Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same

Information

  • Patent Grant
  • 10343166
  • Patent Number
    10,343,166
  • Date Filed
    Tuesday, May 16, 2017
    7 years ago
  • Date Issued
    Tuesday, July 9, 2019
    4 years ago
Abstract
The disclosure provides devices, systems and methods for the generation of encapsulated reagents and the partitioning of encapsulated reagents for use in subsequent analyses and/or processing, such as in the field of biological analyses and characterization.
Description
BACKGROUND

The field of life sciences has experienced dramatic advancement over the last two decades. From the broad commercialization of products that derive from recombinant deoxyribonucleic acid (DNA) technology, to the simplification of research, development and diagnostics, enabled by critical research tools, such as the polymerase chain reaction, nucleic acid array technologies, robust nucleic acid sequencing technologies, and more recently, the development and commercialization of high throughput next generation sequencing technologies. All of these improvements have combined to advance the fields of biological research, medicine, diagnostics, agricultural biotechnology, and myriad other related fields by leaps and bounds.


None of these technologies generally exist in a vacuum, but instead are integrated into a broader workflow that includes upstream components of sample gathering and preparation, to the downstream components of data gathering, deconvolution, interpretation and ultimately exploitation. Further, each of these advancements, while marking a big step forward for their fields, has tended to expose critical bottlenecks in the workflows that must, themselves, evolve to fit the demands of the field. For example, genome sequencing is bounded on both ends by critical workflow issues, including, in many cases, complex and labor intensive sample preparation processes, just to be able to begin sequencing nucleic acids from sample materials. Likewise, once sequence data is obtained, there is a complex back-end informatics requirement in order to deconvolve the sequence data into base calls, and then assemble the determined base sequences into contiguous sequence data, and ultimately align that sequence data to whole genomes for a given organism.


One critical bottleneck for many of these technologies lies not in their ability to generate massive amounts of data, but in the ability to more specifically attribute that data to a portion of a complex sample, or to a given sample among many multiplexed samples.


SUMMARY

Devices, methods and systems of the present disclosure provide solutions to challenges in various fields, including the challenges described above. The present disclosure provides devices, systems and methods for the generation of encapsulated reagents as well as multiplexed partitions that include these encapsulated reagents for use in a variety of applications.


The devices, systems and methods of the present disclosure employ microfluidic systems in the generation of monodisperse populations of microcapsules or beads that may have reagents such as biological reagents associated therewith. Also provided are devices, systems and methods for selectively and controllably partitioning these microcapsules or beads into droplets in emulsions for use in performing further reactions and/or analyses. Also provided are the various component parts of the devices and systems as well as interface components for facilitating interaction between such components.


An aspect of the disclosure provides a method for partitioning microcapsules. The method can include providing an aqueous fluid comprising a suspension of microcapsules and flowing the aqueous fluid into a droplet generation junction comprising a partitioning fluid to form a population of droplets of the aqueous fluid in the partitioning fluid. The flow rate of the aqueous fluid can be such that no more than 50% of droplets of the population of droplets are unoccupied by a microcapsule from the suspension of microcapsules.


In some embodiments, the flow rate is such that no more than 25% of the droplets of the population of droplets are unoccupied by a microcapsule. In some embodiments, the flow rate is such that no more than 10% of the droplets of the population of droplets are unoccupied by a microcapsule. In some embodiments, the flow rate is such that no more than 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 2% or 1% of the population of droplets are unoccupied by a microcapsule.


In some embodiments, fewer than 25% of droplets of the population of droplets comprise more than one microcapsule. In some embodiments, fewer than 20% of droplets of the population of droplets comprise more than one microcapsule. In some embodiments, fewer than 15% of droplets of the population of droplets comprise more than one microcapsule. In some embodiments, fewer than 10% of droplets of the population of droplets comprise more than one microcapsule. In some embodiments, fewer than 5% of droplets of the population of droplets comprise more than one microcapsule.


In some embodiments, at least 80% of droplets of the population of droplets comprise a single microcapsule. In some embodiments, at least 90% of droplets of the population of droplets comprise a single microcapsule. In some embodiments, at least 95% of droplets of the population of droplets comprise a single microcapsule. In some embodiments, at least 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% of droplets of the population of droplets comprise a single microcapsule.


In some embodiments, the droplet generation junction can be in a microfluidic channel network of a microfluidic device. In some embodiments, the microfluidic channel network can comprise a first channel segment fluidly connecting a source of microcapsules to the droplet generation junction. The microfluidic channel network can also comprise a second channel segment connecting a source of partitioning fluid to the droplet generation junction, and a third channel segment fluidly connected to the droplet generation junction providing an outlet to the droplet generation junction.


In some embodiments, the flow rate can be provided by providing one or more pressure differentials across the first and second channel segments. In some embodiments, the first and/or second channel segments can have cross-sectional dimensions that provide the flow rate such that no more than 50% of droplets of the population of droplets are unoccupied by a microcapsule from the suspension of microcapsules. In some embodiments, the microfluidic channel network can further comprise one or more flow controlling structures within the first channel segment that provide the flow rate.


In some embodiments, the microcapsules of the suspension of microcapsules have a mean cross-sectional dimension and a coefficient of variation in cross-sectional dimension of no greater than 10%. In some embodiments, the microcapsules of the suspension of microcapsules have a mean cross-sectional dimension and a coefficient of variation in cross-sectional dimension of no greater than 10%, 8%, 6%, 4%, 2% or 1%.


An additional aspect of the disclosure provides a method for partitioning microcapsules. The method can include flowing an aqueous fluid comprising a suspension of microcapsules into a droplet generation junction comprising a partitioning fluid. During a window of droplet generation, the microcapsules can be flowing into the droplet generation junction at a frequency that varies less than 30%. The method can also include partitioning the microcapsules in the partitioning fluid during the window of droplet generation. In some embodiments, the frequency is greater than 50 Hz. In some embodiments, the frequency is greater than 500 Hz. In some embodiments, the frequency is greater than 1000 Hz. In some embodiments, the frequency is greater than 50 Hz, 100 Hz, 250 Hz, 500 Hz, 750 Hz, 1000 Hz, 1250 Hz, 1500 Hz, 1750 Hz or 2000 Hz.


In some embodiments, during the window of droplet generation, the microcapsules flow into the droplet generation junction at a frequency that varies less than 20%. In some embodiments, during the window of droplet generation, the microcapsules flow into the droplet generation junction at a frequency that varies less than 10%. In some embodiments, during the window of droplet generation, the microcapsules flow into the droplet generation junction at a frequency that varies less than 5%. In some embodiments, during the window of droplet generation, the microcapsules flow in the droplet generation junction at a frequency that varies less than 30%, 25%, 20%, 15%, 10%, 5%, 2% or 1%.


In some embodiments, flowing the aqueous fluid comprising the suspension of microcapsules in the droplet generation junction comprising a partitioning fluid can comprise flowing the aqueous fluid through a microfluidic channel fluidly connected to the droplet generation junction. The microfluidic channel can include a region that regulates the flow (e.g., flow rate) of the microcapsules.


An additional aspect of the disclosure provides a method for producing microcapsules. The method can include providing a gel precursor in an aqueous fluid and flowing the aqueous fluid having the gel precursor through a fluid conduit that is fluidly connected to a droplet generation junction comprising a partitioning fluid. The partitioning fluid can comprise a gel activation agent. The method can also include forming droplets of the aqueous fluid in the partitioning fluid, where, within the droplets, the gel activation agent contacts the gel precursor to form gel microcapsules. In some embodiments, the aqueous fluid can also comprise a biological molecule, where, for example, the biological molecule can become entrained in the gel microcapsules.


An additional aspect of the disclosure provides a method for partitioning microcapsules. The method can include flowing an aqueous fluid comprising a suspension of a monodisperse population of microcapsules into a droplet generation junction. The monodisperse population can have a mean cross-sectional dimension and a coefficient of variation in cross-sectional dimension of no greater than 10%. The method can also include introducing a partitioning fluid into the droplet generation junction and separating the aqueous fluid into droplets within the partitioning fluid, where the droplets contain one or more microcapsules.


An additional aspect of the disclosure provides a microfluidic system. The microfluidic system can include a microfluidic channel network comprising at least first, second and third channel segments in fluid communication with a droplet generation junction. The first channel segment can be fluidly connected to a first fluid source that comprises a first fluid that comprises an aqueous fluid. The aqueous fluid can comprise a plurality of microcapsules disposed therein. Moreover, the second channel segment can be fluidly connected to a second fluid source that comprises a second fluid that is immiscible with the aqueous fluid. The microfluidic system can also include a flow control system connected to the microfluidic channel network. The flow control system can subject the first fluid and second fluid to flow into the droplet generation junction to generate droplets that comprise microcapsules; and can subject the droplets to flow into the third channel segment such that at least 75% of the droplets comprise at least one microcapsule and fewer than 25% of the droplets comprise more than one microcapsule.


An additional aspect of the disclosure provides a microfluidic system. The microfluidic system can include a microfluidic channel network. The microfluidic channel network can comprise a first channel segment coupled to a source of a first aqueous fluid that comprises a suspension of microcapsules; at least one second channel segment coupled to a source of a second aqueous fluid, the first and second channel segments in fluid communication at a first junction that brings the first aqueous fluid in contact with the second aqueous fluid; and a third channel segment coupled to the first junction and intersecting at least one fourth channel segment at a second junction. The at least one fourth channel segment can be coupled to a source of a fluid that is immiscible with the first and second aqueous fluids. Moreover, the second junction can partition the first and second aqueous fluids into droplets within the fluid. The microfluidic system can also include a flow control system operably coupled to the microfluidic channel network. The flow control system can subject the first, second and third fluids to flow through the microfluidic channel network to form droplets comprising the first and second aqueous fluids in the fluid, at a frequency of at least 50 Hz and that varies less than 20%.


Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A, 1B and 1C provide schematic illustrations of example partition or droplet generating fluidic channel junctions.



FIG. 2 schematically illustrates a simple, example fluidic channel architecture for partitioning microcapsules and other fluids into droplets in a water-in-oil emulsion.



FIGS. 3A and 3B schematically illustrate an example fluid channel architecture for partitioning encapsulated reagents into droplets in an emulsion.



FIG. 4 schematically illustrates an example channel network and microfluidic device useful in partitioning encapsulated reagents.



FIG. 5 schematically illustrates a side view of an example reservoir structure for enhancing manipulation of microcapsule compositions within fluidic devices.



FIGS. 6A and 6B illustrates an example microcapsule flow regulating structure.



FIGS. 7A and 7B schematically illustrates an example of interfacing fluid containing vessels with a fluid reservoir on a device.





DETAILED DESCRIPTION

I. General


The present disclosure provides devices, systems and methods that are particularly useful in managing complex samples for analysis using high throughput analytical systems, including, for example, high throughput nucleic acid analysis systems, such as nucleic acid arrays, nucleic acid sequencing systems, nucleic acid amplification and quantitation systems, or the like. In particular, the devices, systems and methods described herein are particularly useful in providing encapsulated reagents or reagent systems, and co-partitioning these reagents with sample components for further reaction and/or analysis. This co-partitioning of reagents and sample components can be used, for example, in reducing the complexity of the sample material by segregating portions of the sample to different partitions. Further, by also segregating reagents, one can subject each sample portion to a different reaction, including for example, the application of unique identifiers to different sample components, e.g., attachment of a discrete barcode or tagging reagents to the discrete sample components.


Particularly elegant examples of these co-partitioning approaches are described in Published International Patent Application No. WO2014/028537, and U.S. patent application Ser. No. 14/104,650 (filed Dec. 12, 2013), Ser. No. 14/175,935 (filed Feb. 7, 2014), Ser. No. 14/175,973 (filed Feb. 7, 2014), and 61/937,344 (filed Feb. 7, 2014), the full disclosures of each of which are incorporated herein by reference in their entirety for all purposes.


By way of example, one particularly elegant approach provides a polymer microcapsule composition that includes nucleic acid barcode sequences bound to the microcapsule, where the barcodes associated with a given microcapsule have substantially the same sequence of nucleotides, but where different discrete microcapsules will have different barcode sequences associated with such microcapsules. Each of these microcapsules is then contacted with a portion of a sample fluid, such as a sample fluid that includes a template nucleic acid from a sample material. The mixture of sample material including the template nucleic acid and the microcapsule is then partitioned into a small volume, such as a droplet in a water in oil emulsion, such that the microcapsule and a portion of the sample material are contained within the same droplet. In addition to controlling the droplet generation process to provide a desired number of microcapsules in a given partition, the sample material and emulsion process also may be controlled to provide for a desired amount of sample material, e.g., sample nucleic acid material, within each partition, e.g., to provide a single template molecule or a desired level of genome coverage within a given partition, or other desired level of sample materials.


Within the partition, the barcode sequence is reacted with the sample material, e.g., the template nucleic acid to effectively tag the sample material or a portion thereof. For example, by reacting the barcode sequence with the template, e.g., through amplification of the template sequence using the barcode sequence as an extension primer, one can effectively “attach” the barcode sequence to the replicated or amplified template. Similarly, replication of the extended primer produces a complement of the template along with a complement to the barcode, again, effectively attaching the barcode to the template. The presence or attachment of the barcode sequence, or its complement, on or to the amplified template molecule, or its complement, then allows some level of attribution of sequence reads that include that barcode to the same portion of sample material, e.g., the same template molecule or the same sample components, that was originally allocated to that partition.


In many cases, the molecule that includes the barcode sequence or sequences may also include functional elements that are used in subsequent processing of the amplified template sequences. These functional sequences include, for example, primer sequences (e.g., targeted or universal), primer recognition sequences, sequences that can form secondary structures, either within the sequence, or upon replication of the sequence, enrichment sequences, e.g., that are used as affinity purification sequences, immobilization sequences, probe sequences, reverse complement or hairpin sequences, or any of a variety of other functional sequences.


There are a wide variety of other high-value applications for such partitioning and barcoding or tagging processes. The present disclosure advantageously provides devices, systems and methods that can greatly facilitate the generation of such partitioned compositions or components thereof.


II. Fluidic Systems for Producing Encapsulated Reagents and Partitioned Reactions


The present disclosure provides improved fluidic systems, and particularly improved microfluidic systems, that are useful for both the generation of encapsulated reagents, as well as in the partitioning of those encapsulated reagents for use in subsequent reactions and/or analyses. As used herein, microfluidic systems typically denote fluidic systems that employ one or more fluid conduits, channels, chambers, or the like that include one or more interior cross-sectional dimensions, e.g., depth, length or width, that are less than 1000 microns, less than 200 microns, less than 100 microns, and in some cases, less than about 50 microns, or even less than about 20 microns. In some cases, one or more cross-sectional dimensions may be about 20 microns or less or 10 microns or less. Typically, these microfluidic channels or chambers will have at least one cross-sectional dimension of between about 1 and about 100 microns.


As will be appreciated, reference to encapsulated reagents is not intended to limit the scope of such reagents to completely enclosed capsules, but is intended to reflect any of a variety of methods of associating reagents with a given particle, bead, or other solid or semi-solid particle phase. In particular, encapsulation generally refers to the entrainment or other attachment, coupling, or association of a particular species with a solid or semi-solid particle, bead, enclosure, partition or droplet, and is not limited to compositions in which the species is entirely or partially enclosed within a larger structure.


In some aspects, encapsulated reagents are associated with microcapsules that are generally spherical in shape, although they may be elongated, plug shaped, or otherwise vary in their specific shape. In some cases, microcapsules will have one or more cross-sectional dimensions that are less than 200 microns, less than 150 microns, or less than about 100 microns. In some cases, microcapsules of the present disclosure have one or more cross-sectional dimensions that are between about 10 and about 200 microns, between about 20 and 150 microns, between about 30 and 125 microns, in many cases between about 40 and about 100 microns, and still other cases, between about 50 and about 75 microns.


While the dimensions of the microcapsules can be an important consideration, in many applications the variability in those dimensions is also an important consideration. In particular, for example, the transport of a microcapsule through a microfluidic system can be significantly impacted by the size of that microcapsule. For example simple flow resistance may be greater for much larger microcapsules than for smaller microcapsules. Similarly, propensity for clogging may be greater for larger microcapsules than for smaller microcapsules. In either event, flow rates of microcapsules through a microfluidic system may be greatly impacted by the size of the microcapsule. Accordingly, in certain aspects, the microcapsules of described herein, will be provided as a population of microcapsules having substantially monodisperse cross-sectional dimensions. In terms of cross-sectional dimensions, the phrase substantially monodisperse refers to a population that deviates (e.g., expressed as a coefficient of variation and stated as a percentage) from the mean cross-sectional dimension by no more than 50%, no more than 40%, no more than 30%, no more than 20%, or in some cases, no more than 10%.


Whether in the context of generating microcapsules for use in entrainment or encapsulation of reagents, or in the partitioning of aqueous fluids within non-aqueous droplets, the devices and systems of the present disclosure can employ a similar architecture. In a simplified example, this architecture may include a first channel segment that is fluidly connected to a first junction that fluidly connects the first channel segment with a second channel segment and a third channel segment. The second channel segment delivers to the junction a second fluid that is immiscible with the first aqueous fluid, such as an oil, that allows for the formation of aqueous droplets within the stream of immiscible fluid. This second fluid may be referred to herein as the dispersion fluid, partitioning fluid or the like. The flow of the first and second fluids through the junction and into the third channel segment is controlled such that droplets of the first fluid are dispensed into a flowing stream of the second fluid within the third channel segment. A variety of modifications to this basic structure are available to better control droplet formation and to bring in additional fluid streams. As used herein, the control of fluid flows encompasses both active control of fluid flows through the application of greater or lesser driving forces to cause that fluid flow. Additionally, flows may be controlled in whole or in part, by controlling the flow characteristics of one or more of the fluids and/or the conduits through which they are flowing. For example, fluid flow may be controlled by providing higher flow resistance within a conduit, e.g., through providing a higher viscosity, narrower conduit dimension, or providing larger or smaller microcapsules within a fluid stream, or any combination of the foregoing. In some cases, control is imparted through several of controlled driving force, controlled conduit dimensions, and controlled fluid properties, e.g., viscosity or particle composition.



FIG. 1A provides a schematic illustration of an exemplary basic channel architecture for generating droplets in a channel. As shown, first channel segment 102, second channel segment 104, third channel segment 106 and fourth channel segment 108 are all provided in fluid communication at first junction 110. FIG. 1B schematically illustrates droplet formation within the channel architecture of FIG. 1A.


As shown, a first aqueous fluid 112 is flowed through channel segment 102 toward junction 110. A second fluid 114 that is immiscible with the first fluid 112 is flowed into junction 110 via each of channel segments 104 and 106, and into fourth channel segment 108. As the aqueous first fluid 112 reaches the junction 110, it is pinched by the flow of the second fluid 114 from channel segments 104 and 106, and individual droplets 116 of the aqueous first fluid 112 are dispensed into fourth channel segment 108. In some cases, a portion of the fourth channel segment 108 proximal to the junction 110 may be provided with a reduced cross-section (not shown) as compared to the junction and/or channel segments 102, 104 and 106 to facilitate droplet formation within the fourth channel segment 108.


As discussed in greater detail below, additional channel segments may be provided either upstream, downstream or both, of junction 110, in any of channel segments 102, 104, 106 or 108, to allow for the delivery of additional fluids into either the aqueous first fluid stream in segment 102, e.g., additional reagents, buffers, or the like, the partitioning fluid in segments 104 and/or 106, or the droplet containing stream in channel segment 108.


As will be appreciated, this basic channel architecture is widely useful in both generation of microcapsules for encapsulation of reagents, as well as in the ultimate partitioning of those encapsulated regents with other materials.


In one particular example and with reference to FIGS. 1A and 1B, above, a first aqueous solution of polymer precursor material may be transported along channel segment 102 into junction 110 as the aqueous fluid 112, while a second fluid 114 that is immiscible with the polymer precursor is delivered to the junction 110 from channel segments 104 and 106 to create discrete droplets of the polymer precursor material flowing into channel segment 108. In some aspects, this second fluid 114 comprises an oil, such as a fluorinated oil, that includes a fluorosurfactant for stabilizing the resulting droplets, e.g., inhibiting subsequent coalescence of the resulting droplets. Examples of particularly useful partitioning fluids and fluorosurfactants are described for example, in U.S. Patent Application No. 2010-0105112, the full disclosure of which is hereby incorporated herein by reference in its entirety for all purposes. Polymer precursor materials may include one or more of polymerizable monomers, linear polymers, or other


In preparing gel microcapsules, an activation agent may also be combined with the aqueous stream 112 from channel 102. In some aspects, this activation agent is disposed within the second fluid streams 114 in one or more of channels 104 and 106, allowing for the simultaneous formation of droplets and commencement of a reaction to create the desired microcapsules 116. For example, in the case where the polymer precursor material comprises a linear polymer material, e.g., a linear polyacrylamide, PEG, or other linear polymeric material, the activation agent may comprise a cross-linking agent, or a chemical that activates a cross-linking agent within the first stream. Likewise, for polymer precursors that comprise polymerizable monomers, the activation agent may comprise a polymerization initiator. For example, in certain cases, where the polymer precursor comprises a mixture of acrylamide monomer with a N,N′-bis-(acryloyl)cystamine (BAC) comonomer, an agent such as tetraethylmethylenediamine (TEMED) may be provided within the second fluid streams in channel segments 104 and 106, which initiates the copolymerization of the acrylamide and BAC into a cross-linked polymer network or, hydrogel.


Upon contact of the second fluid stream 114 with the first fluid stream 112 at junction 110 in the formation of droplets, the TEMED may diffuse from the second fluid 114 into the aqueous first fluid 112 comprising the linear polyacrylamide, which will activate the crosslinking of the polyacrylamide within the droplets, resulting in the formation of the gel, e.g., hydrogel, microcapsules 116, as solid or semi-solid beads or particles.


Although described in terms of polyacrylamide encapsulation, other ‘activatable’ encapsulation compositions may also be employed in the context of the present disclosure. For example, formation of alginate droplets followed by exposure to divalent metal ions, e.g., Ca2+, can be used as an encapsulation process using the described processes. Likewise, agarose droplets may also be transformed into capsules through temperature based gelling, e.g., upon cooling, or the like.


In accordance with some aspects of the present disclosure one or more reagents may be associated with the microcapsule at the time of its formation. In particular, one or more reagents may be associated with a precursor reagent to the polymer matrix that makes up the microcapsule e.g., the linear polymer, such that the reagent(s) will be entrained within or otherwise associated with the formed microcapsule. For example, the reagent(s) may be coupled to a linear polymer material that is cross-linked into a microcapsule using the processes described herein, resulting in the reagents being coupled to the formed and cross-linked gel microcapsule. Alternatively, the reagent may be combined with the polymer precursor that includes active binding sites that interact with the reagent, either in the precursor stream or in the microcapsule after formation. In still other aspects, as with the cross-linking activation agent described elsewhere herein, an activator may also be contacted with the polymer precursor or formed microcapsule that activates sites on the polymer matrix of the microcapsule to which the reagent components may associate, covalently or non-covalently.


