thereto. In yet other embodiments, when conductors 150 are magnetic, actuating mechanism 140 may include or consist essentially of one or more positionable magnets disposed beneath conductors 150. Magnets may also be utilized (as shown in, e.g.,
As shown in
In some embodiments, the microfluidic elements, e.g., microfluidic channel 120 with conductors 150 and insulators 160 therein, as well as actuating mechanism 140, are integrated with conducting surface 110 during fabrication of component 100 and are permanent portions thereof. In other embodiments, the microfluidic elements are disposed within a discrete conforming, generally two-dimensional surface or layer disposed above conducting surface 110 and affixed to component 100. For example, as shown in the exploded view of
As shown in
As described above, embodiments of the invention feature floating solid conductors to reconfigure various properties of electronic components such as antennas.
As shown in
As shown in
Referring now to
As shown in
In various embodiments, driven element 210, reflector 220, and director 230 all include or consist essentially of fluidic conductors, or floated solid conductors, disposed in microfluidic channels 240. The conductors may be any of those described above in relation to
As described above, microfluidic channels 240 may include or consist of one or more dielectric materials, e.g., polymers, glasses, and/or ceramics, and may (when the actuating mechanism is considered part of the channel) be closed and require no separate liquid reservoir.
As shown in
During operation, the beam 310 is directed away from the center of rotation of antenna 300 so that, in any given position, the corresponding reflector 340 will shield the driven element 320 from the other parasitic structures on the substrate. The electrical feed (not shown) is typically connected to all possible positions (four are depicted in
In an embodiment, the design reconfigures the physical radiating structure in order to steer the antenna beam. Thus, parasitic elements are optional and (unlike in digital beamforming) a single radiating structure (i.e., the driven element 320) may be used. This is helpful in applications where small size is desired. The approach described herein enables large-scale, 360° motion for, e.g., X-band applications. This concept may also be applied to a steerable planar dipole, or even a wire antenna. It may also enable the reconfiguring of miniature antennas in response to environmental changes. Moreover, in various embodiments, the design offers immunity to multi-path effects, new scenarios in secure communications, low power adaptable radios for ad-hoc sensor networks, and jamming rejection. In addition to addressing power and bandwidth limitations for existing systems, embodiments of the invention may offer a fundamental new tool towards the vision of a cognitive radio. In various embodiments, these antennas enable the ability to sense and adapt to the surrounding signal frequencies, noise levels, and spatial profiles of electromagnetic transmissions.
As mentioned above, the mobile conductors utilized in embodiments of the present invention to reconfigure various electronic components may be solid conductors floated in microfluidic channels.
In various embodiments, magnets 460 are not utilized to directly actuate solid conductors 440, but rather merely as “clamps” to hold solid conductors 440 in a desired position once they are actuated by actuating mechanism 450 (which may include or consist essentially of any of the actuating mechanisms described above). Magnets 460 may be fixed in desired positions, thus exerting a magnetic force on solid conductors 440 that is overcome, e.g., by a hydraulic force exerted upon solid conductors 440 by actuating mechanism 450, in order to reposition solid conductors 440. Or, as pictured in
Microfluidic channels 430, 470 may be closed, requiring no separate fluid reservoirs. During operation, solid conductors 440 may be wholly disposed directly over conducting surface 420, and thus have substantially no impact on the properties of component 400. If reconfiguration is desired, one or more solid conductors 440 may be extended outwardly from conducting surface 420, thus altering one or more of its electrical properties. As shown in
The functionality and design flexibility of the floating solid-conductor-based embodiments described above may be augmented via the use of fluidic interconnects.
A similar concept may be utilized to tune the center frequency of electronic components such as patch antennas.
The technologies herein described may also be utilized in the fabrication of baluns, which are typically utilized to convert a signal from a single-ended form, such as a signal in a micro-strip or co-axial cable, to a balanced signal, such as that needed to feed a dipole. Baluns are usually designed to be wideband, rather than frequency tunable. However, losses in the balun may be problematic, depending on the specific design and targeted frequency range for the electronic component. More narrow-band baluns do often use quarter wave short-circuits, and sliding/adjustable short circuit bars can be adjusted by the user via screws when they are installed. Real-time frequency tunable baluns are typically achieved through the use of tunable capacitors. However, moveable feeds are not typically utilized for electronic components such as antennas.
In various embodiments, the invention provides a reconfigurable, adjustable, and/or moveable antenna feed structure for miniature systems. The structure may serve as a simple moving feed or also be configured as a moveable balun for a balanced antenna. Thus, frequency-tunable baluns may also be designed and fabricated. A reconfigurable balun enables one to adjust the impedance looking into an antenna, or to feed an antenna that is itself movable or reconfigurable. The general ability to reconfigure the size, shape, frequency, or position of a small antenna during operation enables new antenna designs that may be smaller, may serve lower power system designs, and may be tailored towards new applications.
Specifically, microfluidic technology may be utilized to move or reconfigure antenna feed structures.
Feed 710 is electrically connected to wire 750 (which connects to balun 720 and dipole 730 in the illustrated example), and wire 752 (shown connected to the outer sheath of a coaxial cable feed 710) is grounded. Shorting stubs 760 connect the unused portion of the signal line 750 to ground at specific locations (here, at quarter-wavelength distances from the feed 710 and the connection to dipole 730). At least one stub 760 (e.g., the one closest to interconnect 755 in
In an embodiment, the center of feed 710 connects to one side of the dipole 730 via printed wire 750, and the connection between the printed wire 750 and the moveable dipole 730 is via a moveable interconnect 755 (which may be a fluidic or floated solid conductor disposed within a microfluidic channel, as described herein). From the connection point, balun 720 (here depicted as a λ/2 bypass balun) is formed within microfluidic channel 740. Balun 720 feeds the opposite side of the dipole 730 with a signal that is 180° out-of-phase with the first side.
In various embodiments, the entire balun-dipole structure may be rotated in unison while maintaining the proper phasing of the balanced feed as the dipole 730 is moved. The two stubs 760 may sit in different microfluidic channels (and may be, along with wires 750, 752 and/or feed 710, in a different plane than microfluidic channels 740), which are not shown in
The exemplary structure depicted in
The microfluidic technology described above may be incorporated into a GPS antenna in order to enable the tunability of its center frequency. Embodiments of this design also specifically address the need to maintain polarization and feed point impedance while tuning. An exemplary high-dielectric-constant GPS patch antenna has a one-inch square patch. For a tuning range of 20 MHz out of 1.575 GHz, the total area of the tuning “fingers” (e.g., portions of microfluidic channel 120 containing conductors 150 extending from an edge of the patch) may be approximately 0.013 square inch. This gets divided in half for fingers on each side, resulting in a finger area of 0.0065 square inches. In this example seven fingers are used on each side, each finger being approximately 0.0009 square inches in area. Preferably, the aspect ratio for a full length finger is typically three or four to one. Thus, at full extension, fingers approximately 15 mils wide are approximately 60 mils long.
In order to achieve circular polarization in a square patch, modes may be excited both vertically and horizontally by using a feed point along a diagonal of the conducting surface. The feed-point impedance is a function of the distance from the center of the patch to the feed location. Changing the finger lengths symmetrically typically adjusts the center frequency, but generally has only a second-order effect on the feed-point impedance. If the total length of the fingers is kept constant, but they are adjusted differentially from one side to the other, the effective location of the feed point will change, and the input impedance of the antenna may be thereby adjusted.
The terms and expressions employed herein are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/270,381, filed Jul. 8, 2009, the entire disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61270381 | Jul 2009 | US |