Reagents to be incorporated into the microcapsule may include any of a variety of different reagents or other components useful in the ultimate use of the microcapsule, e.g., an analytical reaction. Such reagents may include labeling groups (e.g., fluorescent dye molecules, FRET pairs, fluorescent nanoparticles, fluorescent proteins, mass labels, electrochemical labels or the like). These reagents may include biological or biochemical reagents, such as nucleic acids, nucleic acid analogues, nucleic acid mimetics, polynucleotides or analogues, oligonucleotides or analogues, enzymes, substrates, antibodies or antibody fragments, antigens, epitopes, receptors, and receptor binding components, proteins, polypeptides, amino acids, polysaccharides, or virtually any type of biochemical reagent useful in any of a wide variety of analyses. Likewise, compounds that act upon biological or biochemical systems are also envisioned for inclusion in such microcapsules, e.g., small molecule pharmaceutically active compounds, radiological compounds, inhibitors and or initiators of biological or biochemical compounds, chemical library compounds, or the like. In certain examples, these reagents may include any of a wide of variety of different reagents that are applicable to desired reactions to be carried out within the ultimately created partition, such as nucleic acid replication reagents (e.g., primers, polymerases, nucleotides or nucleotide analogues, buffers, co-factors, or the like), specific binding groups (e.g., receptors, antibodies or antibody fragments, binding peptides), or any other reagents (e.g., enzymes, substrates, catalysts/initiators, substrates, inhibitors, or the like).


In one example, a polynucleotide having an acrydite moiety is provided within the aqueous fluid, where the polynucleotide is coupled to the polymer precursor prior to its cross-linking into a bead as described herein. This polynucleotide may comprise one or more functional nucleic acid sequences, such as primer sequences, attachment sequences, ligation sequences or barcode sequences. See, e.g., U.S. Patent Application No. 61/937,344, which is entirely incorporated herein by reference.


Once created, the microcapsules may be collected, e.g., from a reservoir or other outlet at the end of channel segment 108. The collected microcapsules may then be washed to remove crosslinking agent, non-crosslinked polymer, emulsion oil and surfactant, any other non-coupled reagents, out-sized microcapsules or portions thereof, as well as any other contaminants imparted to the microcapsules during their creation that may potentially interfere with the use of the methods and systems described herein. In some aspects, the microcapsules will comprise substantially pure microcapsule compositions. By substantially pure microcapsule compositions is meant that the monodisperse populations of microcapsules, as described above, and their associated desired buffer and reagents will make up at least 90% of the composition, at least 95% of the composition, at least 99% of the composition, and in many cases at least 99.9% of the composition. Once washed, these microcapsules may be re-suspended in an aqueous solution, e.g., a buffer and/or one or more selected reagents, for use in subsequent processing. In accordance with the above, a variety of different wash protocols may be used in series or in the alternative in generating the substantially pure microcapsules described above. By way of example, in some cases, the wash may comprise a simple buffer exchange wash where the microcapsules are separated from their supporting liquid, e.g., through settling, centrifugation, filtration, or the like, and then re-suspended in a new buffer solution that may or may not be the same buffer as was originally containing the microcapsules. This type of wash may be repeated multiple times to remove free contaminants from the microcapsules. In alternative or additional wash steps, a more stringent washing process may be employed to remove certain bound species from the microcapsules. For example, where a microcapsule comprises nucleic acid, protein or other associated reagents, a denaturing wash step may be employed to remove additional bound excess proteins, nucleic acids or the like. For example, in some cases, the microcapsules may be washed with chaotropic agents, such as urea, at elevated temperatures to remove other non-covalently bound species, e.g., hybridized nucleic acids, etc. In still other aspects, wash steps may be combined with extractive techniques, in order to remove species that may be entrained within the interior of the microcapsules. For example, in some cases, these extractive processes may include electroelution, osmotic elution or other techniques to draw non-covalently bound species from within microcapsules.


In many cases, the substantially pure microcapsule compositions are substantially free from aggregated microcapsules, e.g., two, three, four or more microcapsules adhered together. Separation of aggregated microcapsules may be carried out through a variety of methods, including for example, size or flow based separation techniques, e.g., filtration.


Although described with reference to the channel architecture shown in FIGS. 1A and 1B, it will be appreciated that variations of these structures and architectures may be practiced within the scope of the present disclosure. For example, in some cases, the interface of the aqueous stream with the partitioning fluid may differ from the specific architectures described above. In particular, as shown in FIG. 1A, the intersection of channel segment 112 with channel segments 104 and 106 provides an interface between the aqueous fluid flow in channel segment 102 and the partitioning fluid. The droplets are formed as the aqueous fluid is pushed into and through that interface into channel segment 108. In some cases, however, the interface may be presented within an open space or chamber or channel segment manifold within a fluidic device, such that the interface exists as a “wall” of partitioning fluid. An example of this type of droplet generation junction is illustrated in FIG. 1C. As shown, a first channel segment 122 is fluidly connected to a fluid manifold 132 that forms part of the droplet generation junction. The manifold 132 is structured as a larger open chamber, i.e., larger than the first channel segment, with a droplet dispensing channel 134 exiting the manifold through which formed droplets 138 are expelled through dispensing channel or aperture 134 into channel segment 136. In some cases, additional side channel segments 124 and 126 are also provided fluidly connected to the manifold 132, as are channel segments 128 and 130. In operation, a first aqueous fluid (e.g., the aqueous polymer precursor fluid as described with reference to FIG. 1B, or the microcapsule containing aqueous fluid described with reference to FIG. 3B, below) is flowed into the manifold 132. An immiscible fluid is introduced into the manifold through side channels 128 and 130. Within the manifold 132, the immiscible fluid forms an interface that traverses the manifold 132 to the droplet dispensing port (shown as the dashed lines extending from channel segments 128 and 130 to dispensing channel 134). In some cases, additional aqueous fluids are introduced into the manifold through side channels 124 and 126. As the fluids flow through the droplet dispensing channel 134, the aggregate aqueous fluids, i.e., that from channel segment 122 and in some cases from segments 124 and 126, are surrounded by the immiscible fluid from channel segments 128 and 130 and expelled through dispensing channel segment 134 into channel segment 136 as droplets 138 of aqueous fluids within an immiscible fluid emulsion. As will be appreciated, controlling the rate of droplet formation, as well as the relative volumes of fluids combined in droplets within these types of structures is accomplished through many of the same mechanisms described above for basic channel intersections. In particular, controlled flow may be achieved through a number of mechanisms, including, for example, controlling the flow rates of the fluids being introduced into the manifold, controlling the geometry of the channels as they enter the manifold 132, e.g., channel shape, dimensions (depth and/or width), intersection contours and structure, and setback from the manifold as compared to other channels.


Additionally, although illustrated in FIG. 1A as a single interface for droplet generation, it will be appreciated that the devices and systems of the present disclosure will typically comprise multiplexed droplet generating interfaces in order to increase the throughput at which one can produce droplets for microcapsule formation or for partitioning of microcapsules, as described elsewhere herein. For example, a device or system of the present disclosure may include multiple duplicate channel networks of the architectures shown in FIGS. 1A and/or 1C. Further, for such multiplexed devices or systems, some of the various channel segments within the duplicate channel networks may have common fluid sources in terms of a common reservoir or a common channel or channel manifold, or may feed to a common outlet or reservoir. Likewise, in the case of alternate architectures, multiple aqueous fluid feed channel segments may be provided in communication with the partitioning fluid chamber.



FIG. 2 schematically illustrates a microfluidic device or device module for producing the microcapsules described above. As shown, the microfluidic device typically includes a body structure 200 that includes within its interior portion, a channel network that includes channels segments 202, 204, 206 and 208. These channel segments all communicate with a common channel junction 210. The device body structure also includes reagent reservoirs 212 and 214. As shown, reagent reservoir 212 is fluidly coupled to channel segment 202, while reagent reservoir 214 is fluidly coupled to channel segments 204 and 206. A third outlet reservoir is shown as reservoir 216, which is provided in fluid communication with channel segment 208. As will be appreciated, the aqueous polymer gel precursor may be provided in reservoir 212, while the partitioning fluid and activating agent are provided in reservoir 214. Flow of these fluids through junction 210, creates the microcapsules as described above, which flow into and are harvested from reservoir 216.


These microfluidic devices or device modules may be fabricated in any of a variety of conventional ways. For example, in some cases the devices comprise layered structures, where a first layer includes a planar surface into which is disposed a series if channels or grooves that correspond to the channel network in the finished device. A second layer includes a planar surface on one side, and a series of reservoirs defined on the opposing surface, where the reservoirs communicate as passages through to the planar layer, such that when the planar surface of the second layer is mated with the planar surface of the first layer, the reservoirs defined in the second layer are positioned in fluid communication with the termini of the channel segments on the first layer. Alternatively, both the reservoirs and the connected channel structures may be fabricated into a single part, where the reservoirs are provided upon a first surface of the structure, with the apertures of the reservoirs extending through to the opposing surface of the structure. The channel network is fabricated as a series of grooves and features in this second surface. A thin laminating layer is then provided over the second surface to seal, and provide the final wall of the channel network, and the bottom surface of the reservoirs.


These layered structures may be fabricated in whole or in part from polymeric materials, such as polyethylene or polyethylene derivatives, such as cyclic olefin copolymers (COC), polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), polycarbonate, polystyrene, polypropylene, or the like, or they may be fabricated in whole or in part from inorganic materials, such as silicon, or other silica based materials, e.g., glass, quartz, fused silica, borosilicate glass, or the like.


Polymeric device components may be fabricated using any of a number of processes including embossing techniques, micromachining, e.g., laser machining, or in some aspects injection molding of the layer components that include the defined channel structures as well as other structures, e.g., reservoirs, integrated functional components, etc. In some aspects, the structure comprising the reservoirs and channel structures may be fabricated using, e.g., injection molding techniques to produce polymeric structures. In such cases, a laminating layer may be adhered to the molded structured part through readily available methods, including thermal lamination, solvent based lamination, sonic welding, or the like.


As will be appreciated, structures comprised of inorganic materials also may be fabricated using known techniques. For example, channel and other structures may be micro-machined into surfaces or etched into the surfaces using standard photolithographic techniques. In some aspects, the microfluidic devices or components thereof may be fabricated using three-dimensional printing techniques to fabricate the channel or other structures of the devices and/or their discrete components.


As noted previously, the above-described channel architectures may also be readily employed in the partitioning of the above described microcapsules, e.g., comprising the encapsulated reagents, within droplets created in an immiscible fluid, such as in a “water-in-oil” (WO) emulsion system, where an aqueous solution, and particularly, an aqueous solution that includes the encapsulated reagents described herein, is dispersed as partitioned droplets within an immiscible dispersion or partitioning fluid, such as an immiscible oil.



FIG. 3 schematically illustrates the partitioning of encapsulated reagents. As shown, and with reference to the fluidic architecture shown in FIG. 1A, a first aqueous fluid that includes the beads encapsulating at least a first reagent is flowed through channel segment 102 into channel junction 110. The dispersion fluid is flowed into junction 110 from side channel segments 104 and 106. The aqueous fluid is then partitioned into droplets within the flowing stream of dispersion fluid, with individual droplets including the encapsulated reagents, and in some cases, containing only a single reagent bead or capsule.


The above-described channel architecture is included within an example of a channel system shown in FIG. 3A, for partitioning microcapsules, including, e.g., encapsulated reagents, with sample materials into, for example, a water-in-oil emulsion system. As shown, a first channel segment 302 is shown fluidly connected to channel segments 304, 306 and 308 at first channel junction 310. Fourth channel segment 308 fluidly connects first channel junction 310 to second channel junction 322 that is also fluidly coupled to channel segments 324, 326 and 328.


In the context of partitioning encapsulated reagents, the channel system of FIG. 3A is shown in FIG. 3B. As shown, a first stream of a first aqueous fluid 312 containing microcapsules 350 (e.g., such as microcapsules prepared as described above), beads or the like, that may include encapsulated reagents, are flowed through channel segment 302 into channel junction 310. Additional streams of second aqueous fluids 352 and 354 are introduced into channel junction 310 from channel segments 304 and 306 to join the first aqueous fluid 312 containing the microcapsules 350. The aqueous fluids added through each of channel segments 304 and 306 may be the same as or different from each other and the fluid portion of aqueous stream 312. As will be appreciated, the various channel segments will typically be fluidly coupled to sources of the fluids that are to be flowed through those channel segments. Such fluid sources may include reservoirs integrated within a device or interfaced with a device, or may include other interfaces with other fluidic systems, e.g., syringes, pumps, fluidic networks or the like, or interfaced with external reservoirs, e.g., external fluid accession systems for drawing fluids from tubes, vials, wells, or the like, or even external processing systems, e.g., amplification systems, sample material extraction systems, filtration systems, separation systems, liquid chromatography systems, or the like.


In some aspects, the additional aqueous fluids added through side channels 304 and 306 may include sample materials that are to be partitioned along with the encapsulated reagents included within the microcapsules. For example, the second aqueous fluid may include sample nucleic acids that may be partitioned into separate droplets along with the reagents included with the microcapsules, such as barcode sequences, functional sequences and the like. Additional reagents may also be added in the second aqueous fluids. In some cases, e.g., where the encapsulated reagents are to be employed in nucleic acid replication or synthesis reactions, the additional fluids may include reagents for such reactions, such as DNA polymerase enzyme(s), primer sequences, nucleotides or nucleotide analogues, reaction co-factors, buffers and the like, as well as any of a variety of other reagents, e.g., dyes, labels, chelators, inhibitors, initiators, substrates, etc.


In some cases, the reagents that are added may include reagents that stimulate release of the encapsulated reagents into the resulting droplets. For example, in some cases, the reagents may be associated with the microcapsule through a disulfide linkage or other chemically cleavable linkage, or the microcapsules may be structurally held together by disulfide crosslinking, or other chemically cleavable cross-linkers. As such, addition of a reducing agent, such as dithiothreitol (DTT) can result in the eventual release of the reagents on the microcapsules, either through direct release or through dissolution of the microcapsule, or both (See, e.g., U.S. Patent Application No. 61/940,318, filed Feb. 14, 2014, the full disclosure of which is incorporated herein by reference in its entirety for all purposes). Alternatively or additionally, other cleavable linkages may be used to crosslink microcapsules. Examples of such linkages include, e.g., photocleavable or chemically cleavable linkages or cross-linkers.


The combined aqueous stream, e.g., from fluids 312, 352 and 354, flows through channel segment 308 into channel junction 322. A third fluid 314 that is immiscible with the combined aqueous stream flowing from channel segment 308 is introduced into channel junction 312 from each of channel segments 324 and 326 to form droplets 356 that include the microcapsules 350, as well as some amount of the combined aqueous fluids. In many cases, this third, immiscible fluid includes an oil, such as a fluorinated oil containing a fluorosurfactant, as described above that is suitable for forming water-in-oil emulsions with stabilized resulting droplets. Other suitable emulsion systems may in some cases include silicon and hydrocarbon oil/surfactant systems.


As alluded to above, the devices described herein are useful in providing the microcapsules within aqueous droplets in an immiscible fluid. As will be appreciated, in a number of applications, it is particularly beneficial to provide a desired level of microcapsule occupancy in created partitions. In general, this is accomplished by controlling the combination of the aqueous stream that includes the microcapsule, and the streams of the immiscible fluid, such that the probability of more than the desired number of microcapsules being incorporated into a given partition is acceptably low. This may generally be accomplished through control of the flow of microcapsules, along with the flow of the other fluids coming together in the partitioning zone, e.g., junction 322 in FIG. 3, can be controlled so as to substantially provide for a desired number of microcapsules per partition.


In many cases, the devices, systems and methods are used to ensure that the substantial majority of occupied partitions (e.g., partitions containing one or more microcapsules) will include no more than 1 microcapsule per occupied partition. In particular, in some cases, the partitioning process is controlled such that fewer than 50% of the occupied partitions contain more than one microcapsule, fewer than 45% of the occupied partitions contain more than one microcapsule, fewer than 40% of the occupied partitions contain more than one microcapsule, fewer than 35% of the occupied partitions contain more than one microcapsule, fewer than 30% of the occupied partitions contain more than one microcapsule, fewer than 25% of the occupied partitions contain more than one microcapsule, and in many cases, fewer than 20% of the occupied partitions have more than one microcapsule, while in some cases, fewer than 10% or even fewer than 5% of the occupied partitions will include more than one microcapsule per partition. Accordingly, in many cases, the resulting partitions will result in at least 50% of the partitions containing one and only one microcapsule (i.e., a single microcapsule), at least 55% of the partitions containing one and only one microcapsule, at least 60% of the partitions containing one and only one microcapsule, at least 65% of the partitions containing one and only one microcapsule, at least 70% of the partitions containing one and only one microcapsule, at least 75% of the partitions containing one and only one microcapsule, at least 80% of the partitions containing one and only one microcapsule, at least 80% of the partitions containing one and only one microcapsule, at least 85% of the partitions containing one and only one microcapsule at least 90% of the partitions containing one and only one microcapsule, and in some cases at least 95% of the partitions containing one and only one microcapsule.


Additionally or alternatively, in many cases, it is desirable to avoid the creation of excessive numbers of empty partitions. While this may be accomplished by providing sufficient numbers of microcapsules into the partitioning zone, the poissonian distribution can expectedly increase the number of partitions that can include multiple microcapsules. As such, in accordance with aspects of the present disclosure, the flow of one or more of the microcapsules, or other fluids directed into the partitioning zone are controlled such that, in many cases, no more than 50% of the generated partitions will be unoccupied, i.e., including less than 1 microcapsule, no more than 25% of the generated partitions, or no more than 10% of the generated partitions, will be unoccupied. Further, in some aspects, these flows are controlled so as to present non-poissonian distribution of single occupied partitions while providing lower levels of unoccupied partitions. Restated, in some aspects, the above noted ranges of unoccupied partitions will be achieved while still providing any of the above-described single occupancy rates described above. For example, in many cases, the use of the devices, systems and methods of the present disclosure creates resulting partitions that have multiple occupancy rates of from less than 25%, less than 20%, less than 15%, less than 10%, and in many cases, less than 5%, while having unoccupied partitions of from less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, and in some cases, less than 5%. Methods, systems and device configurations for controlling the various flows within the channel networks are described in greater detail below.


Although described in terms of providing substantially singly occupied partitions, above, in certain cases, it is desirable to provide multiply occupied partitions, e.g., containing two, three, four or more microcapsules within a single partition. Accordingly, as noted above, the flow characteristics of the microcapsule containing fluids and partitioning fluids may be controlled to provide for such multiply occupied partitions. In particular, the flow parameters may be controlled to provide a desired occupancy rate at greater than 50% of the partitions, greater than 75%, and in some case greater than 80%, 90%, 95%, or higher.


Additionally, in many cases, the multiple microcapsules within a single partition may comprise different reagents encapsulated therein. In such cases, it may be advantageous to introduce different microcapsules into a common channel or droplet generation junction, from different microcapsule sources, i.e., containing different encapsulated reagents, through different channel inlets into such common channel or droplet generation junction. In such cases, the flow and frequency of the different microcapsules into the channel or junction may be controlled to provide for the desired ratio of microcapsules from each source, while ensuring the desired pairing or combination of such microcapsules into a partition.


Although shown with two junctions and their associated channel segments, it will be understood that additional channels may be provided within the devices of the present disclosure to deliver additional components to the various fluids, capsules and partitions described above. These additional channels may be provided intersecting any of the various channel segments described herein for addition of a variety of components to any one or more of the various fluids flowing within those channel segments at different positions and for different purposes. For example, in one aspect, one or more additional side channels may be provided intersecting the channel segment 328, described above, for the purpose of introducing new fluids, reagents, or additional partitioning fluids into partitioned fluids within the channel segment 328.


Likewise, additional channel segments may be provided intersecting channel segments 302 and/or 308, in order to introduce additional fluids into the aqueous stream prior to separating that fluid stream into droplets with the partitioning fluid. Additionally, still other channel segments can be provided intersecting any of the side channel segments, e.g., channel segments 304, 306, 324, or 326, in order to deliver different fluids into those channels. Such systems can allow the alteration of fluids being introduced into the partitioning stream in real time by controlling which fluids are provided through the respective side channels, e.g., allowing one to change reactants, change the partition fluid characteristics, or any of a variety of other conditions.


In some cases, these additional fluids may be for purposes of stimulating different reactions within the partitions by introducing new reagents to the partitions. For example, these additional fluids may provide one or more activating agents to the partitions or capsules, that cause the initiation of one or more reactions at any stage prior to or following partitioning.


Such activating agents may take any of a number different forms. For example, these activation reagents may cause the release of a reagent within a partition or capsule, to make it available for reaction, e.g., by cleaving a linkage between a microcapsule and the reagent, or by stimulating the disintegration of the microcapsule and subsequent reagent release. Alternatively or additionally, the activation reagent may comprise an initiator for a desired reaction, such as a missing critical reagent for the desired reaction, or the like. By way of example and for purposes of illustration, in cases where the desired reaction includes a nucleic acid polymerase mediated nucleic acid replication, an activation reagent may include a key missing reagent, such as one or more nucleoside triphosphates otherwise lacking from the mixture, a primer sequence, or one or more reaction co-factors suitable for a polymerase reaction, e.g., divalent metal ions like magnesium or manganese. In many cases, the use of such missing systems or activatable reagent systems for purposes of controlled initiation of a given reaction are referred to as “hot start” reagents, which are, as a general class, useful in conjunction with the systems of the present disclosure.


The activation reagents may alternatively or additionally initiate reactions on the partitions or capsules themselves or both, for example, disrupting the capsules or releasing reagents from those capsules, stabilizing or destabilizing partitions, e.g., to reduce or promote coalescence, respectively. A variety of reagent systems may be employed in the disruption of or release of reagents from the microcapsules of the present disclosure. These include the use of chemical stimuli described above, for cleaving chemical cross-linking or molecular attachment, as discussed in U.S. Patent Publication No. 2014/0378345, which is entirely incorporated herein by reference.



FIG. 4 provides a schematic illustration of an overall exemplary microfluidic device or device module for partitioning encapsulated reagents as described above. As shown in FIG. 4, the overall device 400 provides one or more channel network modules 450 for generating partitioned microcapsule compositions. As shown, the channel network module 450 includes a basic architecture similar to that shown in FIG. 3B, above. In particular, the illustrated channel network module includes a first channel junction 410 linking channel segments 402, 404 and 406, as well as channel segment 408 that links first junction 410 to second channel junction 422. Also linked to second junction 422 are channel segments 424, 426 and 428.


As illustrated, channel segment 402 is also fluidly coupled to reservoir 430 that provides, for example, a source of microcapsules that may include one or more encapsulated reagents, suspended in an aqueous solution. Each of channel segments 404 and 406 are similarly fluidly coupled to fluid reservoir 432, which may provide for example, a source of sample material as well as other reagents to be partitioned along with the microcapsules. As noted previously, although illustrated as both channel segments 404 and 406 being coupled to the same reservoir 432, these channel segments may be coupled to different reservoirs for introducing different reagents or materials to be partitioned along with the microcapsules.


Each of channel segments 402, 404 and 406 may be provided with additional fluid control structures, such as passive fluid valve 436. These valves may provide for controlled filling of the overall devices by breaking the capillary forces that draw the aqueous fluids into the device at the point of widening of the channel segment in the valve structure. Briefly, aqueous fluids are introduced first into the device in reservoirs 430 and 432, at which point these fluids will be drawn by capillary action into their respective channel segments. Upon reaching the valve structure, the widened channel will break the capillary forces, and fluid flow will stop until acted upon by outside forces, e.g., positive or negative pressures, driving the fluid into and through the valve structure. Although illustrated as a widening of the channel in the width dimension, it will be appreciated that a passive valve structure may include a step up in any one or more cross-sectional dimensions of a channel region. For example, a passive valve may increase an increased stepped depth of a channel at the valve region. Again, when the fluid reaches the increased cross sectioned channel segment, the capillary forces will retain the fluid within the shallower channel. Again, as noted, the increase in cross-sectional dimension can be in any one or more cross-sectional dimensions, and may be increases in cross section of at least about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 100%, or even more. In many cases, it may be between about 5% and about 100% larger cross section, between about 5% and about 50%, between about 5% and about 20% of an increase in cross section. Although illustrated at a particular channel location, it will also be appreciated that these valve structures may be positioned along any channel location within a microfluidic channel network, including at an intersection of two or more channel segments, or within a singular channel.


Also shown in channel segment 402 is a microcapsule funneling structure 452, that both allows the efficient gathering of microcapsules from reservoir 430, regulation of microcapsule flow (as described in greater detail elsewhere herein), as well as reduced system failure due to channel clogging. As also shown, in some cases, the connection of channel segment 402 with reservoir 430, as well as the junctions of one or more or all of the channel segments and their respective reservoirs, may be provided with additional functional elements, such as filtering structures 454, e.g., pillars, posts, tortuous fluid paths, or other obstructive structures to prevent unwanted particulate matter from entering or proceeding through the channel segments.


Junction 410 is fluidly coupled to second junction 422. Also coupled to channel junction 422 are channel segments 424 and 426 that are, in turn fluidly coupled to reservoir 438, which may provide, for example, partitioning fluid that is immiscible with the aqueous fluids flowing from junction 410. Again, channel segments 424 and 426 are illustrated as being coupled to the same reservoir 438, although they may be coupled to different reservoirs, e.g., where each channel segment is desired to deliver a different composition to junction 422, e.g., partitioning fluids having different make up, including differing reagents, or the like.


In exemplary operation, microcapsules provided in reservoir 430 are flowed through channel segment 402 into first channel junction 410. The microcapsules will flow through valve 436, which, in addition to providing a passive fluid valve structure also operates as a microcapsule flow regulator, as described in greater detail below. The microcapsule flow regulator ensures more regular flow of microcapsules into and through junction 410 into channel segment 408. Within junction 410, the aqueous microcapsule solution is contacted with the aqueous fluids from reservoir 432, as introduced by channel segments 404 and 406. Due to laminar flow characteristics of the microfluidic channel networks, and without being bound to any particular theory of operation, aqueous fluids from channel segments 404 and 406 can ensheath the microcapsule composition with a second aqueous fluid layer, where the primary interaction between the two fluids is through simple diffusion, i.e., with a substantial lack of convective mixing.


The aqueous fluid stream is then flowed through channel segment 408 into second junction 422. Within channel junction 422, the aqueous fluid stream, including the regularly spaced flowing microcapsules, flowing through channel segment 408, is formed into droplets within the immiscible partitioning fluid introduced from channel segments 424 and 426. In some cases, one or both of the partitioning junction, e.g., junction 422 and one or more of the channel segments coupled to that junction, e.g., channel segments 408, 424, 426 and 428, may be further configured to optimize the partitioning process at the junction.


Further, although illustrated as a cross channel intersection at which aqueous fluids are flowed through channel segment 408 into the partitioning junction 422 to be partitioned by the immiscible fluids from channel segments 424 and 426, and flowed into channel segment 428, as described elsewhere herein, partitioning structure within a microfluidic device of the present disclosure may comprise a number of different structures.


As described in greater detail elsewhere herein, the flow of the microcapsules into junction 422, and in some cases the rate of flow of the other aqueous fluids and/or partitioning fluid through each of junctions 410 and 422, are controlled to provide for a desired level of partitioning of microcapsules, e.g., to control the number of microcapsules that will be partitioned in each droplet, the amount of reagents in each droplet, and control the overall operation of the device, e.g., to prevent clogging or other disruption, or the like.


Once the microcapsules are partitioned, they are flowed through channel segment 428 and into a recovery structure or zone where they may be readily harvested. As shown, the recovery zone includes, e.g., outlet reservoir 438. Alternatively, the recovery zone may include any of a number of different interfaces, including fluidic interfaces with tubes, wells, additional fluidic networks, or the like. In some cases, where the recovery zone comprises an outlet reservoir, the outlet reservoir will be structured to have a volume that is greater than the expected volume of fluids flowing into that reservoir. In its simplest sense, the outlet reservoir may, in some cases, have a volume capacity that is equal to or greater than the combined volume of the input reservoirs for the system, e.g., reservoirs 430, 432 and 434.


As will be appreciated, a single microfluidic device may include multiple substantially identical channel network modules that may each have self-contained fluid sources or may share one or more fluid reservoirs. For example, a single multiplexed device including multiple channel network modules may include a single source of one or more of the partitioning fluid, the microcapsule containing fluid, one or more reagent fluids, as well as sample fluids. As such, the multiple channel modules can be used to generate large amounts of the same type of partitioned microcapsules, e.g., by providing the same allocation of fluids in the corresponding reservoirs of each module 450 in a multiplexed device. In certain aspects, however, different channel network modules will be used in the generation of different partitioned microcapsules. Such different partitioned compositions may include different sample materials being allocated to the partitioned microcapsules, different initial microcapsules being allocated to the same or different sample materials, or application of different reagents to different to the same or different sample materials and/or different microcapsules. As noted above, where the same fluids are being introduced into the channel segments of different modules, it can be efficient to have such channel segments fluidly coupled to the same reservoir(s). These channel segments may be the same corresponding channel segments in each module or, depending upon the desired use, they may be different channel segments in different modules.


As will be appreciated, the rates at which different fluids are brought together in the channel structures described above can have an impact on the generation of the droplets whether for the purpose of microcapsule generation or for their subsequent separation into discrete partitions or droplets. Accordingly, in certain aspects, the devices used in the present disclosure provide for control of the various fluid flows within the integrated channel networks. Control of fluid flows within channel networks may be accomplished through a variety of mechanisms. For example, pressures may be applied at the origin of different channel segments, e.g., on reservoirs, in order to control fluid flow within that channel segment. By utilizing a pressure based flow, one may be able to independently control flows within different channel segments by coupling independently controlled pressure sources to the different channel segments to apply differential pressure gradients across each channel segment. In such cases, flow rates within different channel segments may be monitored, e.g., through interfaced detection systems, such as optical detectors, to provide feedback on the flow control aspects to allow modulation of flow.


Alternatively, a single pressure source may be coupled to all channel segments simultaneously, e.g., by coupling a pressure source to a manifold that simultaneously connects to the various channel segment origins or reservoirs. Where a single pressure is applied over multiple channels, the flow rates within those channels will be controlled by the level of resistance within each channel that is subject to fluid viscosity and channel dimensions (cross-section and length). In such cases, flow control is achieved by providing channel segments with the appropriate dimensions to achieve the desired flow rate given the viscosity of the fluids passing through it. By way of example, in order to achieve equivalent flow rates, channels used to flow more viscous fluids may be provided with wider and/or shorter channel segments than channels used to transport lower viscosity fluids.


Although described as a pressure source applied to channel origins, in some aspects, the pressure source may include a vacuum (or negative pressure) source that is applied to one or more of the outlet ports for a channel network, e.g., a terminal reservoir, i.e., reservoir 444 in FIG. 4. Application of a vacuum provides a number of advantages over positive pressure driven systems, including, e.g., provision of a single point of connection to an integrated channel network at the outlet vs. several inlet points, lack of microcapsule compression that may lead to channel inlet clogging in positive pressure systems, and the like.


In some cases, for the partitioning of microcapsules, the vacuum source may be applied to a node on an outlet channel segment that is distinct from the zone at which the partitioned microcapsules may be harvested. In particular, where a vacuum source is applied at the terminal reservoir, e.g., reservoir 438 in FIG. 4, the source can be disconnected from the reservoir in order to harvest the partitioned microcapsules from the terminal reservoir. In some cases, by separating the vacuum source interface node with the channel segment from the zone where partitioned microcapsules are harvested, one can obviate the need for disconnecting the vacuum source and improving the ease of use. In some cases, the vacuum interface node may include a terminal reservoir, e.g., reservoir 438, which may be configured with an interface component for interfacing with an integrated or discrete partition harvesting zone that allows harvesting of the partitions without removing the connected vacuum source. These and other interface components are described in detail below.


III. Additional Improved Microfluidic System Components


The precise handling and manipulation of microcapsules, either in their creation, or in their subsequent partitioning, creates a number of new challenges in microfluidic systems that are addressed by aspects of the present disclosure. In particular, flow of microcapsule in fluidic and especially microfluidic systems can be subject to certain variabilities many of which have been alluded to above, including varied flow rates or dispensing frequencies, channel clogging, variable partitioning, sampling or dispensing biases, or the like. This disclosure provides numerous improved components, devices, methods and systems for addressing many of these issues.


For example, in certain aspects, the present disclosure addresses, e.g., sampling biases or variability from microcapsules in a reservoir. In particular, in some cases, one or more reservoirs into which microcapsules are deposited in a system or device described herein, e.g., reservoir 430 shown in FIG. 4, are configured to improve the flow of microcapsules into their connected channel segments.


In one example, the reservoirs that are used to provide the microcapsules or other reagents may be provided with a conical bottom surface to allow for funneling of the microcapsules toward the inlets for the channel segments connected to the reservoirs. This is schematically illustrated in FIG. 5A, which shows an example of reservoirs 500, 502, 504 and 506, viewed from the side. As shown, the reservoir 500 includes side walls 510 that extend from an upper surface 512 of a microfluidic device 506. An interior cavity portion 508 of the reservoir extends into the microfluidic device 506 and is provided in communication with a fluidic channel 516. As shown, cavity portion 508 possesses a tapering or conical shape toward the inlet of channel 516, as defined by narrowing of the cavity 508, by virtue of converging sidewalls 518 of cavity 508.


In additional aspects, microcapsule loading into channel segments may be enhanced through the inclusion of a broadened interface region, or inlet, between the reservoir and the connected fluid channel. One example of this is illustrated in the channel network of FIG. 4, where the interface of channel segment 402 with reservoir 430 is provided with funneling channel structure 452, that both enhances the introduction of microcapsules into the channel segment, as well as provides some flow regulating characteristics for the microcapsules into the channel segment. Also shown, are obstructive structures 454, that provide barriers for larger particulate matter that may be a contaminant within the reservoir and may impair the flow of fluids through the channels of the device. As will be appreciated, the various reservoirs may each or all include filtration or particle blocking elements within them that mat be the same or different, depending upon the fluids to be disposed in the reservoir. For example, in some cases, while a simple structural barrier, like the pillar structures shown in FIG. 4 (e.g., structures 454) may be used in the channel interfaces with the microcapsule containing reservoirs, for those reservoirs containing aqueous solutions, e.g., sample materials or reagents, more or less stringent filtration components may be integrated therein, e.g., at the bottom of a reservoir, in order to filter the contents of the reservoir, in situ, to a greater or lesser degree. A variety of filtration media, including, e.g., membrane filters, frits, or other known filter types, can be readily incorporated into the reservoirs within the devices of the present disclosure.


Similar to the broadened interfaces described above, the interfaces may include multiple discrete channel inlets from a given reservoir, to ensure that the flow of microcapsules into and through the channel segments is less susceptible to interruption or clogging, as well as to ensure that microcapsules disposed in the reservoir are accessed at multiple points, rather than at a single point or channel inlet. In particular, for a given reservoir, there may be provided a plurality of channel inlets that fluidly connect the reservoir to a single channel segment (or flow regulating junction, as described in greater detail below) within the microfluidic device. Further, as described above, the multiple channel inlets may be provided with one or more of the functional elements described previously, e.g., funneling structures, filtering elements such as pillars, posts or tortuous paths, or the like.


As noted in the discussion of the microcapsule partitioning above, the flow of microcapsules, along with the flow of the other fluids coming together in the partitioning zone, e.g., junction 322 in FIG. 3, can be controlled so as to substantially provide for a desired number of microcapsules per partition. In many cases, the substantial majority of occupied partitions (e.g., partitions containing one or more microcapsules) will include no more than 1 microcapsule per occupied partition, while in some cases also reducing the number of unoccupied partitions created.


As described above, the methods, devices and systems of the present disclosure generally accomplish a desired level of allocation of microcapsules to partitions through the controlled combination of the microcapsules and partitioning or dispersion fluid into droplets, e.g., through controlling the flow rates of microcapsules and oil in to the droplet generating junction of a microfluidic device, i.e., junction 312 as shown in FIG. 3.


Flowing of microcapsules from reservoirs through channels and into channel junctions can be subject to a great deal of variability, as these microcapsules may flow at a that is defined by the happenstance of when the microcapsule enters a channel segment, and its flow rate through that channel segment. Accordingly, in certain aspects, the microfluidic systems of the present disclosure may include microcapsule flow regulator components within the appropriate channel segment to provide such microcapsules flowing into the droplet forming region at a more defined regularity.


The microcapsule flow regulators included within the channel systems described herein will typically provide microcapsules flowing within channels at a relatively regular frequency. In particular, during a given timeframe in which droplets are being generated, e.g., a 10 second window, a 30 second window, a one minute window, a 2 minute window, a 3 minute window, or over the steady state operation of an entire droplet generation run (e.g., not including start up and shut down), the frequency at which these microcapsules are flowing will typically have a coefficient of variation of less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, and in some cases, less than 5%. As will be appreciated, the flow frequency of microcapsules reflects the number of microcapsules that flow past a given point in a conduit within a one second period of time. Frequency measurements may typically be based upon sub-second or one second intervals, but may also be based upon multiple second, multiple minute or longer intervals, depending upon the particular needs of the process.


Although in a given process, it may be desirable to flow microcapsules at a relatively stable frequency, in a number of aspects, the frequency for the flowing microcapsules can differ depending upon the desired applications, the nature of the fluids being flowed, and the like. In general, however, microcapsules being flowed into a partitioning or droplet generating junction are flowed at greater than 50 Hz, greater than 100 Hz, greater than 250 Hz, greater than 500 Hz, greater than 750 Hz, greater than 1000 Hz, greater than 1500 Hz, greater than 2000 Hz, or even greater than 5000 Hz or even 10,000 Hz, while still achieving the desired occupancy and other process goals. In certain cases, these flow frequencies may be maintained after the partitioning junction, such that partitioned microcapsules are flowing out of the droplet generation junction at frequencies of at least or greater than 50 Hz, at least or greater than 100 Hz, at least or greater than 500 Hz, at least or greater than 750 Hz, at least or greater than 1000 Hz, at least or greater than 1500 Hz, at least or greater than 2000 Hz, or even at least or greater than 5000 Hz or 10,000 Hz.


A number of approaches may be adopted to regulate bead flows within the microfluidic channel segments of the devices described herein. For example, in some cases, these regulators include “gathering zones” in which the microcapsules will flow into and gather before flowing out of the gathering zone. These zones are configured to more effectively meter the flow of the microcapsules through the inclusion of funneling structures or channel profiles to better meter the flow of individual microcapsules. Examples of such structures are alluded to above, and are shown in FIGS. 4 and 6B. A first example includes the channel interface shown as funneling zone 452 integrated within the interface of channel segment 402 and reservoir 430.


In a similar fashion, a microcapsule flow regulator may be integrated within the channel segment itself, e.g., channel segment 402 in FIG. 4, rather than at the interface with the reservoir, e.g., reservoir 430 of FIG. 4. An example of this structure includes the flow regulator structure 600 illustrated in FIG. 6A. As will be appreciated, the microcapsule flow regulating structure 460 may also function as a passive fluid valve during filling of the device, e.g., valve 436, as described with respect to channel segments 402, 404 and 406, above. As with funneling structure 452, flow regulator 600 includes a broadened region of channel segment 602 (shown at the interface as channel 602a) at region 604 that narrows at region 606 until it rejoins the cross-sectional dimensions of the outlet portion of channel segment 602 (shown at the interface as segment 602b). As the microcapsules entered the expanded region 602, the convective flow will allow multiple microcapsules to gather or aggregate within the overall gathering region. Once sufficient numbers of microcapsules have aggregated, they will begin to flow out through the narrowed region into channel segment 604 in a metered and more controlled manner. This is schematically illustrated in FIG. 6B, showing microcapsules flowing at irregular frequency into the microcapsule flow regulating structure, and flowing out of the regulator at a more regular frequency. As will be appreciated, a channel network may include one or more flow regulators arranged in series or in parallel within a given flow path, e.g., the fluid connection between two points in the overall network. While these flow regulators may include those having the shape and configuration as shown in FIGS. 6 A and 6B, they may also include different shapes and configurations. For example, the broadened regions of the flow regulator may include triangular shapes similar to that shown in FIGS. 6A and 6B, or may include elongated triangular shapes. Likewise, the broadened region of the flow regulators may include circular, elliptical or semi-circular or semi-elliptical shapes, or may include a tapered funnel shape like the channel interfaces described elsewhere herein. As will be appreciated, the basic structural components of these exemplary flow regulators is a broadened channel region at the point a flow enters into the regulator, with a tapered, narrowing or funneling portion as the flow enters into the subsequent channel or channel network. These broadened regions will typically have wider cross sections that are from 1.1× to 20× the cross section of channel segments flowing into the broadened region. In some aspects, these broadened regions are anywhere from 2× to 10× the cross-section of the entering channel segment (as compared against the same cross-sectional measurement, e.g., width to width, depth to depth, etc.), and in some cases, from 2× to 5× the cross section of the entering channel segment. In some cases, more than one cross-sectional dimension may be varied over the inlet channel, e.g., both width and depth may be different. Further, although in some aspects, where both dimensions are varied, they will be greater than those of the inlet channel, in some cases, provided at least one of width and depth is increased, the other dimension may be decreased, depending upon the desired flow characteristics through the flow regulator.


In other examples, multiple microcapsule containing channels are brought together at a gathering zone to bring in a higher number of microcapsules into the junction and its connected effluent channel segment. This allows voids in the flow of microcapsules in one channel to be filled by microcapsules flowing in from the other channel(s). These channel segments may include separate channel segments provided within the channel network as a gathering zone, or as noted above, they may comprise multiple inlet channel segments that are fluidly connected to a microcapsule containing reservoir. Further, as noted previously, these channel segments may deliver microcapsules from a single source or population of microcapsules to the same channel segment, or they may deliver microcapsules from different sources, e.g., reservoirs, to a common channel segment, where such different microcapsules include different reagents.


As noted above, the microfluidic devices and systems of the present disclosure may include improved interface components useful in operation of the devices and systems, and interface components that may be particularly useful in the handling and manipulation of microcapsule compositions and partitioned compositions.


Examples of interfaces useful for microcapsule and partition manipulation include those useful for one or both of deposition and harvesting of such compositions to and from such devices. For example, as noted previously, movement and transport of microcapsules in solution can be subject to some variability. This variability can, in some instances, carry over to transport of these solutions from the systems in which they are created into other systems and/or vessels, e.g., storage vessels such as tubes, wells, vials, or the like, or in transporting them from storage vessels, e.g., tubes, wells, vials or the like, into systems for their subsequent processing, e.g., microfluidic partitioning systems like those described above. In one example, a microcapsule solution or suspension is provided within a storage vessel that includes a pierceable wall or base surface. Corresponding piercing structures may be provided within a reservoir on a fluidic device. By inserting the storage vessel into the reservoir, the pierceable wall is penetrated by the piercing structures to release the microcapsule suspension into the reservoir.


An example of this type of interface is schematically illustrated in FIGS. 7A and 7B. As shown in FIG. 7A, a storage vessel, such as tube 702 is provided for holding fluid reagents, such as a microcapsule suspension 704, as described elsewhere herein. A surface of the vessel, e.g., base surface 706 is provided as a pierceable layer. Pierceable layers may be provided in any of a variety of different configurations. For example, they may simply include walls of the same material as the rest of the vessel, but which are sufficiently thin to allow piercing. Such walls may be thinner than other walls in the vessel. Alternatively, the pierceable surfaces may include different materials from that of the remainder of the vessel, such as a pierceable septum (e.g., nitrocellulose, PVDF, latex, or any other similarly used materials), a foil surface, or any of a number of other pierceable membranes. Likewise, a surface of the storage vessel may be provided with a valving structure that may be active or passive. In many cases, passive valves, such as pressure triggered check valves may be employed in base surface 706 of the storage vessel.


In use, the storage vessel is mated with the reservoir 708 in a device 710, as shown in FIG. 7B. Reservoir 708 is configured with piercing structures 712 that are positioned to contact and penetrate the base surface 706 of the storage vessel when the vessel is inserted into the reservoir 708. Once inserted, the base surface 706 is ruptured and the microcapsule suspension 704 contained in vessel 702 is permitted to drain into reservoir 708. In some cases, vessel 702 may be provided with additional components to facilitate driving of the suspension into the reservoir, such as a plunger or other pressurizing device, to force the suspension from the vessel. In other cases, simple gravity flow may be used to transfer the suspension. In some cases, the piercing structure and wall or base component of the vessel may be configured to optimize the transfer of the suspension from the vessel to the reservoir, through the inclusion of hydrophobic interior coatings on the vessel, flash-mitigating piercing structures (e.g., to reduce the possibility that remnants of the pierced surface may block flow of the suspension out of the vessel). In alternate aspects, dissolvable, degradable or otherwise activatable barriers may be provided in order to allow for the controlled dispensing of the suspension. Such barriers include, e.g., dissolvable films or membranes that are degraded, dissolved or rendered sufficiently permeable to dispense the suspension upon application of a stimulus. Such barriers may be degraded upon application of a specific chemical, thermal, electromagnetic, or other stimulus.


Similar to the interfaces described above, in some cases for harvesting either microcapsules or partitioned microcapsules or other materials from devices, such interface components may include, e.g., a pierceable base layer for the harvesting reservoir, e.g., reservoir 216 shown in FIG. 2, or reservoir 438 of the device illustrated in FIG. 4, to allow access to and removal of partitioned microcapsules from the terminal reservoir without necessarily removing the interfaced vacuum source. In operation, at the conclusion of a partitioning operation, the base of the terminal reservoir may be pierced, and the generated partitions are either removed or allowed to drain or flow into a waiting receptacle, e.g., by reversing the vacuum source to apply pressure to the reservoir 438, to drive the partitioned microcapsules through the pierced base layer of the reservoir, or through gravity driven flow. This waiting receptacle may be integrated into the device, or positioned adjacent to the microfluidic device in order to receive the partitioned microcapsules.


In other examples, one or both of the reservoir and storage vessel may be configured to provide efficient transfer from one to the other. For example, in some cases, a vessel including a microcapsule suspension may be provided with an interface component that allows it to be mated, connected and/or coupled directly to the receiving reservoir to efficiently transfer its contents. In some cases, the connection may be bounded by a check valve to prevent movement of the suspension until an appropriate driving force is applied to the suspension.


In addition to fluidic interfaces, the devices and systems described herein may also include one or more of a variety of mechanical or physical interface components. Such components include, for example, handling components to facilitate the manual or automated movement and handling of the devices, alignment components, to ensure proper placement and alignment of the devices on instruments, holders and the like, as well as functional components, to allow for additional manipulation of sample materials within the devices. Examples of handling components include tabs, walls, or other surfaces that are positioned away from critical or sensitive surfaces of a device (e.g., optical windows, surfaces prone to contamination, etc.), as well as surfaces that are configured to facilitate handling, whether manual or automated, e.g., with sufficient size and/or textured surfaces to ensure grip and control.


Examples of alignment structures include mechanical elements that ensure alignment of a device with a corresponding instrument, or other fixture, such as beveled corners, device shapes, and integrated key elements (e.g., tabs, slots, posts, or the like) that mate with complementary structures on the other fixture. Such alignment components also include optically detected components, such as registration marks or fiducials, barcode tags, or other machine readable components integrated into or attached to a device.


A wide variety of functional components or functional component interfaces are also envisioned, including, e.g., those interface components that are important for operation of the device. Examples of such interface components include, for example, gasket structures that may be integrated into or separately placed over the upper surfaces of one or more reservoirs, to ensure sealed application of pressures or vacuums to the devices described herein. In certain aspects, these gaskets will be either integrated into the device, or provided as a separate, disposable component, rather than being integrated into an instrument, in order to minimize the possibility of instrument contamination. Other examples of functional interface components include interfaces for mixing or agitating components within the reservoirs. Such components are useful in come cases to prevent settling of microcapsule compositions. These interfaces may comprise actual agitation components, such as piezoelectric, acoustic, or mechanical vibration components integrated into the devices, or they may comprise surfaces that are suitable for or are configured to interface these components on a corresponding instrument system or other fixture.


While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be clear to one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention. For example, all the techniques and apparatus described above can be used in various combinations. For example, particle delivery can be practiced with array well sizing methods as described. All publications, patents, patent applications, and/or other documents cited in this application are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, patent, patent application, and/or other document were individually and separately indicated to be incorporated by reference for all purposes.

Claims
  • 1. A method for partitioning microcapsules, comprising: (a) providing a partitioning system comprising: (i) a first channel comprising a plurality of filtering structures that is configured to receive a first fluid comprising a plurality of microcapsules;(ii) a second channel configured to receive a second fluid that is immiscible with the first fluid;(iii) a third channel; and(iv) a droplet generation junction connected to the first channel, the second channel, and the third channel; and(b) in the partitioning system, (i) subjecting the first fluid to flow along the first channel and through the plurality of filtering structures such that the first fluid is filtered and microcapsules of the plurality of microcapsules flow along the first channel to the droplet generation junction, and(ii) subjecting the second fluid to flow along the second channel towards the droplet generation junction, wherein the first fluid and the second fluid meet at the droplet generation junction to generate a plurality of droplets comprising the microcapsules of the plurality of microcapsules, which plurality of droplets flow along the third channel.
  • 2. The method of claim 1, wherein the microcapsules of the plurality of microcapsules flow along the first channel at aUthell flow frequency that has a coefficient of variation of less than 30%.
  • 3. The method of claim 2, wherein the flow frequency has a coefficient of variation of less than 10%.
  • 4. The method of claim 3, wherein the flow frequency has a coefficient of variation of less than 5%.
  • 5. The method of claim 1, wherein the microcapsules of the plurality of microcapsules flow along the first channel at affthell flow frequency that is greater than 50 Hz.
  • 6. The method of claim 5, wherein the flow frequency is greater than 1000 Hz.
  • 7. The method of claim 6, wherein the flow frequency is greater than 2000 Hz.
  • 8. The method of claim 1, wherein the first channel, second channel, and third channel are configured to provide the microcapsules of the plurality of microcapsules in the plurality of droplets at an occupancy of no more than 1 microcapsule per droplet.
  • 9. The method of claim 1, wherein the microcapsules of the plurality of microcapsules flow along the first channel at differenehell flow frequencies upstream and downstream of the plurality of filtering structures.
  • 10. The method of claim 1, wherein first fluid is an aqueous fluid.
  • 11. The method of claim 1, wherein the plurality of microcapsules comprises one or more reagents.
  • 12. The method of claim 11, wherein the one or more reagents are encapsulated in the plurality of microcapsules.
  • 13. The method of claim 11, wherein the one or more reagents are barcode sequences.
  • 14. The method of claim 1, wherein the plurality of microcapsules is monodisperse.
  • 15. The method of claim 14, wherein microcapsules of the plurality of microcapsules have a mean cross-sectional dimension and a coefficient of variation in cross-sectional dimension of no greater than 30%.
  • 16. The method of claim 1, wherein the first fluid and the second fluid are subjected to flow into the droplet generation junction at flow rates that generate the plurality of droplets such that a given droplet of the plurality of droplets comprises a single microcapsule of the plurality of microcapsules.
  • 17. The method of claim 1, wherein the partitioning system further comprises a fourth channel that is configured to receive a third fluid comprising an additional aqueous fluid.
  • 18. The method of claim 17, wherein the first channel and the fourth channel meet at a junction upstream of the droplet generation junction, and the third fluid flows along the fourth channel to the junction, thereby bringing the first fluid and the third fluid in contact to form a mixture comprising the first fluid and the additional aqueous fluid.
  • 19. The method of claim 18, wherein the junction and the droplet generation junction are connected through a fifth channel.
  • 20. The method of claim 1, wherein microcapsules of the plurality of microcapsules are solid particles.
  • 21. The method of claim 1, wherein microcapsules of the plurality of microcapsules are gel particles.
  • 22. The method of claim 1, wherein the first fluid and the second fluid are subjected to flow substantially simultaneously.
  • 23. The method of claim 1, wherein the plurality of filtering structures comprise a plurality of pillars, posts, or torturous paths.
  • 24. The method of claim 1, wherein the plurality of filtering structures are disposed in a region of the first channel, which region is disposed at an end of the first channel opposite an end connected to the droplet generation junction.
  • 25. The method of claim 1, wherein the plurality of filtering structures provide controlled dispensing of the microcapsules of the plurality of microcapsules in the first channel.
  • 26. The method of claim 10, wherein the aqueous fluid comprises a biological molecule.
CROSS-REFERENCE

This application is a continuation of U.S. application Ser. No. 14/682,952, filed Apr. 9, 2015, now U.S. Pat. No. 9,694,361, which claims priority to U.S. Provisional Patent Application No. 61/977,804, filed Apr. 10, 2014, the full disclosures of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (652)
Number Name Date Kind
2797149 Skeggs Jun 1957 A
3033880 Buecheler May 1962 A
3047367 Kessler Jul 1962 A
3479141 Smythe et al. Nov 1969 A
4124638 Hansen Nov 1978 A
4253846 Smythe et al. Mar 1981 A
4582802 Zimmerman et al. Apr 1986 A
5137829 Nag et al. Aug 1992 A
5149625 Church et al. Sep 1992 A
5185099 Delpuech et al. Feb 1993 A
5202231 Drmanac et al. Apr 1993 A
5270183 Corbett et al. Dec 1993 A
5413924 Kosak et al. May 1995 A
5418149 Gelfand et al. May 1995 A
5436130 Mathies et al. Jul 1995 A
5478893 Ghosh et al. Dec 1995 A
5489523 Mathur Feb 1996 A
5512131 Kumar et al. Apr 1996 A
5558071 Ward et al. Sep 1996 A
5585069 Zanzucchi et al. Dec 1996 A
5587128 Wilding et al. Dec 1996 A
5605793 Stemmer Feb 1997 A
5618711 Gelfand et al. Apr 1997 A
5658548 Padhye et al. Aug 1997 A
5695940 Drmanac et al. Dec 1997 A
5700642 Monforte et al. Dec 1997 A
5705628 Hawkins Jan 1998 A
5708153 Dower et al. Jan 1998 A
5736330 Fulton Apr 1998 A
5739036 Parris Apr 1998 A
5744311 Fraiser et al. Apr 1998 A
5756334 Perler et al. May 1998 A
5830663 Embleton et al. Nov 1998 A
5834197 Parton Nov 1998 A
5842787 Kopf-Sill et al. Dec 1998 A
5846719 Brenner et al. Dec 1998 A
5846727 Soper et al. Dec 1998 A
5851769 Gray et al. Dec 1998 A
5856174 Lipshutz et al. Jan 1999 A
5872010 Karger et al. Feb 1999 A
5897783 Howe et al. Apr 1999 A
5900481 Lough et al. May 1999 A
5942609 Hunkapiller et al. Aug 1999 A
5958703 Dower et al. Sep 1999 A
5965443 Reznikoff et al. Oct 1999 A
5989402 Chow et al. Nov 1999 A
5994056 Higuchi Nov 1999 A
5997636 Gamarnik et al. Dec 1999 A
6033880 Haff et al. Mar 2000 A
6046003 Mandecki Apr 2000 A
6051377 Mandecki Apr 2000 A
6057107 Fulton May 2000 A
6057149 Burns et al. May 2000 A
6103537 Ullman et al. Aug 2000 A
6133436 Koester et al. Oct 2000 A
6143496 Brown et al. Nov 2000 A
6159717 Savakis et al. Dec 2000 A
6171850 Nagle et al. Jan 2001 B1
6172218 Brenner Jan 2001 B1
6207384 Mekalanos et al. Mar 2001 B1
6258571 Chumakov et al. Jul 2001 B1
6265552 Schatz Jul 2001 B1
6281254 Nakajima et al. Aug 2001 B1
6291243 Fogarty et al. Sep 2001 B1
6294385 Goryshin et al. Sep 2001 B1
6296020 McNeely et al. Oct 2001 B1
6297006 Drmanac et al. Oct 2001 B1
6297017 Schmidt et al. Oct 2001 B1
6303343 Kopf-Sill Oct 2001 B1
6306590 Mehta et al. Oct 2001 B1
6327410 Walt et al. Dec 2001 B1
6355198 Kim et al. Mar 2002 B1
6361950 Mandecki Mar 2002 B1
6372813 Johnson et al. Apr 2002 B1
6379929 Burns et al. Apr 2002 B1
6406848 Bridgham et al. Jun 2002 B1
6409832 Weigl et al. Jun 2002 B2
6432290 Harrison et al. Aug 2002 B1
6432360 Church Aug 2002 B1
6481453 O'Connor et al. Nov 2002 B1
6485944 Church et al. Nov 2002 B1
6492118 Abrams et al. Dec 2002 B1
6503757 Chow et al. Jan 2003 B1
6511803 Church et al. Jan 2003 B1
6524456 Ramsey et al. Feb 2003 B1
6569631 Pantoliano et al. May 2003 B1
6579851 Goeke et al. Jun 2003 B2
6586176 Trnovsky et al. Jul 2003 B1
6593113 Tenkanen et al. Jul 2003 B1
6613752 Kay et al. Sep 2003 B2
6632606 Ullman et al. Oct 2003 B1
6632655 Mehta et al. Oct 2003 B1
6670133 Knapp et al. Dec 2003 B2
6723513 Lexow Apr 2004 B2
6767731 Hannah Jul 2004 B2
6800298 Burdick et al. Oct 2004 B1
6806052 Bridgham et al. Oct 2004 B2
6806058 Jesperson et al. Oct 2004 B2
6859570 Walt et al. Feb 2005 B2
6880576 Karp et al. Apr 2005 B2
6884788 Bulpitt et al. Apr 2005 B2
6913935 Thomas Jul 2005 B1
6929859 Chandler et al. Aug 2005 B2
6969488 Bridgham et al. Nov 2005 B2
6974669 Mirkin et al. Dec 2005 B2
7041481 Anderson et al. May 2006 B2
7115400 Adessi et al. Oct 2006 B1
7129091 Ismagilov et al. Oct 2006 B2
7138267 Jendrisak et al. Nov 2006 B1
7211654 Gao et al. May 2007 B2
7268167 Higuchi et al. Sep 2007 B2
7282370 Bridgham et al. Oct 2007 B2
7294503 Quake et al. Nov 2007 B2
7297485 Bornarth et al. Nov 2007 B2
7316903 Yanagihara et al. Jan 2008 B2
7323305 Leamon et al. Jan 2008 B2
7329493 Chou et al. Feb 2008 B2
7425431 Church et al. Sep 2008 B2
7536928 Kazuno May 2009 B2
7544473 Brenner Jun 2009 B2
7604938 Takahashi et al. Oct 2009 B2
7608434 Reznikoff et al. Oct 2009 B2
7608451 Cooper et al. Oct 2009 B2
7622280 Holliger et al. Nov 2009 B2
7638276 Griffiths et al. Dec 2009 B2
7645596 Williams et al. Jan 2010 B2
7666664 Sarofim et al. Feb 2010 B2
7700325 Cantor et al. Apr 2010 B2
7708949 Stone et al. May 2010 B2
7709197 Drmanac May 2010 B2
7745178 Dong Jun 2010 B2
7745218 Kim et al. Jun 2010 B2
7776927 Chu et al. Aug 2010 B2
RE41780 Anderson et al. Sep 2010 E
7799553 Mathies et al. Sep 2010 B2
7842457 Berka et al. Nov 2010 B2
7901891 Drmanac Mar 2011 B2
7910354 Drmanac et al. Mar 2011 B2
7943671 Herminghaus et al. May 2011 B2
7947477 Schroeder et al. May 2011 B2
7960104 Drmanac et al. Jun 2011 B2
7968287 Griffiths et al. Jun 2011 B2
7972778 Brown et al. Jul 2011 B2
8003312 Krutzik et al. Aug 2011 B2
8008018 Quake et al. Aug 2011 B2
8053192 Bignell et al. Nov 2011 B2
8067159 Brown et al. Nov 2011 B2
8101346 Takahama Jan 2012 B2
8124404 Alphey Feb 2012 B2
8133719 Drmanac et al. Mar 2012 B2
8137563 Ma et al. Mar 2012 B2
8168385 Brenner May 2012 B2
8252539 Quake et al. Aug 2012 B2
8268564 Roth et al. Sep 2012 B2
8273573 Ismagilov et al. Sep 2012 B2
8278071 Brown et al. Oct 2012 B2
8298767 Brenner et al. Oct 2012 B2
8304193 Ismagilov et al. Nov 2012 B2
8318433 Brenner Nov 2012 B2
8318460 Cantor et al. Nov 2012 B2
8329407 Ismagilov et al. Dec 2012 B2
8337778 Stone et al. Dec 2012 B2
8361299 Sabin et al. Jan 2013 B2
8420386 Ivics et al. Apr 2013 B2
8461129 Bolduc et al. Jun 2013 B2
8563274 Brenner et al. Oct 2013 B2
8592150 Drmanac et al. Nov 2013 B2
8598328 Koga et al. Dec 2013 B2
8603749 Gillevet Dec 2013 B2
8679756 Brenner et al. Mar 2014 B1
8748094 Weitz et al. Jun 2014 B2
8748102 Berka et al. Jun 2014 B2
8765380 Berka et al. Jul 2014 B2
8822148 Ismagliov et al. Sep 2014 B2
8829171 Steemers et al. Sep 2014 B2
8835358 Fodor et al. Sep 2014 B2
8871444 Griffiths et al. Oct 2014 B2
8889083 Ismagilov et al. Nov 2014 B2
8927218 Forsyth Jan 2015 B2
8975302 Light et al. Mar 2015 B2
8986286 Tanghoj et al. Mar 2015 B2
9005935 Belyaev Apr 2015 B2
9012370 Hong Apr 2015 B2
9012390 Holtze et al. Apr 2015 B2
9017948 Agresti et al. Apr 2015 B2
9029083 Griffiths et al. May 2015 B2
9029085 Agresti et al. May 2015 B2
9068210 Agresti et al. Jun 2015 B2
9074251 Steemers et al. Jul 2015 B2
9080211 Grunenwald et al. Jul 2015 B2
9089844 Hiddessen et al. Jul 2015 B2
9102980 Brenner et al. Aug 2015 B2
9126160 Colston, Jr. et al. Sep 2015 B2
9133009 Baroud et al. Sep 2015 B2
9150916 Christen et al. Oct 2015 B2
9175295 Kaminaka et al. Nov 2015 B2
9238671 Goryshin et al. Jan 2016 B2
9249460 Pushkarev et al. Feb 2016 B2
9273349 Nguyen et al. Mar 2016 B2
9290808 Fodor et al. Mar 2016 B2
9328382 Drmanac et al. May 2016 B2
9347059 Saxonov May 2016 B2
9388465 Hindson et al. Jul 2016 B2
9410201 Hindson et al. Aug 2016 B2
9500664 Ness et al. Nov 2016 B2
9567631 Hindson et al. Feb 2017 B2
9574226 Gormley et al. Feb 2017 B2
9636682 Hiddessen et al. May 2017 B2
9637799 Fan et al. May 2017 B2
9644204 Hindson et al. May 2017 B2
9649635 Hiddessen et al. May 2017 B2
9689024 Hindson et al. Jun 2017 B2
9694361 Bharadwaj et al. Jul 2017 B2
9695468 Hindson et al. Jul 2017 B2
9701998 Hindson et al. Jul 2017 B2
9856530 Hindson et al. Jan 2018 B2
9951386 Hindson et al. Apr 2018 B2
9957558 Leamon et al. May 2018 B2
9975122 Masquelier et al. May 2018 B2
1001187 Belgrader et al. Jul 2018 A1
1003026 Hindson et al. Jul 2018 A1
1004111 Hindson et al. Aug 2018 A1
1005372 Hindson et al. Aug 2018 A1
1005998 Giresi et al. Aug 2018 A1
1007137 Bharadwaj et al. Sep 2018 A1
1013744 Bharadwaj et al. Nov 2018 A1
1015011 Bharadwaj et al. Dec 2018 A1
1015096 Hindson et al. Dec 2018 A1
1015099 Gires et al. Dec 2018 A1
20010020588 Adourian et al. Sep 2001 A1
20010036669 Jedrzejewski et al. Nov 2001 A1
20010041357 Fouillet et al. Nov 2001 A1
20010044109 Mandecki Nov 2001 A1
20010048900 Bardell et al. Dec 2001 A1
20010052460 Chien et al. Dec 2001 A1
20010053519 Fodor et al. Dec 2001 A1
20020001856 Chow et al. Jan 2002 A1
20020003001 Weigl et al. Jan 2002 A1
20020005354 Spence et al. Jan 2002 A1
20020034737 Drmanac Mar 2002 A1
20020043463 Shenderov Apr 2002 A1
20020051971 Stuelpnagel et al. May 2002 A1
20020051992 Bridgham et al. May 2002 A1
20020058332 Quake et al. May 2002 A1
20020065609 Ashby et al. May 2002 A1
20020068278 Giese et al. Jun 2002 A1
20020089100 Kawasaki Jul 2002 A1
20020092767 Bjornson et al. Jul 2002 A1
20020113009 O'Connor et al. Aug 2002 A1
20020119455 Chan et al. Aug 2002 A1
20020119536 Stern Aug 2002 A1
20020131147 Paolini et al. Sep 2002 A1
20020160518 Hayenga et al. Oct 2002 A1
20020164820 Brown Nov 2002 A1
20020166582 O'Connor et al. Nov 2002 A1
20020172965 Kamb et al. Nov 2002 A1
20020175079 Christel et al. Nov 2002 A1
20020179849 Maher et al. Dec 2002 A1
20020182118 Perry Dec 2002 A1
20030005967 Karp Jan 2003 A1
20030007898 Bohm et al. Jan 2003 A1
20030008285 Fischer Jan 2003 A1
20030008323 Ravkin et al. Jan 2003 A1
20030022231 Wangh et al. Jan 2003 A1
20030027203 Fields Feb 2003 A1
20030027214 Kamb Feb 2003 A1
20030027221 Scott et al. Feb 2003 A1
20030028981 Chandler et al. Feb 2003 A1
20030032141 Nguyen et al. Feb 2003 A1
20030036206 Chien et al. Feb 2003 A1
20030039978 Hannah Feb 2003 A1
20030044777 Beattie Mar 2003 A1
20030044836 Levine et al. Mar 2003 A1
20030075446 Culbertson et al. Apr 2003 A1
20030082587 Seul et al. May 2003 A1
20030089605 Timperman May 2003 A1
20030104466 Knapp et al. Jun 2003 A1
20030108897 Drmanac Jun 2003 A1
20030124509 Kenis et al. Jul 2003 A1
20030149307 Hai et al. Aug 2003 A1
20030170698 Gascoyne et al. Sep 2003 A1
20030182068 Battersby et al. Sep 2003 A1
20030207260 Trnovsky et al. Nov 2003 A1
20030215862 Parce et al. Nov 2003 A1
20040021068 Staats Feb 2004 A1
20040040851 Karger et al. Mar 2004 A1
20040063138 McGinnis et al. Apr 2004 A1
20040081962 Chen et al. Apr 2004 A1
20040101680 Barber et al. May 2004 A1
20040101880 Rozwadowski et al. May 2004 A1
20040132122 Banerjee et al. Jul 2004 A1
20040195728 Slomski et al. Oct 2004 A1
20040214175 McKernan et al. Oct 2004 A9
20040224331 Cantor et al. Nov 2004 A1
20040228770 Gandhi et al. Nov 2004 A1
20040258701 Dominowski et al. Dec 2004 A1
20050019839 Jespersen et al. Jan 2005 A1
20050042625 Schmidt et al. Feb 2005 A1
20050079510 Berka et al. Apr 2005 A1
20050130188 Walt et al. Jun 2005 A1
20050172476 Stone et al. Aug 2005 A1
20050181379 Su et al. Aug 2005 A1
20050202429 Trau et al. Sep 2005 A1
20050202489 Cho et al. Sep 2005 A1
20050221339 Griffiths et al. Oct 2005 A1
20050244850 Huang et al. Nov 2005 A1
20050266582 Modlin et al. Dec 2005 A1
20050272159 Ismagilov et al. Dec 2005 A1
20050287572 Mathies et al. Dec 2005 A1
20060002890 Hersel et al. Jan 2006 A1
20060008799 Cai et al. Jan 2006 A1
20060020371 Ham et al. Jan 2006 A1
20060040382 Heffron et al. Feb 2006 A1
20060073487 Oliver et al. Apr 2006 A1
20060078888 Griffiths et al. Apr 2006 A1
20060094108 Yoder et al. May 2006 A1
20060153924 Griffiths et al. Jul 2006 A1
20060163070 Boronkay et al. Jul 2006 A1
20060163385 Link et al. Jul 2006 A1
20060177832 Brenner Aug 2006 A1
20060177833 Brenner Aug 2006 A1
20060199193 Koo et al. Sep 2006 A1
20060240506 Kushmaro et al. Oct 2006 A1
20060257893 Takahashi et al. Nov 2006 A1
20060263888 Fritz et al. Nov 2006 A1
20060275782 Gunderson et al. Dec 2006 A1
20060286570 Rowlen et al. Dec 2006 A1
20060292583 Schneider et al. Dec 2006 A1
20070003442 Link et al. Jan 2007 A1
20070020617 Trnovsky et al. Jan 2007 A1
20070020640 McCloskey et al. Jan 2007 A1
20070026401 Hofmann et al. Feb 2007 A1
20070031829 Yasuno et al. Feb 2007 A1
20070039866 Schroeder et al. Feb 2007 A1
20070042400 Choi et al. Feb 2007 A1
20070042419 Barany et al. Feb 2007 A1
20070054119 Garstecki et al. Mar 2007 A1
20070072208 Drmanac Mar 2007 A1
20070077572 Tawfik et al. Apr 2007 A1
20070092914 Griffiths et al. Apr 2007 A1
20070099208 Drmanac et al. May 2007 A1
20070111241 Cereb et al. May 2007 A1
20070134277 Chen et al. Jun 2007 A1
20070154903 Marla et al. Jul 2007 A1
20070160503 Sethu et al. Jul 2007 A1
20070172873 Brenner et al. Jul 2007 A1
20070190543 Livak Aug 2007 A1
20070195127 Ahn et al. Aug 2007 A1
20070207060 Zou et al. Sep 2007 A1
20070228588 Noritomi et al. Oct 2007 A1
20070231823 McKernan et al. Oct 2007 A1
20070238113 Kanda et al. Oct 2007 A1
20070242111 Pamula et al. Oct 2007 A1
20070259357 Brenner Nov 2007 A1
20070264320 Lee et al. Nov 2007 A1
20080003142 Link et al. Jan 2008 A1
20080004436 Tawfik et al. Jan 2008 A1
20080014589 Link et al. Jan 2008 A1
20080056948 Dale et al. Mar 2008 A1
20080124726 Monforte May 2008 A1
20080138878 Kubu et al. Jun 2008 A1
20080166720 Hsieh et al. Jul 2008 A1
20080213766 Brown et al. Sep 2008 A1
20080228268 Shannon et al. Sep 2008 A1
20080230386 Srinivasan et al. Sep 2008 A1
20080241820 Krutzik et al. Oct 2008 A1
20080242560 Gunderson et al. Oct 2008 A1
20080268450 Nam et al. Oct 2008 A1
20090005252 Drmanac et al. Jan 2009 A1
20090011943 Drmanac et al. Jan 2009 A1
20090012187 Chu et al. Jan 2009 A1
20090025277 Takanashi Jan 2009 A1
20090035770 Mathies et al. Feb 2009 A1
20090047713 Handique Feb 2009 A1
20090048124 Leamon et al. Feb 2009 A1
20090053169 Castillo et al. Feb 2009 A1
20090068170 Weitz et al. Mar 2009 A1
20090098555 Roth et al. Apr 2009 A1
20090099041 Church et al. Apr 2009 A1
20090105959 Braverman et al. Apr 2009 A1
20090118488 Drmanac et al. May 2009 A1
20090134027 Jary May 2009 A1
20090137404 Drmanac et al. May 2009 A1
20090137414 Drmanac et al. May 2009 A1
20090143244 Bridgham et al. Jun 2009 A1
20090148961 Luchini et al. Jun 2009 A1
20090155780 Xiao et al. Jun 2009 A1
20090155781 Drmanac et al. Jun 2009 A1
20090197248 Griffiths et al. Aug 2009 A1
20090197772 Griffiths et al. Aug 2009 A1
20090202984 Cantor Aug 2009 A1
20090203531 Kurn Aug 2009 A1
20090208548 Mason et al. Aug 2009 A1
20090264299 Drmanac et al. Oct 2009 A1
20090269248 Falb et al. Oct 2009 A1
20090286687 Dressman et al. Nov 2009 A1
20090311713 Pollack et al. Dec 2009 A1
20090320930 Zeng et al. Dec 2009 A1
20090325260 Otto et al. Dec 2009 A1
20100021973 Makarov et al. Jan 2010 A1
20100021984 Edd et al. Jan 2010 A1
20100022414 Link et al. Jan 2010 A1
20100029014 Wang Feb 2010 A1
20100035254 Williams Feb 2010 A1
20100062494 Church et al. Mar 2010 A1
20100069263 Shendure et al. Mar 2010 A1
20100086914 Bentley et al. Apr 2010 A1
20100105112 Holtze et al. Apr 2010 A1
20100113296 Myerson May 2010 A1
20100120098 Grunenwald et al. May 2010 A1
20100130369 Shenderov et al. May 2010 A1
20100136544 Agresti et al. Jun 2010 A1
20100137163 Link et al. Jun 2010 A1
20100173394 Colston, Jr. et al. Jul 2010 A1
20100184928 Kumacheva Jul 2010 A1
20100187705 Lee et al. Jul 2010 A1
20100210479 Griffiths et al. Aug 2010 A1
20100216153 Lapidus et al. Aug 2010 A1
20100248237 Froehlich et al. Sep 2010 A1
20100248991 Roesler et al. Sep 2010 A1
20100304982 Hinz et al. Dec 2010 A1
20110000560 Miller et al. Jan 2011 A1
20110008775 Gao et al. Jan 2011 A1
20110028412 Cappello et al. Feb 2011 A1
20110033548 Lai et al. Feb 2011 A1
20110033854 Drmanac et al. Feb 2011 A1
20110046243 Ito et al. Feb 2011 A1
20110053798 Hindson et al. Mar 2011 A1
20110059556 Strey et al. Mar 2011 A1
20110071053 Drmanac et al. Mar 2011 A1
20110086780 Colston, Jr. et al. Apr 2011 A1
20110092376 Colston, Jr. et al. Apr 2011 A1
20110092392 Colston, Jr. et al. Apr 2011 A1
20110160078 Fodor et al. Jun 2011 A1
20110195496 Muraguchi et al. Aug 2011 A1
20110201526 Berka et al. Aug 2011 A1
20110212090 Pedersen et al. Sep 2011 A1
20110217736 Hindson Sep 2011 A1
20110218123 Weitz et al. Sep 2011 A1
20110257889 Klammer et al. Oct 2011 A1
20110263457 Krutzik et al. Oct 2011 A1
20110267457 Weitz et al. Nov 2011 A1
20110281736 Drmanac et al. Nov 2011 A1
20110281738 Drmanac et al. Nov 2011 A1
20110287435 Grunenwald et al. Nov 2011 A1
20110305761 Shum et al. Dec 2011 A1
20110306141 Bronchetti et al. Dec 2011 A1
20110319281 Drmanac Dec 2011 A1
20120000777 Garrell et al. Jan 2012 A1
20120003657 Myllykangas et al. Jan 2012 A1
20120010091 Linnarson et al. Jan 2012 A1
20120010098 Griffiths et al. Jan 2012 A1
20120010107 Griffiths et al. Jan 2012 A1
20120014977 Furihata et al. Jan 2012 A1
20120015382 Weitz et al. Jan 2012 A1
20120015822 Weitz et al. Jan 2012 A1
20120041727 Mishra et al. Feb 2012 A1
20120071331 Casbon et al. Mar 2012 A1
20120121481 Romanowsky et al. May 2012 A1
20120132288 Weitz et al. May 2012 A1
20120135893 Drmanac et al. May 2012 A1
20120165219 Van et al. Jun 2012 A1
20120172259 Rigatti et al. Jul 2012 A1
20120184449 Hixson et al. Jul 2012 A1
20120190032 Ness et al. Jul 2012 A1
20120190037 Durin et al. Jul 2012 A1
20120196288 Beer et al. Aug 2012 A1
20120208705 Steemers et al. Aug 2012 A1
20120208724 Steemers et al. Aug 2012 A1
20120211084 Weitz et al. Aug 2012 A1
20120220494 Samuels et al. Aug 2012 A1
20120220497 Jacobson et al. Aug 2012 A1
20120222748 Weitz et al. Sep 2012 A1
20120231972 Golyshin et al. Sep 2012 A1
20120252012 Armougom et al. Oct 2012 A1
20120253689 Rogan et al. Oct 2012 A1
20120297493 Cooper et al. Nov 2012 A1
20120309002 Link Dec 2012 A1
20120316074 Saxonov Dec 2012 A1
20120328488 Puntambekar et al. Dec 2012 A1
20130017978 Kavanagh et al. Jan 2013 A1
20130018970 Woundy et al. Jan 2013 A1
20130022682 Lee et al. Jan 2013 A1
20130028812 Prieto et al. Jan 2013 A1
20130041004 Drager et al. Feb 2013 A1
20130046030 Rotem et al. Feb 2013 A1
20130059310 Brenner et al. Mar 2013 A1
20130078638 Berka et al. Mar 2013 A1
20130079231 Pushkarev et al. Mar 2013 A1
20130084243 Goetsch et al. Apr 2013 A1
20130096073 Sidelman Apr 2013 A1
20130109575 Kleinschmidt et al. May 2013 A1
20130109576 Shuber et al. May 2013 A1
20130121893 Delamarche et al. May 2013 A1
20130130919 Chen et al. May 2013 A1
20130157870 Pushkarev et al. Jun 2013 A1
20130157899 Adler, Jr. et al. Jun 2013 A1
20130178368 Griffiths et al. Jul 2013 A1
20130189700 So et al. Jul 2013 A1
20130203605 Shendure et al. Aug 2013 A1
20130203675 Desimone et al. Aug 2013 A1
20130210639 Link et al. Aug 2013 A1
20130210991 Fonnum et al. Aug 2013 A1
20130211055 Raines et al. Aug 2013 A1
20130225418 Watson Aug 2013 A1
20130225623 Buxbaum et al. Aug 2013 A1
20130268206 Porreca et al. Oct 2013 A1
20130274117 Church et al. Oct 2013 A1
20130293246 Pollack et al. Nov 2013 A1
20130296173 Callow et al. Nov 2013 A1
20130311106 White et al. Nov 2013 A1
20130343317 Etemad et al. Dec 2013 A1
20140030350 Ashrafi et al. Jan 2014 A1
20140037514 Stone et al. Feb 2014 A1
20140038178 Otto et al. Feb 2014 A1
20140057799 Johnson et al. Feb 2014 A1
20140065234 Shum et al. Mar 2014 A1
20140093916 Belyaev et al. Apr 2014 A1
20140120529 Andersen et al. May 2014 A1
20140155274 Xie et al. Jun 2014 A1
20140155295 Hindson et al. Jun 2014 A1
20140194323 Gillevet Jul 2014 A1
20140199730 Agresti et al. Jul 2014 A1
20140199731 Agresti et al. Jul 2014 A1
20140200166 Van et al. Jul 2014 A1
20140206554 Hindson et al. Jul 2014 A1
20140214334 Plattner et al. Jul 2014 A1
20140227684 Hindson et al. Aug 2014 A1
20140227706 Kato et al. Aug 2014 A1
20140228255 Hindson et al. Aug 2014 A1
20140235506 Hindson et al. Aug 2014 A1
20140242664 Zhang et al. Aug 2014 A1
20140274740 Srinivasan et al. Sep 2014 A1
20140287963 Hindson et al. Sep 2014 A1
20140302503 Lowe et al. Oct 2014 A1
20140315725 Faham et al. Oct 2014 A1
20140315755 Chen et al. Oct 2014 A1
20140323316 Drmanac et al. Oct 2014 A1
20140357500 Vigneault et al. Dec 2014 A1
20140378322 Hindson et al. Dec 2014 A1
20140378345 Hindson et al. Dec 2014 A1
20140378349 Hindson et al. Dec 2014 A1
20140378350 Hindson et al. Dec 2014 A1
20150005188 Levner et al. Jan 2015 A1
20150005199 Hindson et al. Jan 2015 A1
20150005200 Hindson et al. Jan 2015 A1
20150011430 Saxonov Jan 2015 A1
20150011432 Saxonov Jan 2015 A1
20150057163 Rotem et al. Feb 2015 A1
20150066385 Schnall-Levin et al. Mar 2015 A1
20150072899 Ward et al. Mar 2015 A1
20150111256 Church et al. Apr 2015 A1
20150111788 Fernandez et al. Apr 2015 A1
20150119280 Srinivas et al. Apr 2015 A1
20150133344 Shendure et al. May 2015 A1
20150218633 Hindson et al. Aug 2015 A1
20150220532 Wong Aug 2015 A1
20150224466 Hindson et al. Aug 2015 A1
20150225777 Hindson et al. Aug 2015 A1
20150225778 Hindson et al. Aug 2015 A1
20150258543 Baroud et al. Sep 2015 A1
20150259736 Steemers et al. Sep 2015 A1
20150267191 Steelman et al. Sep 2015 A1
20150267246 Baroud et al. Sep 2015 A1
20150291942 Gloeckner et al. Oct 2015 A1
20150292988 Bharadwaj et al. Oct 2015 A1
20150298091 Weitz et al. Oct 2015 A1
20150299772 Zhang Oct 2015 A1
20150299784 Fan et al. Oct 2015 A1
20150329617 Winther et al. Nov 2015 A1
20150329891 Tan et al. Nov 2015 A1
20150337298 Xi et al. Nov 2015 A1
20150353999 Agresti et al. Dec 2015 A1
20150361418 Reed et al. Dec 2015 A1
20150368638 Steemers et al. Dec 2015 A1
20150376605 Jarosz et al. Dec 2015 A1
20150376608 Kaper et al. Dec 2015 A1
20150376609 Hindson et al. Dec 2015 A1
20150376700 Schnall-Levin et al. Dec 2015 A1
20150379196 Schnall-Levin et al. Dec 2015 A1
20160024558 Hardenbol Jan 2016 A1
20160025726 Altin et al. Jan 2016 A1
20160032282 Vigneault et al. Feb 2016 A1
20160053253 Salathia et al. Feb 2016 A1
20160060621 Agresti et al. Mar 2016 A1
20160060691 Giresi et al. Mar 2016 A1
20160115474 Jelinek et al. Apr 2016 A1
20160122753 Mikkelsen et al. May 2016 A1
20160122817 Jarosz et al. May 2016 A1
20160123858 Kapur et al. May 2016 A1
20160153005 Zhang et al. Jun 2016 A1
20160160235 Solodushko et al. Jun 2016 A1
20160177359 Ukanis et al. Jun 2016 A1
20160208323 Bernstein et al. Jul 2016 A1
20160231324 Zhao et al. Aug 2016 A1
20160232291 Kyriazopoulou-Panagiotopoulou et al. Aug 2016 A1
20160244742 Linnarsson et al. Aug 2016 A1
20160244809 Belgrader et al. Aug 2016 A1
20160244825 Vigneault et al. Aug 2016 A1
20160257984 Hardenbol et al. Sep 2016 A1
20160281160 Jarosz et al. Sep 2016 A1
20160289769 Schwartz et al. Oct 2016 A1
20160304860 Hindson et al. Oct 2016 A1
20160326583 Johnson et al. Nov 2016 A1
20160348093 Price et al. Dec 2016 A1
20160350478 Chin et al. Dec 2016 A1
20160376663 Brown Dec 2016 A1
20170009274 Abate et al. Jan 2017 A1
20170016041 Greenfield et al. Jan 2017 A1
20170114390 Hindson et al. Apr 2017 A1
20170145476 Ryvkin et al. May 2017 A1
20170183701 Agresti et al. Jun 2017 A1
20170235876 Jaffe et al. Aug 2017 A1
20170247757 Hindson et al. Aug 2017 A1
20170260584 Zheng et al. Sep 2017 A1
20170268056 Vigneault et al. Sep 2017 A1
20170321252 Hindson et al. Nov 2017 A1
20170335385 Hindson et al. Nov 2017 A1
20170342404 Hindson et al. Nov 2017 A1
20170343545 Hadrup et al. Nov 2017 A1
20170356027 Hindson et al. Dec 2017 A1
20170362587 Hindson et al. Dec 2017 A1
20180008984 Bharadwaj et al. Jan 2018 A1
20180015472 Bharadwaj et al. Jan 2018 A1
20180015473 Bharadwaj et al. Jan 2018 A1
20180016634 Hindson et al. Jan 2018 A1
20180030512 Hindson et al. Feb 2018 A1
20180030515 Regev et al. Feb 2018 A1
20180057868 Walder et al. Mar 2018 A1
20180087050 Zheng et al. Mar 2018 A1
20180088112 Fan et al. Mar 2018 A1
20180112253 Hindson et al. Apr 2018 A1
20180179580 Hindson et al. Jun 2018 A1
20180179591 Belgrader et al. Jun 2018 A1
20180180601 Pedersen et al. Jun 2018 A1
20180195112 Lebofsky et al. Jul 2018 A1
20180216162 Belhocine et al. Aug 2018 A1
20180236443 Masquelier et al. Aug 2018 A1
20180258466 Hindson et al. Sep 2018 A1
20180258482 Hindson et al. Sep 2018 A1
20180265928 Schnall-Levin et al. Sep 2018 A1
20180267036 Fan et al. Sep 2018 A1
20180274027 Hindson et al. Sep 2018 A1
20180282804 Hindson et al. Oct 2018 A1
20180327839 Hindson et al. Nov 2018 A1
20180340169 Belhocine et al. Nov 2018 A1
20180340170 Belhocine et al. Nov 2018 A1
20180340171 Belhocine et al. Nov 2018 A1
20180340172 Belhocine et al. Nov 2018 A1
20180346979 Hindson et al. Dec 2018 A1
20180363029 Hindson et al. Dec 2018 A1
20180371540 Hindson et al. Dec 2018 A1
Foreign Referenced Citations (206)
Number Date Country
102292455 Dec 2011 CN
103202812 Jul 2013 CN
0249007 Dec 1987 EP
0271281 Jun 1988 EP
0637996 Jul 1997 EP
1019496 Sep 2004 EP
1672064 Jun 2006 EP
1482036 Oct 2007 EP
1841879 Oct 2007 EP
1944368 Jul 2008 EP
1594980 Nov 2009 EP
1967592 Apr 2010 EP
2258846 Dec 2010 EP
2145955 Feb 2012 EP
1905828 Aug 2012 EP
2136786 Oct 2012 EP
1908832 Dec 2012 EP
2540389 Jan 2013 EP
2635679 Sep 2013 EP
2752664 Jul 2014 EP
2097692 May 1985 GB
2485850 May 2012 GB
S5949832 Mar 1984 JP
S60227826 Nov 1985 JP
2006507921 Mar 2006 JP
2006289250 Oct 2006 JP
2007015990 Jan 2007 JP
2007268350 Oct 2007 JP
2009513948 Apr 2009 JP
2009208074 Sep 2009 JP
2012131798 Jul 2012 JP
2012522517 Sep 2012 JP
2321638 Apr 2008 RU
WO-8402000 May 1984 WO
WO-9301498 Jan 1993 WO
WO-9418218 Aug 1994 WO
WO-9419101 Sep 1994 WO
WO-9423699 Oct 1994 WO
WO-9530782 Nov 1995 WO
WO-9629629 Sep 1996 WO
WO-9641011 Dec 1996 WO
WO-9802237 Jan 1998 WO
WO-9852691 Nov 1998 WO
WO-9909217 Feb 1999 WO
WO-9942597 Aug 1999 WO
WO-9952708 Oct 1999 WO
WO-0008212 Feb 2000 WO
WO-0023181 Apr 2000 WO
WO-0026412 May 2000 WO
WO-0043766 Jul 2000 WO
WO-0070095 Nov 2000 WO
WO-0102850 Jan 2001 WO
WO-0114589 Mar 2001 WO
WO-0189787 Nov 2001 WO
WO-0190418 Nov 2001 WO
WO-0127610 Mar 2002 WO
WO-0231203 Apr 2002 WO
WO-02086148 Oct 2002 WO
WO-0218949 Jan 2003 WO
WO-03062462 Jul 2003 WO
WO-2004002627 Jan 2004 WO
WO-2004010106 Jan 2004 WO
WO-2004061083 Jul 2004 WO
WO-2004065617 Aug 2004 WO
WO-2004069849 Aug 2004 WO
WO-2004091763 Oct 2004 WO
WO-2004102204 Nov 2004 WO
WO-2004103565 Dec 2004 WO
WO-2004105734 Dec 2004 WO
WO-2005002730 Jan 2005 WO
WO-2005021151 Mar 2005 WO
WO-2005023331 Mar 2005 WO
WO-2005040406 May 2005 WO
WO-2005049787 Jun 2005 WO
WO-2005082098 Sep 2005 WO
WO-2006030993 Mar 2006 WO
WO-2006071770 Jul 2006 WO
WO-2006078841 Jul 2006 WO
WO-2006096571 Sep 2006 WO
WO-2007001448 Jan 2007 WO
WO-2007002490 Jan 2007 WO
WO-2007012638 Feb 2007 WO
WO-2007018601 Feb 2007 WO
WO-2007024840 Mar 2007 WO
WO-2007081385 Jul 2007 WO
WO-2007081387 Jul 2007 WO
WO-2007084192 Jul 2007 WO
WO-2007089541 Aug 2007 WO
WO-2007093819 Aug 2007 WO
WO-2007111937 Oct 2007 WO
WO-2007114794 Oct 2007 WO
WO-2007121489 Oct 2007 WO
WO-2007133710 Nov 2007 WO
WO-2007138178 Dec 2007 WO
WO-2007139766 Dec 2007 WO
WO-2007140015 Dec 2007 WO
WO-2007147079 Dec 2007 WO
WO-2007149432 Dec 2007 WO
WO-2008021123 Feb 2008 WO
WO-2008091792 Jul 2008 WO
WO-2008102057 Aug 2008 WO
WO-2008109176 Sep 2008 WO
WO-2008121342 Oct 2008 WO
WO-2008061193 Nov 2008 WO
WO-2008134153 Nov 2008 WO
WO-2008150432 Dec 2008 WO
WO-2009005680 Jan 2009 WO
WO-2009011808 Jan 2009 WO
WO-2009015296 Jan 2009 WO
WO-2009023821 Feb 2009 WO
WO-2009048532 Apr 2009 WO
WO-2009061372 May 2009 WO
WO-2009085215 Jul 2009 WO
WO-2009147386 Dec 2009 WO
WO-2010004018 Jan 2010 WO
WO-2010009735 Jan 2010 WO
WO-2010033200 Mar 2010 WO
WO-2010048605 Apr 2010 WO
WO-2010104604 Sep 2010 WO
WO-2010115154 Oct 2010 WO
WO-2010127304 Nov 2010 WO
WO-2010148039 Dec 2010 WO
WO-2010151776 Dec 2010 WO
WO-2010117620 Feb 2011 WO
WO-2011028539 Mar 2011 WO
WO-2011047870 Apr 2011 WO
WO-2011056546 May 2011 WO
WO-2011066476 Jun 2011 WO
WO-2011074960 Jun 2011 WO
WO-2011106314 Sep 2011 WO
WO-2011140627 Nov 2011 WO
WO-2012012037 Jan 2012 WO
WO-2012019765 Feb 2012 WO
WO-2012047889 Apr 2012 WO
WO-2012048340 Apr 2012 WO
WO-2012048341 Apr 2012 WO
WO-2012055929 May 2012 WO
WO-2012061832 May 2012 WO
WO-2012083225 Jun 2012 WO
WO-2012100216 Jul 2012 WO
WO-2012106546 Aug 2012 WO
WO-2012112804 Aug 2012 WO
WO-2012112970 Aug 2012 WO
WO-2012116331 Aug 2012 WO
WO-2012136734 Oct 2012 WO
WO-2012142531 Oct 2012 WO
WO-2012142611 Oct 2012 WO
WO-2012148497 Nov 2012 WO
WO-2012149042 Nov 2012 WO
WO-2012166425 Dec 2012 WO
WO-2013019751 Feb 2013 WO
WO-2013035114 Mar 2013 WO
WO-2013036929 Mar 2013 WO
WO-2013055955 Apr 2013 WO
WO-2013096643 Jun 2013 WO
WO-2013122996 Aug 2013 WO
WO-2013123125 Aug 2013 WO
WO-2013126741 Aug 2013 WO
WO-2013134261 Sep 2013 WO
WO-2013150083 Oct 2013 WO
WO-2013177220 Nov 2013 WO
WO-2013188872 Dec 2013 WO
WO-2014028537 Feb 2014 WO
WO-2014053854 Apr 2014 WO
WO-2014071361 May 2014 WO
WO-2014074611 May 2014 WO
WO-2014093676 Jun 2014 WO
WO-2014108810 Jul 2014 WO
WO-2014140309 Sep 2014 WO
WO-2014144495 Sep 2014 WO
WO-2014145047 Sep 2014 WO
WO-2014150931 Sep 2014 WO
WO-2014182835 Nov 2014 WO
WO-2014189957 Nov 2014 WO
WO-2014200767 Dec 2014 WO
WO-2014210353 Dec 2014 WO
WO-2015031691 Mar 2015 WO
WO-2015044428 Apr 2015 WO
WO-2015157567 Oct 2015 WO
WO-2015164212 Oct 2015 WO
WO-2015185067 Dec 2015 WO
WO-2015188839 Dec 2015 WO
WO-2015200891 Dec 2015 WO
WO-2016040476 Mar 2016 WO
WO-2016061517 Apr 2016 WO
WO-2016126871 Aug 2016 WO
WO-2016130578 Aug 2016 WO
WO-2016170126 Oct 2016 WO
WO-2016187717 Dec 2016 WO
WO-2016191618 Dec 2016 WO
WO-2016207647 Dec 2016 WO
WO-2016207653 Dec 2016 WO
WO-2016207661 Dec 2016 WO
WO-2017015075 Jan 2017 WO
WO-2017025594 Feb 2017 WO
WO-2017034970 Mar 2017 WO
WO-2017053905 Mar 2017 WO
WO-2017075265 May 2017 WO
WO-2017075294 May 2017 WO
WO-2017096158 Jun 2017 WO
WO-2017117358 Jul 2017 WO
WO-2017156336 Sep 2017 WO
WO-2018045186 Mar 2018 WO
WO-2018058073 Mar 2018 WO
WO-2018119301 Jun 2018 WO
WO-2018119447 Jun 2018 WO
Non-Patent Literature Citations (529)
Entry
Zhang et al, One-Step Fabrication of Supramolecular Microcapsules from Microfluidic Droplets, 2012, Science, 335, 690-694 (Year: 2012).
10X Genomics. 10x Genomics Chromium™ Single Cell 3′ Solution Utilized for Perturb-seq Approach. Press Release. Dec. 19, 2016. Retrieved from https://www.10xgenomics.com/news/10x-genomics-chromium-single-cell-3-solution-utilized-perturb-seq-approach/.
Adamson, et al. A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell. Dec. 15, 2016;167(7):1867-1882.e21. doi: 10.1016/j.cell.2016.11.048.
Adey, et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biology 11:R119 (2010).
Buenrostro, et al. ATAC-seq: A Method for Assaying Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol.; 109: 21.29.1-21.29.9. doi:10.1002/0471142727.mb2129s109.
Buenrostro, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. Jul. 23, 2015;523(7561):486-90. doi: 10.1038/nature14590. Epub Jun. 17, 2015.
Buenrostro, et al. “Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position.” Nat Methods. Dec. 2013;10(12):1213-8. doi: 10.1038/nmeth.2688. Epub Oct. 6, 2013.
Caruccio N., Preparation of Next-Generation Sequencing Libraries Using Nextera Technology: Simultaneous DNA Fragmentation and Adaptor Tagging by In Vitro Transposition. Ch. 17 Methods in Microbiology 733:241 (2011).
Clark, et al. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. Apr. 18, 2016;17:72. doi: 10.1186/s13059-016-0944-x.
Co-pending U.S. Appl. No. 15/596,754, filed May 16, 2017.
Co-pending U.S. Appl. No. 15/825,740, filed Nov. 29, 2017.
Co-pending U.S. Appl. No. 15/831,726, filed Dec. 5, 2017.
Co-pending U.S. Appl. No. 15/832,183, filed Dec. 5, 2017.
Co-pending U.S. Appl. No. 15/832,547, filed Dec. 5, 2017.
Co-pending U.S. Appl. No. 15/842,550, filed Dec. 14, 2017.
Co-pending U.S. Appl. No. 15/842,687, filed Dec. 14, 2017.
Co-pending U.S. Appl. No. 15/842,713, filed Dec. 14, 2017.
Co-pending U.S. Appl. No. 15/847,659, filed Dec. 19, 2017.
Co-pending U.S. Appl. No. 15/847,752, filed Dec. 19, 2017.
Co-pending U.S. Appl. No. 15/848,714, filed Dec. 20, 2017.
Co-pending U.S. Appl. No. 15/850,241, filed Dec. 21, 2017.
Co-pending U.S. Appl. No. 15/872,499, filed Jan. 16, 2018.
Co-pending U.S. Appl. No. 15/875,899, filed Jan. 19, 2018.
Cusanovich; et al., “Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Sciencexpress, May 7, 2014, p. 1-9.”.
Cusanovich, et al. Supplementary materials for Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. May 22, 2015;348(6237):910-4. doi: 10.1126/science.aab1601. Epub May 7, 2015.
Dey, et al. Integrated genome and transcriptome sequencing of the same cell. Dey, Siddharth S. et al. “Integrated Genome and Transcriptome Sequencing from the Same Cell.” Nature biotechnology 33.3 (2015): 285-289. PMC. Web. Dec. 18, 2017.
Dixit, et al. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell. Dec. 15, 2016;167(7):1853-1866.e17. doi: 10.1016/j.ce11.2016.11.038.
Lake, et al. “Integrative Single-Cell Analysis by Transcriptional and Epigenetic States in Human Adult Brain”. Apr. 19, 2017. doi: https://doi.org/10.1101/128520.
Lennon; et al., “Lennon et al. A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454. Genome Biology 11:R15 (2010).”.
MacAulay; et al., “G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nature Methods, 2015, p. 1-7.”.
MacAulay, et al. Single-Cell Multiomics: Multiple Measurements from Single Cells. Trends in Genetics 33.2 (2017): 155-168. PMC. Web. Dec. 18, 2017.
Pott, et al. Single-cell ATAC-seq: strength in numbers. Genome Biol. Aug. 21, 2015;16:172. doi: 10.1186/s13059-015-0737-7.
Preissl, et al. Single nucleus analysis of the chromatin landscape in mouse forebrain development. Posted Jul. 4, 2017. bioRxiv 159137; doi: https://doi.org/10.1101/159137.
Syed, et al. Nature Methods 2 pgs (Nov. 2009).
Adey, et al., “Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing”, Genome Research, 2012, 22 ;6): 1139-1143.
Ason et al. DNA sequence bias during Tn5 transposition. Journal of molecular biology 335.5 (2004): 1213-1225.
Bjornsson et al., Intra-individual change over time in DNA methylation with familial clustering, JAMA, Jun. 25, 2008, vol. 299 No. 24, pp. 2877-2883.
Boyle, et al. “High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells”, Genome Res. Mar. 2011;21(3):456-64.
Buenrostro, et al., “Tranposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position”, Nature Methods, 2013, 10(12): 1213-1218.
Co-pending U.S. Appl. No. 15/933,299, filed Mar. 22, 2018.
Co-pending U.S. Appl. No. 15/958,391, filed Apr. 20, 2018.
Co-pending U.S. Appl. No. 15/975,468, filed May 9, 2018.
Co-pending U.S. Appl. No. 15/980,473, filed May 15, 2018.
Co-pending U.S. Appl. No. 15/985,388, filed May 21, 2018.
Co-pending U.S. Appl. No. 16/000,803, filed Jun. 5, 2018.
Co-pending U.S. Appl. No. 16/052,431, filed Aug. 1, 2018.
Co-pending U.S. Appl. No. 16/052,486, filed Aug. 1, 2018.
Co-pending U.S. Appl. No. 16/056,231, filed Aug. 6, 2018.
Depristo et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genet 43:491-498 (2011).
Gangadharan et al., DNA transposon Hermes insert into DNA in nucleosome-free regions in vivo, Proc nat Ad Sci, Dec. 21, 2010, vol. 107, No. 51, pp. 1966-1972.
Green et al. Insertion site preference of Mu, Tn5, and Tn7 transposons. Mobile DNA 3.1 (2012): 3.
Han, SW et al. “Targeted Sequencing of Cancer-Related Genes in Colorectal Cancer Using Next-Generation Sequencing” PLOS One (2013) 8(5):e64271.
Haring, et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods. 2007; 3: 11.
Joneja, et al. Linear nicking endonuclease-mediated strand-displacement DNA amplification. Anal Biochem. Jul. 1, 2011;414(1):58-69. doi: 10.1016/j.ab.2011.02.025. Epub Feb. 20, 2011.
Knapp, et al. Generating barcoded libraries for multiplex high-throughput sequencing. Methods Mol Biol. 2012;840:155-70. doi: 10.1007/978-1-61779-516-9_19.
Lai; et al., ““Characterization and Use of Laser-Based Lysis for Cell Analysis On-Chip”, Journal of the Royal Society, Interface, vol. 5, Supplement 2, pp. S113-S121, Oct. 2008, (Year:2008)”, Journal of the Royal Society, Interface, Oct. 2008, vol. 5, Supplement 2, S113-S121.
Lander, et al. Initial sequencing and analysis of the human genome. Nature, 409 (Feb. 15, 2001): 860-921.
Park. ChIP-seq: advantages and challenges of a maturing technology. Nature Reviews Genetics vol. 10, pp. 669-680 (2009).
“U.S. Appl. No. 61/982,001, filed Apr. 21, 2014 (Year:2014)”.
Shaikh, et al. A modular microfluidic architecture for integrated biochemical analysis. Proc Natl Acad Sci U S A. Jul. 12, 2005;102(28):9745-50. Epub Jun. 28, 2005.
Simon, et al., “Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA”, Nature Protocols, 2012, 7(2): 256-267.
Smith, et al. Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples. Nucleic Acids Research, 38(13): e142 (2010).
Song, et al., “DNase-seq: A High-Resolution Technique for Mapping Active Gene Regulatory Elements across the Senome from Mammalian Cells”, Cold Spring Harbor Laboratory Press, 2010, 2010(2), doi:10.1101/pdb.prot5384.
Holmberg, et al. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Feb. 2, 2005. Electrophoresis, 26:501-510.
Invitrogen Dynal. Dynabeads M-280 Streptavidin 2006 product sheet.
Morton. Parameters of the human genome. Apr. 23, 1991. Proceedings of the National Academy of Sciences of the United States of America, 88: 7474-7476.
National Human Genome Research Institute (NHGRI). The Human Genome Project Completion: Frequently Asked Questions. Last Updated: Oct. 30, 2010.
Qiagen. Omniscript Reverse Transcription Handbook. Oct. 2010.
Seiffert, et al. Microfluidic fabrication of smart microgels from macromolecular precursors. 2010. Polymer.
Wong, et al. Multiplexed Barcoded CRISPR-Cas9 Screening Enabled by CombiGEM. PNAS. Mar. 1, 2016, vol. 113, pp. 2544-2549.
Zentner, et al. Surveying the epigenomic landscape, one base at a time. Genome Biol. Oct. 22, 2012;13(10):250. doi: 10.1186/gb4051.
Zhu, et al. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques. Apr. 2001;30(4):892-7.
Abate et al., Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions, Biomicrofluidics 5, 014107 (2011).
Adamson et al., “Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices”, Lab Chip 6(9): 1178-1186 (Sep. 2006).
Agresti, et al., “Ultra-high-throughput screening in drop-based microfluidics for directed evolution”, vol. 107, No. 9 (Mar. 2, 2010).
Ahn et al., “Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices”, Applied Physics Letter, 88 (2006).
“Ahn K, et al; Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels. Appl Phys Lett 88; (2006); pp. 264105-1-264105-3.”.
Ali-Cherif et al., “Programmable Magnetic Tweezers and Droplet Microfluidic Device for High-Throughput Nanoliter Multi-Step Assays”, Angew. Chem. Int. Ed. 51, 10765-10769 (2012).
Bardin et al., “High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy”, Lab Chip, Vo.11, 3990-3998 (2011).
Baret et al., Kinetic aspects of emulsion stabilization by surfactants: a microfluidic analysis, Langmuir 25:6088-6093 (2009).
Becker et al., “Polymer Microfabrication Technologies for Microfluidic”, vol. 390, Issue 1, pp. 89-111 (Jan. 2008).
Belder “Microfluidics with Droplets”, Angew. Chem. Int. Ed., 44, 3521-3522, (2005).
Bilotkach et al., “Fabrication of PDMS Membranes with Aqueous Molds for Microfluidic Systems”, 12th Int'l Conference Miniaturized Sys. for Chemistry and Life Scis. (2008).
Brenner, et al. In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs. Proc Natl Acad Sci U S A. Feb. 15, 2000;97(4):1665-70.
Brenner, et al., “Injection Molding of Microfluidic Chips by Epoxy-Based Master Tools” (Oct. 9, 2005).
Brody, et al. Biotechnology at Low Reynolds Numbers. Biophys J. 1996; 71:3430-3441.
Chan et al., “High-Temperature Microfluidic Synthesis of CdSe Nanocrystals in Nanoliter Droplets”, J. Am. Soc., 127, 13854-13861 (Oct. 12, 2005).
Chang et al. Droplet-based microfluidic platform platform for heterogeneous enzymatic assays, 2013, Lab Chip, 13, 1817-1822 (Year: 2013).
Chien et al. “Multiport flow-control system for lab-on-a-chip microfluidic devices”, Fresenius J. Anal Chem, 371:106-111 (Jul. 27, 2001).
Christopher et al., “Microfluidic methods for generating continuous droplet streams”, J. Phys. D: Appl. Phys. 40, R319-R336 (2007).
Co-pending U.S. Appl. No. 15/887,711, filed Feb. 2, 2018.
Co-pending U.S. Appl. No. 15/887,947, filed Feb. 2, 2018.
Dendukuri et al., “Controlled synthesis of nonspherical microparticles Using Microfluidics”, Langmuir, 21, 2113-2116 (Feb. 11, 2005).
Duffy, et al. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal Chem. Dec. 1, 1998;70(23):4974-84. doi: 10.1021/ac980656z.
Engl, et al., “Controlled production of emulsions and particles by milli- and microfluidic techniques”, Current Opinion in Colloid and Interface Science, vol. 13, 206-216 (Sep. 26, 2007).
Erbacher et al., “Towards Integrated Continuous-Flow Chemical Reactors”, Mikrochimica Acta, 131, pp. 19-24 (1999).
Ferraro et al., Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis, Scientific Reports 6:25540 (May 9, 2016).
Garstecki et al., “Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions”, PRL 94, 164501 (Apr. 27, 2005).
Hettiarachchi et al., “Controllable microfluidic synthesis of multiphase drug-carrying lipospheres for site-targeted therapy”, American Inst. of Chem. Engineers (May 19, 2009).
“Huebner et al., “Microdroplets: A sea of applications?”; Lab on a Chip, 8; (2008); pp. 1244-1254, 2008”.
Hung, et al., “Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for Cds nanoparticle synthesis” (Jan. 5, 2006).
Hung et al., “PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches”, Lab chip, vol. 10, 1820-1825 (May 14, 2010).
Ivanova et al., “Droplet Formation in a Thin Layer of a Two-Component Solution under the Thermal Action of Laser Radiation”, Colloid Journal, vol. 69, No. 6, pp. 735-740 (Feb. 19, 2007).
Jeffries et al., “Controlled Shrinkage and Re-expansion of a Single Aqueous Droplet inside an Optical Vortex Trap”, , J. Phys. Chem. B, 2007, 111 (11), pp. 2806-2812.
Jeffries et al., “Dynamic modulation of chemical concentration in an aqueous droplet”, Angew. Chem. Int. Ed., 1326-1328 (2007).
Joanicot et al., “Droplet Control for Microfluidics”, Science 309:887-888 (Aug. 2005).
Johnson, “Rapid microfluidic mixing”, Analytical Chemistry, vol. 74, No. 1, pp. 45-51, (Jan. 1, 2002).
JPK “Determining the elastic modulus of biological samples using atomic force microscopy” (https://www.jpk.com/ app-technotes-img/AFM/pdf/jpk-app-elastic-modulus.14-1.pdf) 2009, pp. 1-9 (Year: 2009).
Kawari et al., Mass-Production System of Nearly Monodisperse Diameter Gel Particles Using Droplets Formation in a Microchannel, Micro Total Analysis Systems, vol. I, 368-370, Springer (2002).
“Kiss MM, et al. “High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets”; Anal Chem 80(23); (2008); pp. 8975-8981.”.
Kobayashi et al., “Straight-Through Microchannel Devices for Generating Monodisperse Emulsion Droplets Several Microns in Size”, Microfluid Nanofluid 4:167-177, (Mar. 30, 2008).
Kohler et al., “Nanoliter Segment Formation in Micro Fluid Devices for Chemical and Biological Micro Serial Flow Processes in Dependence on Flow Rate and Viscosity”, Sensors and Actuators A 119, 19-27 (Nov. 2, 2005).
Kolodeziejczyk et al., “The technology and biology of single-cell RNA sequencing”, Molecular Cell, vol. 58 (May 21, 2015).
Lagally, et al. Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device. Analytical Chemistry. 2001;73(3): 565-570.
Lasken, et al. (1996) Archaebacterial DNA Polymerases Tightly Bind Uracil-containing DNA. The Journal of Biological Chemistry, 271(30):17692-17696 (Year: 1996).
Laulicht et al., Evaluation of continuous flow nanosphere formation by controlled microfluidic transport, American Chem. Society (Aug. 6, 2008).
Lee et al., “A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids”, J. Micromech. Microeng. 17 1121-1129 (Jun. 2007).
Lee et al. Alginate: Properties and biomedical applications. Prog Polym Sci 37(1):106-126 (2012).
Lee et al., Double emulsion-templated nanoparticle colloidosomes with selective permeability. Adv Mater. 2008;20:3498-503. Month not cited on publication.
Lee, et al., “Microfluidic air-liquid cavity acoustic transducers for on-chip integration of sample preparation and sample detection” (Dec. 2010).
Liu et. al., “Droplet formation in a T-shaped microfluidic junction”, Journal of Applied Physics vol. 106, 034906 (Aug. 7, 2009).
Liu et al., “Droplet-based synthetic method using microflow focusing and droplet fusion”, Microfluid Nanofluid, vol. 3, 239-24 (2007).
Liu et al., Dynamics of coalescence of plugs with a hydrophilic wetting layer induced by flow in a microfluidic chemistrode (Dec. 9, 2008).
Lorenceau, E., et al., “Generation of Polymerosomes from Double-Emulsions,” Langmuir, vol. 21, pp. 9183-9186 (2005).
Malic et al., “Integration and detection of biochemical assays in digital microfluidic LOC devices”, Lab Chip, vol. 10, 418-431 (2010).
Malsch et al., “μPIV-Analysis of Taylor flow in micro channels”, Chemical Engineering Journal, 135S, S166-S172 (2008).
“Mary P Pascaline, et al; “Controlling droplet incubation using close-packed plug flow”; Biomicrofluidics 5; (2011); pp. 024101-1-024101-6.”.
Mason, T.J. and Bibette, J. Shear Rupturing of Droplets in Complex Fluids, Langmuir, 13(17):4600-4613 (1997).
Mazutis et al., Droplet-Based Microfluidic Systems for High-Throughput Single DNA Molecule Isothermal Amplification and Analysis, Anal Chem 81(12):4813-4821 (2009).
Mazutis, et al., Preparation of monodisperse emulsions by hydrodynamic size fractionation (Nov. 18, 2009).
Meier et al., “Plug-Based Microfluidics with Defined Surface Chemistry to Miniaturize and control aggregation of amyloidogenic peptides”, Angew Chem. Ed Engl., 48(8), 1487-1489 (2009).
Microfluidic ChipShop, Microfluidic Product Catalogue (Feb. 2005).
Miller-Stephenson Chemicals 157 FS Series catalog, www.miller-stephenon.com.
Morimoto, et al. Monodisperse semi-permeable microcapsules for continuous observation of cells. 2009. Lab Chip 9(15):2217-2223.
Narayanan, J. et al. “Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques” Journal of Physics: Conference Series 28 (2006) 83-86 (Year: 2006).
Nisisako et al., “Novel microreactors for functional polymer beads”, Chemical Engineering Journal 101 23-29 (Nov. 19, 2004).
Nisisako et al., “Synthesis of Monodisperse Bicolored Janus Particles with Electrical Aniaotropy Using a Microfluidic Co-Flow System”, Adv. Mater., 18, 1152-1156.
Nisisako, T. et al., Microfluidics large-scale integration on a chip for mass production of monodisperse droplets and particles, The Royal Society of Chemistry: Lab Chip, (Nov. 23, 2007) 8:287-293.
Niu et al., A hybrid microfluidic chip for digital electro-coalescence of droplets, (Nov. 2009).
Niu et al. “Droplet-based compartmentalization of chemically separated components in two-dimensional separations”, Chem. Commun, 6159-6161 (Sep. 15, 2009).
Ong et al., Experimental and computational analysis of droplet formation in a high-performance flow-focusing geometry, Sensors and Actuators A 138, 203-212 (May 4, 2007).
Perroud et al., “Isotropically etched radial micropore for cell concentration, immobilization, and picodroplet generation”, Lab Chip, 9, 507-515 (Jan. 7, 2009).
Sakaguchi, et al. (1996) Cautionary Note on the Use of dUMP-Containing PCR Primers with Pfu and VentR. Biotechniques, 21(3): 369-370 (Year: 1996).
Sessoms et al., “Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements”, Physical Review, E 80, 016317 (Jul. 31, 2009).
Spormann Laboratory, Polymerase Chain Reaction (PCR), Alfred Spormann Laboratory, 2009, 1-3. (Year: 2009).
Srisa-Art et al., “High-throughput DNA droplet assays using Picoliter reactor volumes”, Anal. Chem. vol. 79, 6682-6689 (Sep. 9, 2007).
Tetradis-Meris et al., Novel parallel integration of microfluidic device network for emulsion formation. Ind. Eng. Chern. Res., 2009; 48 (19): 8881-8889.
Tewhey, et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol. Nov. 2009;27(11):1025-31. doi: 10.1038/nbt.1583. Epub Nov. 1, 2009.
ThermoFisher, Protocols, M-270 Streptavidin, ThermoFisherScientific, 2007, 1-5. (Year: 2007).
Xia and Whitesides, Soft Lithography, Angew. Chem. Int. Ed. 37:550-575 (1998).
Zhou, Y. et al. “Development of an enzyme activity screening system for p-glucosidase-displaying yeasts using calcium alginate micro-beads and flow sorting” Appl Microbiol Biotechnol (2009) 84:375-382 (Year: 2009).
Bansal et al. An MCMC algorithm for haplotype assembly from whole-genome sequence data,†(2008) Genome Res 18:1336-1346 .
Bansal et al. “HapCUT: an efficient and accurate algorithm for the haplotype assembly problem,” Bioinformatics (2008) 24:i153-i159.
Baret, et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip. Jul. 7, 2009;9(13):1850-8. doi: 10.1039/b902504a. Epub Apr. 23, 2009.
BD. BD Rhapsody™ Single-Cell Analysis System: Analyze hundreds of genes across tens of thousands of single cells in parallel. BD, Becton, Dickinson and Company. BDGM1012 Rev. 1. 2017. 8 pages.
Bedtools: General Usage,†http://bedtools.readthedocs.io/en/latest/content/generalusage.html; Retrieved from the Internet Jul. 8, 2016.
Bentley et al. “Accurate whole human genome sequencing using reversible terminator chemistry,” (2008) Nature 456:53-59.
Bray, “The JavaScript Object Notation (JSON) Data Interchange Format,” Mar. 2014, retrieved from the Internet Feb. 15, 2015; https://tools.ietf.org/html/rfc7159.
Browning, S.R. et al. “Haplotype Phasing: Existing Methods and New Developments” NaRevGenet (Sep. 16, 2011) 12(10):703-714.
Buchman GW, et al. Selective RNA amplification: a novel method using dUMP-containing primers and uracil DNA glycosylase. PCR Methods Appl. Aug. 1993; 3(1):28-31.
Chen et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation,âa€ Nature Methods (2009) 6(9):677-681.
Choi et al. “Identification of novel isoforms of the EML4-ALK transforming gene in non— small cell lung cancer,†Cancer Res (2008) 68:4971-4976.
Cleary et al. Joint variant and de novo mutation identification on pedigrees from highthroughput sequencing data,†J Comput Biol (2014) 21:405-419.
Co-pending U.S. Appl. No. 15/687,357, filed Aug. 25, 2017.
Co-pending U.S. Appl. No. 15/687,856, filed Aug. 28, 2017.
Co-pending U.S. Appl. No. 15/693,374, filed Aug. 31, 2017.
Co-pending U.S. Appl. No. 15/717,840, filed Sep. 27, 2017.
Co-pending U.S. Appl. No. 15/717,847, filed Sep. 27, 2017.
Co-pending U.S. Appl. No. 15/717,871, filed Sep. 27, 2017.
Co-pending U.S. Appl. No. 15/718,764, filed Sep. 28, 2017.
Co-pending U.S. Appl. No. 15/718,893, filed Sep. 28, 2017.
Co-pending U.S. Appl. No. 15/719,459, filed Sep. 28, 2017.
Co-pending U.S. Appl. No. 15/720,085, filed Sep. 29, 2017.
Dangla, et al. Droplet microfluidics driven by gradients of confinement. Proc Natl Acad Sci U S A. Jan. 15, 2013; 110(3): 853-858. Published online Jan. 2, 2013. doi: 10.1073/pnas.1209186110.
Dressman et al. Supplementary Information pp. 1-2 of article published 2003, PNAS 100(15:8817-22).
Eid et al. Real-time sequencing form single polymerase molecules,†Science (2009) 323:133-138.
Gordon et al. Consed: A Graphical Tool for Sequence Finishing,†Genome Research (1998) 8:198-202.
Heng et al. “Fast and accurate long-read alignment with Burrows-Wheeler transform,” Bioinformatics (2010) 25(14): 1754-1760.
Hosono S, et al. Unbiased whole-genome amplification directly from clinical samples. Genome Res. May 2003; 13(5):954-64. Epub Apr. 14, 2003.
Huang et al. EagleView: A genome assembly viewer for next-generationsequencing technologies,†Genome Research (2008) 18:1538-1543.
Illumina, Inc. An Introduction to Next-Generation Sequencing Technology. Feb. 28, 2012.
Kamperman, et al. Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape. Small. Jun. 2017;13(22). doi: 10.1002/smll.201603711. Epub Apr. 28, 2017.
Kanehisa et al. KEGG: Kyoto Encyclopedia of Genes and Genomes,†Nucleic Acids Research (2000) 28:27-30.
Kim et al. “HapEdit: an accuracy assessment viewer for haplotype assembly using massively parallel DNA-sequencing technologies,” Nucleic Acids Research (2011) pp. 1-5.
Kirkness et al. Sequencing of isolated sperm cells for direct haplotyping of a human genome,†Genome Res (2013) 23:826-832.
Kobayashi, et al. Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. J Colloid Interface Sci. Nov. 1, 2004;279(1):277-80.
Layer et al. LUMPY: A probabilistic framework for structural variant discovery,†Genome Biology (2014) 15(6):R84.
Li, et al. Step-emulsification in a microfluidic device. Lab Chip. Feb. 21 2015;15(4):1023-31. doi: 10.1039/c4lc01289e.
Lienemann, et al. Single cell-laden protease-sensitive microniches for long-term culture in 3D. Lab Chip. Feb. 14, 2017;17(4):727-737. doi: 10.1039/c6lc01444e.
Lippert et al. “” Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem,†Brief. Bionform (2002) 3:23-31.
Lo, et al. On the design of clone-based haplotyping. Genome Biol. 2013;14(9):R100.
Maan, et al. Spontaneous droplet formation techniques for monodisperse emulsions preparation—Perspectives for food applications. Journal of Food Engineering. vol. 107, Issues 3-4, Dec. 2011, pp. 334-346.
Margulies et al. Genome sequencing in microfabricated high-density picoliter reactors,†Nature (2005) 437:376-380.
Maricic T, et al. Optimization of 454 sequencing library preparation from small amounts of DNA permits sequence determination of both DNA strands. Biotechniques. Jan. 2009; 46(1):51-2, 54-7.
McKenna et al. The Genome Analysis Toolkit: A MapReduce framework for anaylzing nextgeneration.
Miller et al. “Assembly Algorithms for next-generation sequencing data,” Genomics, 95 (2010), pp. 315-327.
Myllykangas et al. “Efficient targeted resequencing of human germline and cancer genomes by oligonucleotide-selective sequencing,” Nat Biotechnol, (2011) 29:1024-1027.
Perrott, Jimmy. Optimization and Improvement of Emulsion PCR for the Ion Torrent Next-Generation Sequencing Platform. (2011) Thesis.
Pushkarev et al. Single-molecule sequencing of an individual human genome,†Nature Biotech (2009) 17:847-850.
Sahin, et al. Microfluidic EDGE emulsification: the importance of interface interactions on droplet formation and pressure stability. Sci Rep. May 27, 2016;6:26407. doi: 10.1038/srep26407.
Shahi, et al. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci Rep. 2017; 7: 44447. Published online Mar. 14, 2017. doi: 10.1038/srep44447.
Shendure et al. Accurate Multiplex Polony Sequencing of an Evolved bacterial Genome. Science (2005) 309:1728-1732.
Skerra A. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Res. Jul. 25, 1992; 20(14):3551-4.
SSH Tunnel—Local and Remote Port Forwarding Explained With Examples,†Trackets Blog, http://blog.trackets.com/2014/05/17/ssh-tunnel-local-and-remote-port-forwarding-explained with-examples.html; Retrieved from the Internet Jul. 7, 2016.
Stoeckius, et al. Simultaneous epitope and transcriptome measurement in single cells. Nature methods. Jul. 31, 2017. Supplemental Materials.
Tewhey et al. The importance of phase information for human genomics,†Nat Rev Genet (2011) 12:215-223.
The SAM/BAM Format Specificatio Working Group, “Sequence Allignment/ Map Format Specification,” Dec. 28, 2014.
Umbanhowar, P.B., et al., “Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream,” Langmuir, vol. 16, pp. 347-351 (2000).
Van Dijke, et al. Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification . Microfluid Nanofluid (2010) 9: 77. https://doi.org/10.1007/s10404-009-0521-7.
Wheeler et al., “Database resources of the National Center for Biotechnology Information,” Nucleic Acids Res. (2007) 35 (Database issue): D5-12.
Zerbino, Daniel, “Velvet Manual—version 1.1,” Aug. 15, 2008, pp. 1-22.
Zerbino et al. “Velvet: Algorithms for de novo short read assembly using de Bruijn graphs,” Genome Research (2008) 18:821-829.
Abate, et al. Beating Poisson encapsulation statistics using close-packed ordering. Lab Chip. Sep. 21, 2009;9(18):2628-31. doi: 10.1039/b909386a. Epub Jul. 28, 2009.
Abate, et al. High-throughput injection with microfluidics using picoinjectors. Proc Natl Acad Sci U S A. Nov. 9, 2010;107(45):19163-6. doi: 10.1073/pNas.1006888107. Epub Oct. 20, 2010.
Abate et al., Valve-based flow focusing for drug formation. Appl Phys Lett. 2009;94. 3 pages.
Agresti, et al. Selection of ribozymes that catalyse multiple-turnover Diels-Alder cycloadditions by using in vitro compartmentalization. Proc Natl Acad Sci U S A. Nov. 8, 2005;102(45):16170-5. Epub Oct. 31, 2005.
Ahern, “Biochemical, Reagents Kits Offer Scientists Good Return on Investment” The Scientist (1995) 9(15):1-7.
Aitman, et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature. Feb. 16, 2006;439(7078):851-5.
Akselband, “Enrichment of slow-growing marine microorganisms from mixed cultures using gel microdrop (GMD) growth assay and fluorescence-activated cell sorting”, J. Exp. Marine Bioi., 329: 196-205 (2006).
Akselband, “Rapid mycobacteria drug susceptibility testing using gel microdrop (GMD) growth assay and flow cytometry”, J. Microbiol. Methods, 62:181-197 (2005).
Altemos et al., “Genomic Characterization of Large Heterochromatic Gaps in the Human Genome Assembly,” PLOS Computational Biology, May 15, 2014, vol. 10, Issue 5, 14 pages.
Amini, S. et al. “Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing” Nature Genetics (2014) 46:1343-1349 doi:10.1038/ng.3119.
Anna, S.L., et al., “Formation of dispersions using “flow focusing” in microchannels,” Applied Physics Letters, vol. 82, No. 3, pp. 364-366 (2003).
Anonymous, “Oligo(dT)25 cellulose beads” NEB (2012) Retrieved from the Internet:https://www.neb.com/˜/media/Catalog/All-Products/286CA51268E24DE1B06F1CB288698B54/Datacards%20or%Manuals/S1408Datasheet-Lot0011205.pdf.
Anonymous, “Oligotex Handbook” Qiagen (2012) XP055314680, Retrieved from the Internet: URL:http://www.qiagen.com/de/resources/download.apsx?id=f9fald98-d54d-47e7-a20b-8b0cb8975009&lang=en.
Anonymous: “Viscosity-Basic concepts” (2004) XP055314117, Retrieved from the Internet: URL:http://lhtc.epfl.ch/webdav/site/lhtc/shared/import/migration/2 VISCOSITY.pdf.
Attia, et al. Micro-injection moulding of polymer microfluidic devices. Microfluidics and nanofluidics. 2009; 7(1):1-28.
Balikova, et al. Autosomal-dominant microtia linked to five tandem copies of a copy-number-variable region at chromosome 4p16. Am J Hum Genet. Jan. 2008;82(1):181-7. doi: 10.1016/j.ajhg.2007.08.001.
Bentzen, et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol. Oct. 2016;34(10):1037-1045. doi: 10.1038/nbt.3662. Epub Aug. 29, 2016.
Berkum, et al. Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp. May 6, 2010;(39). pii: 1869. doi: 10.3791/1869.
Biles et al., Nucl. Acids Res. 32(22):e176 2004.
Bodi, K. et al. “Comparison of Commercially Available Target Enrichment Methods for Next-Generation Sequencing” J Biomolecular Techniques (2013) 24:73-86.
Boone, et al. Plastic advances microfluidic devices. The devices debuted in silicon and glass, but plastic fabrication may make them hugely successful in biotechnology application. Analytical Chemistry. Feb. 2002; 78A-86A.
Boulanger, et al, “Massively parallel haplotyping on microscopic beads for the high-throughput phase analysis of single molecules”, PLoS One, vol. 7:1-10, 2012.
Braeckmans et al., Scanning the Code. Modern Drug Discovery. 2003:28-32.
Bransky, et al. A microfluidic droplet generator based on a piezoelectric actuator. Lab Chip. Feb. 21, 2009;9(4):516-20. doi: 10.1039/b814810d. Epub Nov. 20, 2008.
Briggs, et al. “Tumor-infiltrating immune repertoires captures by single-cell barcoding in emulsion” with Supplementary material. bioRxiv 134841; doi: https://doi.org/10.1101/134841. Posted May 5, 2017.
Brouzes, et al. Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A. Aug. 25, 2009;106(34):14195-200. doi: 10.1073/pnas.0903542106. Epub Jul. 15, 2009.
Brown, K., Targeted Sequencing Using Droplet-Based Microfluidics, RainDance Technologies, 2009, 1-18.
Browning, et al. Haplotype phasing: existing methods and new developments. Nat Rev Genet. Sep. 16, 2011;12(10):703-14. doi: 10.1038/nrg3054. Review.
Burns, et al. An Integrated Nanoliter DNA Analysis Device. Science. Oct. 16, 1998;282(5388):484-7.
Burns, et al. Microfabricated structures for integrated DNA analysis. Proc Natl Acad Sci U S A. May 28, 1996; 93(11): 5556-5561.
Burns, et al. The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip. Sep. 2001;1(1):10-5. Epub Aug. 9, 2001.
Cappuzzo, et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol. Aug. 1, 2005;23(22):5007-18.
Carroll, “The selection of high-producing cell lines using flow cytometry and cell sorting”, Exp. Op. Bioi. Therp., 4:11 1821-1829 (2004).
Casbon, et al, “Reflex: intramolecular barcoding of long-range PCR products for sequencing multiple pooled DNAs”, Nucleic Acids Res., pp. 1-6, 2013.
Chaudhary “A rapid method of cloning functional variable-region antibody genes in Escherichia coli as single-chain imrnunotoxins” Proc. Nat!. Acad. Sci USA 87: 1066-1070 (Feb. 1990).
Chechetkin et al., Sequencing by hybridization with the generic 6-mer oligonucleotide microarray: an advanced scheme for data processing. J Biomol Struct Dyn. Aug. 2000;I8(1):83-101.
Chen, et al. Chemical transfection of cells in picoliter aqueous droplets in fluorocarbon oil. Anal Chem. Nov. 15, 2011;83(22):8816-20. doi: 10.1021/ac2022794. Epub Oct. 17, 2011.
Choi, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. Jul. 1, 2008;68(13):4971-6. doi: 10.1158/0008-5472.CAN-07-6158.
Chokkalingam, et al. Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip. Dec. 21, 2013;13(24):4740-4. doi: 10.1039/c3lc50945a.
Chou, et al. Disposable Microdevices for DNA Analysis and Cell Sorting. Proc. Solid-State Sensor and Actuator Workshop, Hilton Head, SC. Jun. 8-11, 1998; 11-14.
Christian M, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757-761.
Christiansen et al. “The Covalent Eukaryotic Topoisomerase I-DNA Intermediate Catalyzes pH-dependent Hydrolysis and Alcoholysis” J Biol Chem (Apr. 14, 1994) 269(15):11367-11373.
Chu, et al. Controllable monodisperse multiple emulsions. Angew Chem Int Ed Engl. 2007;46(47):8970-4.
Chung, et al. Structural and molecular interrogation of intact biological systems. Nature. May 16, 2013;497(7449):332-7. doi: 10.1038/nature12107. Epub Apr. 10, 2013.
Clausell-Tormos et al., “Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms”, Chem. Biol. 15:427-437 (2008).
Cong, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013.
Cook, et al. Copy-number variations associated with neuropsychiatric conditions. Nature. Oct. 16, 2008;455(7215):919-23. doi: 10.1038/nature07458.
Co-pending U.S. Appl. No. 15/392,557, filed Dec. 28, 2016.
Co-pending U.S. Appl. No. 15/430,298, filed Feb. 10, 2017.
Co-pending U.S. Appl. No. 15/440,772, filed Feb. 23, 2017.
Co-pending U.S. Appl. No. 15/449,741, filed Mar. 3, 2017.
Co-pending U.S. Appl. No. 15/470,814, filed Mar. 27, 2017.
Co-pending U.S. Appl. No. 15/588,519, filed May 5, 2017.
Co-pending U.S. Appl. No. 15/598,898, filed May 18, 2017.
Coufal, et al. L1 retrotransposition in human neural progenitor cells. Nature. Aug. 27, 2009;460(7259):1127-31. doi: 10.1038/nature08248. Epub Aug. 5, 2009.
Curcio. Improved Techniques for High-Throughput Molecular Diagnostics. PhD Thesis. 2002.
Damean, et al. Simultaneous measurement of reactions in microdroplets filled by concentration gradients. Lab Chip. Jun. 21, 2009;9(12):1707-13. doi: 10.1039/b821021g. Epub Mar. 19, 2009.
De Bruin et al., UBS Investment Research. Q-Series®: DNA Sequencing. UBS Securities LLC. Jul. 12, 2007. 15 pages.
Dekker, et al. Capturing chromosome conformation. Science. Feb. 15, 2002;295(5558):1306-11.
Demirci, et al. Single cell epitaxy by acoustic picolitre droplets. Lab Chip. Sep. 2007;7(9):1139-45. Epub Jul. 10, 2007.
Doerr, “The smallest bioreactor”, Nature Methods, 2:5 326 (2005).
Doshi, et al. Red blood cell-mimicking synthetic biomaterial particles. Proceedings of the National Academy of Sciences 106.51 (2009): 21495-21499.
Dowding, et al. Oil core/polymer shell microcapsules by internal phase separation from emulsion droplets. II: controlling the release profile of active molecules. Langmuir. Jun. 7, 2005;21(12):5278-84.
Draper, et al. Compartmentalization of electrophoretically separated analytes in a multiphase microfluidic platform. Anal Chem. Jul. 3, 2012;84(13):5801-8. doi: 10.1021/ac301141x. Epub Jun. 13, 2012.
Dressler, et al. Droplet-based microfluidics enabling impact on drug discovery. J Biomol Screen. Apr. 2014;19(4):483-96. doi: 10.1177/1087057113510401. Epub Nov. 15, 2013.
“Dressman et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. 2003. 100(15):8817-8822.”.
Drmanac et al., Sequencing by hybridization (SBH): advantages, achievements, and opportunities. Adv Biochem Eng Biotechnol. 2002;77 :75-101.
Droplet Based Sequencing (slides) dated (Mar. 12, 2008).
“Eastburn, et al. Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic droplets. Anal Chem. Aug. 20, 2013;85(16):8016-21. doi: 10.1021/ac402057q. Epub Aug. 8, 2013.”.
Esser-Kahn, et al. Triggered release from polymer capsules. Macromolecules. 2011; 44:5539-5553.
Fabi, et al. Correlation of efficacy between EGFR gene copy number and lapatinib/capecitabine therapy in HER2-positive metastatic breast cancer. J. Clin. Oncol. 2010; 28:15S. 2010 ASCO Meeting abstract Jun. 14, 2010:1059.
Fan, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. Oct. 21, 2008;105(42)16266-71. doi: 10.1073/pnas.0808319105. Epub Oct. 6, 2008.
Fan, et al. Whole-genome molecular haplotyping of single cells. Nature Biotechnology, vol. 29, No. 1. Jan. 1, 2011. pp. 51-57.
Fang, et al. Fluoride-cleavable biotinylation phosphoramidite for 5′-end-labeling and affinity purification of synthetic oligonucleotides. Nucleic Acids Res. Jan. 15, 2003;31(2):708-15.
Fisher, et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 2011;12(1):R1. doi: 10.1186/gb-2011-12-1-r1. Epub Jan. 4, 2011.
Frampton, G.M. et al. “Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing” Nature Biotechnology (2013) 31(11):1023-1031. doi:10.1038/nbr.2696.
Fredrickson, et al. Macro-to-micro interfaces for microfluidic devices. Lab Chip. Dec. 2004;4(6):526-33. Epub Nov. 10, 2004.
Freiberg, et al. Polymer microspheres for controlled drug release. Int J Pharm. Sep. 10, 2004;282(1-2):1-18.
Xi, et al. New library construction method for single-cell genomes. PLoS One. Jul. 19, 2017;12(7):e0181163. doi: 10.1371/journal.pone.0181163. eCollection 2017.
Fu, A.Y., et al., “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnology, vol. 17, pp. 1109-1111 (1999).
Fulton et al., Advanced multiplexed analysis with the FlowMetrix system. Clin Chern. Sep. 1997;43(9): 1749-56.
Garstecki, et al. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters. 2004; 85(13):2649-2651. DOI: 10.1063/1.1796526.
Gartner, et al. The Microfluidic Toolbox—examples for fluidic interfaces and standardization concepts. Proc. SPIE 4982, Microfluidics, BioMEMS, and Medical Microsystems, (Jan. 17, 2003); doi: 10.1117/12.479566.
Gericke, et al. Functional cellulose beads: preparation, characterization, and applications. Chemical reviews 113.7 (2013): 4812-4836.
Ghadessy, et al. Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci U S A. Apr. 10, 2001;98(8):4552-7. Epub Mar. 27, 2001.
Gonzalez, et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. Mar. 4, 2005;307(5714):1434-40. Epub Jan. 6, 2005.
Granieri, Lucia. Droplet-based microfluidics and engineering of tissue plasminogen activator for biomedical applications. Ph.D. Thesis, Nov. 13, 2009 (131 pages).
Grasland-Mongrain, et al. Droplet coalescence in microfluidic devices. Jan.-Jul. 2003. 31 pages. http://www.eleves.ens.fr/home/grasland/rapports/stage4.pdf.
Guo, et al. Droplet microfluidics for high-throughput biological assays. Lab Chip. Jun. 21, 2012;12(12):2146-55. doi: 10.1039/c2lc21147e. Epub Feb. 9, 2012.
Gyarmati, et al. Reversible disulphide formation in polymer networks: a versatile functional group from synthesis to applications. European Polymer Journal. 2013; 49:1268-1286.
Han, X. et al. “CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation” Science Advances (2015) 1(7): E1500454 (8 pages).
Hashimshony, et al. CEL-Seq: Single-Cell RNa-Seq by Multiplexed Linear Amplification. Cell Rep. Sep. 27, 2012;2(3):666-73. doi: 10.1016/j.celrep.2012.08.003. Epub Aug. 30, 2012.
He “Selective Encapsulation of Single Cells and Subcellular Organelles into Picoliter- and Femtoliter-Volume Droplets” Anal. Chern 77: 1539-1544 (2005).
He, J. et al. “Genotyping-by-sequencing (GBS), an ultimate marker-assisted selections (MAS) tool to accelerate plant breeding” Frontiers in Plant Sci (Sep. 30, 2014) 5:1-8.
Hiatt, et al. Parallel, tag-directed assembly of locally derived short sequence reads. Nat Methods. Feb. 2010;7(2):119-22. doi: 10.1038/nmeth.1416. Epub Jan. 17, 2010.
Hirsch et al. (2002) “Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation.” Analytical of Biochemistry 308(2):343-357.
Hjerten, et al. General methods to render macroporous stationary phases nonporous and deformable, exemplified with agarose and silica beads and their use in high-performance ion-exchange and hydrophobic-interaction chromatography of proteins. Chromatographia 31.1-2 (1991): 85-94.
Holtze, et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip. Oct. 2008;8(10):1632-9. doi: 10.1039/b806706f. Epub Sep. 2, 2008.
Hosokawa, et al. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Scientific Reports 7, Article No. 5199 (2017).
Huebner, “Quantitative detection of protein expression in single cells using droplet microfluidics”, Chem. Commun. 1218-1220 (2007).
Hug, et al. Measurement of the number of molecules of a single mRNA species in a complex mRNA preparation. J Theor Biol. Apr. 21, 2003;221(4):615-24.
“Sigma. Streptavidin-agarose (S1638) product information sheet. www.sigma-aldrich.com”.
Illumina Nextera Enrichment Sample Preparation Guide. Feb. 2013.
Illumina TruSeq Custom Enrichment Kit Data Sheet. (c) 2014.
Imburgio, et al, “Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants”, Biochemistry., 39:10419-30, 2000.
Ioannidis, N. Manufacturing of agarose-based chromatographic adsorbents with controlled pore and particle sizes. A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy. 2009.
Jena, et al. Cyclic olefin copolymer based microfluidic devices for biochip applications: Ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine. Biomicrofluidics. Mar. 2012;6(1):12822-1282212. doi: 10.1063/1.3682098. Epub Mar. 15, 2012.
Jung, et al. Micro machining of injection mold inserts for fluidic channel of polymeric biochips. Sensors. 2007; 7(8):1643-1654.
Kaper, et al. Supporting Information for “Whole-genome haplotyping by dilution, amplification, and sequencing.” Proc Natl Acad Sci U S A. Apr. 2, 2013;110(14):5552-7. doi: 10.1073/pnas.1218696110. Epub Mar. 18, 2013.
Kaper, et al. Whole-genome haplotyping by dilution, amplification, and sequencing. Proc Natl Acad Sci U S A. Apr. 2, 2013;110(14):5552-7. doi: 10.1073/pnas.1218696110. Epub Mar. 18, 2013.
Karmakar, et al. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases. Nat Chem. Sep. 2015;7(9):752-8. doi: 10.1038/nchem.2307. Epub Aug. 3, 2015.
Katsura, et al. Indirect micromanipulation of single molecules in water-in-oil emulsion. Electrophoresis. Jan. 2001;22(2):289-93.
Kebschull, et al. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA. Neuron. Sep. 7, 2016;91(5):975-87. doi: 10.1016/j.neuron.2016.07.036. Epub Aug. 18, 2016.
Kenis, et al. Microfabrication Inside Capillaries Using Multiphase Laminar Flow Patterning. Science. Jul. 2, 1999;285(5424):83-5.
Khomiakov A et al., Analysis of perfect and mismatched DNA duplexes by a generic hexanucleotide microchip. Mol Bioi (Mosk). Jul.-Aug. 2003;37(4):726-41. Russian. Abstract only.
Kim et al., Albumin loaded microsphere of amphiphilic poly( ethylene glycol)/poly(a-ester) multiblock copolymer. Eu. J. Pharm. Sci. 2004;23:245-51. Available online Sep. 27, 2004.
Kim, et al. Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew Chem Int Ed Engl. 2007;46(11):1819-22.
Kim, et al. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite. Lab Chip. May 7, 2009;9(9):1290-3. doi: 10.1039/b818389a. Epub Feb. 10, 2009.
Kirkness et al. “Sequencing of isolated sperm cells for direct haplotyping of a human genome,” Genome Res (2013) 23:826-832.
Kitzman et al. “Haplotype-resolved genome sequencing of a Gujarati Indian individual.” Nat Biotechnol (2011) 29:59-63.
Kitzman, et al. Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med. Jun. 6, 2012;4(137):137ra76. doi: 10.1126/scitranslmed.3004323.
Kivioj a, et al., “Counting Absolute Numbers of Molecules Using Unique Molecular Identifiers”, Nature Methods 9, 72-74 (2012).
Klein, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. May 21, 2015;161(5):1187-201. doi: 10.1016/j.ce11.2015.04.044.
Knight, et al. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet. Nov. 13, 1999;354(9191):1676-81.
Kozarewa, et al, “96-plex molecular barcoding for the Illumina Genome Analyzer”, Methods Mol Biol., 733:279-98, 2011.
Korlach et al., Methods in Enzymology, Real-Time DNA Sequencing from Single Polymerase Molecules, (2010) 472:431-455.
Koster et al., “Drop-based microfluidic devices for encapsulation of single cells”, Lab on a Chip The Royal Soc. of Chern. 8: 1110-1115 (2008).
Kozarewa, et al. “Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of GC-biased genomes”, Nat Methods., 6: 291-5, 2009.
Kutyavin, et al. Oligonucleotides containing 2-aminoadenine and 2-thiothymine act as selectively binding complementary agents. Biochemistry. Aug. 27, 1996;35(34):11170-6.
Kwok, et al, “Single-molecule analysis for molecular haplotyping”, Hum Mutat., 23:442-6, 2004.
Lagally, et al. Single-Molecular DNA Amplification and Analysis in an Integrated Microfluidic Device. Anal Chem. Feb. 1, 2001;73(3):565-70.
Lagus, et al. A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J. Phys. D: Appl. Phys. (2013) 46:114005. (21 pages).
Laird et al, Hairpin-bisulfite PCR: Assessing epigenetic methylation patterns on complementary strands of individual DNA molecules, 2004, PNAS, 101, 204-209.
Lan, et al. “Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding” with Supplementary Material. Nat Biotechnol. May 29, 2017. doi: 10.1038/nbt.3880. [Epub ahead of print].
Lee, et al. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci Rep. Jan. 11, 2016;6:18631. doi: 10.1038/srep18631.
Lee, et al., “Highly multiplexed subcellular RNA sequencing in situ. Science. Mar. 21, 2014;343(6177):1360-3. doi: 10.1126/science.1250212. Epub Feb. 27, 2014.”.
Lee, J-H. et al. “Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues” Nature Protocols (Feb. 12, 2015) 10(3):442-458.
Li, et al. A single-cell-based platform for copy number variation profiling through digital counting of amplified genomic DNA fragments. ACS Appl Mater Interfaces. Mar. 24, 2017. doi: 10.1021/acsami.7b03146. [Epub ahead of print].
Li, Y., et al., “PEGylated PLGA Nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats,” Journal of Controlled Release, vol. 71, pp. 203-211 (2001).
Linch, et al. Bone marrow processing and cryopreservation. Journal of Clinical Pathology; Feb. 1982, vol. 35, No. 2; pp. 186-190.
Liu, et al. Preparation of uniform-sized PLA microcapsules by combining Shirasu porous glass membrane emulsification technique and multiple emulsion-solvent evaporation method. J Control Release. Mar. 2, 2005;103(1):31-43. Epub Dec. 21, 2004.
Liu, et al. Smart thermo-triggered squirting capsules for Nanoparticle delivery. Soft Matter. 2010; 6(16):3759-3763.
Loscertales, I.G., et al., “Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets,” Science, vol. 295, pp. 1695-1698 (2002).
Love, “A microengraving method for rapid selection of single cells producing antigen-specific antibodies”, Nature Biotech, 24:6 703 (Jun. 2006).
Lowe, Adam J. Norbornenes and [n]polynorbornanes as molecular scaffolds for anion recognition. Ph.D. Thesis (May 2010). (361 pages).
Lundin, et al, “Hierarchical molecular tagging to resolve long continuous sequences by massively parallel sequencing”, Sci Rep., 3:1186, 2003.
Lupski. Genomic rearrangements and sporadic disease. Nat Genet. Jul. 2007;39(7 Suppl):S43-7.
Macosko, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. May 21, 2015;161(5):1202-14. doi: 10.1016/j.ce11.2015.05.002.
Mair, et al. Injection molded microfluidic chips featuring integrated interconnects. Lab Chip. Oct. 2006;6(10):1346-54. Epub Jul. 31, 2006.
Makino, et al. Preparation of hydrogel microcapsules: Effects of preparation conditions upon membrane properties. Colloids and Surfaces B: Biointerfaces. Nov. 1998; 12(2), 97-104.
Man. Monolithic Structures for Integrated Microfluidic Analysis. PhD Thesis. 2001.
Marcus. Gene method offers diagnostic hope. The Wall Street Journal. Jul. 11, 2012.
Matochko, et al. Uniform amplification of phage display libraries in monodisperse emulsions. Methods. Sep. 2012;58(1):18-27. doi: 10.1016/j.ymeth.2012.07.012. Epub Jul. 20, 2012.
Mazutis, et al. Selective droplet coalescence using microfluidic systems. Lab Chip. Apr. 24, 2012;12(10):1800-6. doi: 10.1039/c2Ic40121e. Epub Mar. 27, 2012.
Merriman, et al. Progress in ion torrent semiconductor chip based sequencing. Electrophoresis. Dec. 2012;33(23):3397-417. doi: 10.1002/elps.201200424.
Microfluidic ChipShop. Microfluidic product catalogue. Mar. 2005.
Microfluidic ChipShop. Microfluidic product catalogue. Oct. 2009.
Miller JC, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 2007;25:778-785.
Mirzabekov, “DNA Sequencing by Hybridization—A Megasequencing Method and a Diagnostic Tool?” Trends in Biotechnology 12(1): 27-32 (1994).
Moore, et al. Behavior of capillary valves in centrifugal microfluidic devices prepared by three-dimensional printing. Microfluidics and Nanofluidics. 2011; 10(4):877-888.
Morgan, et al. Chapter 12: Human microbiome analysis. PLoS Comput Biol. 2012;8(12):e1002808. doi: 10.1371/journal.pcbi.1002808. Epub Dec. 27, 2012.
Mouritzen et al., Single nucleotide polymorphism genotyping using locked nucleic acid (LNa). Expert Rev Mol Diagn. Jan. 2003;3(1):27-38.
Mozhanova, A.A. et al. “Local elastic properties of biological materials studied by SFM” (2003) XP055314108, Retrieved from the Internet: URL:http://www.ntmdt.com/data/media/files/publications/2003/08.08_a.a.mozhanova_n.i.n_english.pdf.
Muotri, et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature. Nov. 18, 2010;468(7322):443-6. doi: 10.1038/nature09544.
Myllykangas et al., Targeted Sequencing Library Preparation by Genomic DNA Circularization, BMC Biotechnology, 2011, 11(122), 1-12.
Nagano, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. Oct. 3, 2013;502(7469):59-64. doi: 10.1038/nature12593. Epub Sep. 25, 2013.
Nagashima, et al. Preparation of monodisperse poly (acrylamide-co-acrylic acid) hydrogel microspheres by a membrane emulsification technique and their size-dependent surface properties. Colloids and Surfaces B: Biointerfaces. Jun. 15, 1998; 11(1-2), 47-56.
Navin. The first five years of single-cell cancer genomics and beyond. Genome Res. Oct. 2015;25(10):1499-507. doi: 10.1101/gr.191098.115.
Nguyen, et al. In situ hybridization to chromosomes stabilized in gel microdrops. Cytometry. 1995; 21:111-119.
Nisisako, et al. Droplet formation in a microchannel network. Lab Chip. Feb. 2002;2(1):24-6. Epub Jan. 18, 2002.
Nisisako, T. et al. “Droplet Formation in a Microchannel on PMMA Plate” Abstract. 2001 Kluwer Academic Publishers. p. 137-138.
Notice of Allowance dated Jan. 27, 2014 for U.S. Appl. No. 13/139,326.
Novak, et al. Single cell multiplex gene detection and sequencing using microfluidically generated agarose emulsions. Angew Chem Int Ed Engl. Jan. 10, 2011;50(2):390-5. doi: 10.1002/anie.201006089.
Oberholzer, et al. Polymerase chain reaction in liposomes. Chem Biol. Oct. 1995;2(10):677-82.
Office action dated Nov. 8, 2016 for U.S. Appl. No. 13/966,150.
Ogawa, et al. Production and characterization of O/W emulsions containing cationic droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem. Apr. 23, 2003;51(9):2806-12.
Okushima, S., et al,. “Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices,” Langmuir, vol. 20, pp. 9905-9908 (2004).
Oligotex Handbook. For purification of poly A+ RNA from total RNA and directly from cultured cells or tissues as well as purification of polyadenylated in vitro transcripts. Jun. 2012.
Oyola, et al, “Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes”, BMC Genomics.,13:1, 2012.
Pantel, et al. Detection methods of circulating tumor cells. J Thorac Dis. Oct. 2012;4(5):446-7. doi: 10.3978/j.issn.2072-1439.2012.08.15.
Patel, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. Jun. 20, 2014;344(6190):1396-401. doi: 10.1126/science.1254257. Epub Jun. 12, 2014.
PCT/162010/002243, International Search Report and Written Opinion, dated Feb. 9, 2011, 13pgs.
Perez, C., et al., “Poly(lactic acid)-poly(ethylene glycol) Nanoparticles as new carriers for the delivery of plasmid DNA,” Journal of Controlled Release, vol. 75, pp. 211-224 (2001).
Peters, et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature. Jul. 11, 2012;487(7406):190-5. doi: 10.1038/Nature11236.
Picot, J. et al. “A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen” Am J Hematology (Jan. 12, 2015) 90(4):339-345.
Pinto, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. Jul. 15, 2010;466(7304):368-72. doi: 10.1038/nature09146. Epub Jun. 9, 2010.
Plunkett, et al. Chymotrypsin responsive hydrogel: application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides. Biomacromolecules. Mar.-Apr. 2005;6(2):632-7.
Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science. 2003;300:763.
Rakszewska, A. et al. “One drop at a time: toward droplet microfluidics as a versatile tool for single-cell analysis” NPG Asia Materials (2014) 6(10):e133 (12 pages).
Ram, et al. Strategy for microbiome analysis using 16S rRNA gene sequence analysis on the Illumina sequencing platform. Syst Biol Reprod Med. Jun. 2011;57(3):162-70. doi: 10.3109/19396368.2011.555598. Epub Mar. 1, 2011.
Ramsey, J.M. “The burgeoning power of the shrinking laboratory” Nature Biotech (1999) 17:1061-1062.
Ramskold et al. (2012) “Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells” Nature Biotechnology 30(8):777-782.
Ran, et al., Genome Engineering Using the CRISPR-Cas9 System, Nature Protocol, (2013), 8(11):2281-2308.
Reis, A. et al. “CRISPR/Cas9 and Targeted Genome Editing: A New Era in Molecular Biology” (2014) XP002766825: URL:https://ww.neb.com/tools-and-resources/feabture-articles/crispr-cas9-and-targeted-genome-editing-a-new-era-in-molecular-biology.
Reisner, et al, “Single-molecule denaturation mapping of DNA in nanofluidic channels”, Proc Natl Acad Sci U.S.A., 107: 13294-9, 2010.
Repp et al. “Genotyping by Multiplex Polymerase Chain Reaction for Detection of Endemic Hepatitis B Virus Transmission” J Clinical Microbiology (1993) 31:1095-1102.
Richardson, et al. Novel inhibition of archaeal family-D DNA polymerase by uracil. Nucleic acids research 41.7 (2013): 4207-4218.
Roche. Using Multiplex Identifier (MID) Adaptors for the GS FLX Titanium Chemistry Basic MID Set Genome Sequencer FLX System, Technical Bulletin 004-2009, (Apr. 1, 2009) pp. 1-7. URL:http://454.com/downloads/my454/documentation/technical-bulletins/TCB-09004 UsingMultiplexIdentifierAdaptorsForTheGSFLXTitaniumSeriesChemistry-BasicMIDSet.pdf.
Roche. Using Multiplex Identifier (MID) Adaptors for the GS FLX Titanium Chemistry Extended MID Set Genome Sequencer FLX System, Technical Bulletin 005-2009, (Apr. 1, 2009) pp. 1-7. URL:http://454.com/downloads/my454/documentation/technical-bulletins/TCB-09005 UsingMultiplexIdentifierAdaptorsForTheGSFLXTitaniumChemistry-ExtendedMIDSet.pdf.
Rodrigue, S. et al. “Whole genome amplification and de novo assembly of single bacterial cells” PLoS One. Sep. 2, 2009;4(9):e6864. doi: 10.1371/journal.pone.0006864.
Rogozin, et al. A highly conserved family of inactivated archaeal B family DNA polymerases. Biol Direct. Aug. 6, 2008;3:32. doi: 10.1186/1745-6150-3-32.
Ropers. New perspectives for the elucidation of genetic disorders. Am J Hum Genet. Aug. 2007;81(2):199-207. Epub Jun. 29, 2007.
Rotem, et al. High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based Microfluidics. PLoS One. May 22, 2015;10(5):e0116328. doi: 10.1371/journal.pone.0116328. eCollection 2015.
Rotem, et al. Single Cell Chip-Seq Using Drop-Based Microfluidics. Abstract #50. Frontiers of Single Cell Analysis, Stanford University Sep. 5-7, 2013.
Rotem, et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. Nov. 2015;33(11):1165-72. doi: 10.1038/nbt.3383. Epub Oct. 12, 2015.
Ryan, “Rapid assay for mycobacterial growth and antibiotic susceptibility using gel microdrop and encapsulation”, J. Clinical Microbial., 33:7 1720-1726 (1995).
Sander JD, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat. Methods. 2011;8:67-69.
Schirinzi et al., Combinatorial sequencing-by-hybridization: analysis of the NF1 gene. Genet Test. 2006 Spring;10(1):8-17.
Schmeider, et al. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One. Mar. 9, 2011;6(3):e17288. doi: 10.1371/journal.pone.0017288.
Schmitt, “Bead-based multiplex genotyping of human papillomaviruses”, J. Clinical Microbial., 44:2 504-512 (2006).
Schubert, et al. Microemulsifying fluorinated oils with mixtures of fluorinated and hydrogenated surfactants. Colloids and Surfaces A; Physicochemical and Engineering Aspects, 84(1994) 97-106.
Schwartz, et al., “Capturing native long-range contiguity by in situ library construction and optical sequencing”, PNAS (Nov. 2012), 109(46)18749-18754.
Sebat, et al. Strong association of de novo copy number mutations with autism. Science. Apr. 20, 2007;316(5823):445-9. Epub Mar. 15, 2007.
Seiffert, et al. Smart microgel capsules from macromolecular precursors. J Am Chem Soc. May 12, 2010;132(18):6606-9. doi: 10.1021/ja102156h.
Shah, “Fabrication of mono disperse thermosensitive microgels and gel capsules in micro fluidic devices”, Soft Matter, 4:2303-2309 (2008).
Shimkus, et al. A chemically cleavable biotinylated nucleotide: usefulness in the recovery of protein-DNA complexes from avidin affinity columns. Proc Natl Acad Sci U S A. May 1985;82(9):2593-7.
Shlien, et al. Copy number variations and cancer. Genome Med. Jun. 16, 2009;1(6):62. doi: 10.1186/gm62.
Shlien, et al. Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome. Proc Natl Acad Sci U S A. Aug. 12, 2008;105(32):11264-9. doi: 10.1073/pnas.0802970105. Epub Aug. 6, 2008.
Shuttleworth, et al. Recognition of the pro-mutagenic base uracil by family B DNA polymerases from archaea. J Mol Biol. Mar. 26, 2004;337(3):621-34.
Simeonov et al., Single nucleotide polymorphism genotyping using short, fluorescently labeled locked nucleic acid (LNA) probes and fluorescence polarization detection. Nucleic Acids Res. Sep. 1, 2002;30(17):e91.
Song, et al. Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl. Nov. 13, 2006;45(44):7336-56.
Sorokin et al., Discrimination between perfect and mismatched duplexes with oligonucleotide gel microchips: role of thermodynamic and kinetic effects during hybridization. J Biomol Struct Dyn. Jun. 2005;22(6):725-34.
Stoeckius, et al. Large-scale simultaneous measurement of epitopes and transcriptomes in single cells. bioRxiv 113068; doi: https://doi.org/10.1101/113068.
Su, et al., Microfluidics-Based Biochips: Technology Issues, Implementation Platforms, and Design-Automation Challenges. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2006;25(2):211-23. (Feb. 2006).
Sun et al., Progress in research and application of liquid-phase chip technology. Chinese Journal Experimental Surgery. May 2005;22(5):639-40.
Susaki, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell. Apr. 24, 2014;157(3):726-39. doi: 10.1016/j.cell.2014.03.042. Epub Apr. 17, 2014.
Tawfik, D.S., et al., “Man-made cell-like compartments for molecular evolution,” Nature Biotechnology, vol. 16, pp. 652-656 (1998).
Tayyab, S. et al. “Size exclusion chromatography and size exclusion HPLC of proteins” Biochem Ed, Pergamon, (1991) 19(3):149-152.
Tewhey et al., Supplementary Materials, Nature Biotechnology, 2009, 27(11), 1-22.
Theberge, et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed Engl. Aug. 9, 2010;49(34):5846-68. doi: 10.1002/anie.200906653.
Thorsen, et al. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters. American Physical Society. 2001; 86(18):4163-4166.
Tomer, et al. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc. Jul. 2014;9(7):1682-97. doi: 10.1038/nprot.2014.123. Epub Jun. 19, 2014.
Tonelli, et al. Perfluoropolyether functional oligomers: unusual reactivity in organic chemistry. Journal of fluorine chemistry. 2002; 118(1) 107-121.
Tubeleviciute, et al. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNa polymerase for diminished uracil binding. Protein Eng Des Sel. Aug. 2010;23(8):589-97. doi: 10.1093/protein/gzq032. Epub May 31, 2010.
Turner, et al. Assaying chromosomal inversions by single-molecule haplotyping. Nat Methods. Jun. 2006;3(6):439-45.
Turner, et al, “High-throughput haplotype determination over long distances by haplotype fusion PCR and ligation haplotyping”, Nat Protoc., 4:1771-83, 2009.
Turner, et al. Methods for genomic partitioning. Annu Rev Genomics Hum Genet. 2009;10:263-84. doi: 10.1146/annurev-genom-082908-150112. Review.
Ushijima et al, Detection and interpretation of altered methylation patterns in cancer cells, 2005, Nature reviews, 5, 223-231.
Van Nieuwerburgh, et al, “Illumina mate-paired DNA sequencing-library preparation using Cre-Lox recombination”, Nucleic Acids Res., 40:1-8, 2012.
Wagner, et al. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. Lab Chip. Jan. 7, 2016;16(1):65-9. doi: 10.1039/c5lc00823a. Epub Dec. 2, 2015.
Wang, et al. A novel thermo-induced self-bursting microcapsule with magnetic-targeting property. Chemphyschem. Oct. 5, 2009;10(14):2405-9.
Wang, et al. Digital karyotyping. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):16156-61. Epub Dec. 2, 2002.
Wang, et al., “Self-Formed Adaptor PCR: a Simple and Efficient Method for Chromosome Walking”, Applied and Environmental Microbiology (Aug. 2007), 73(15):5048-5051.
Wang et al., Single nucleotide polymorphism discrimination assisted by improved base stacking hybridization using oligonucleotide microarrays. Biotechniques. 2003;35:300-08.
Ward, et al. Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis. Oct. 2005;26(19):3716-24.
Weaver, “Rapid clonal growth measurements at the single-cell level: gel microdroplets and flow cytometry”, Biotechnology, 9:873-877 (1991).
Weigl, et al. Microfluidic Diffusion-Based Separation and Detection. Science. 1999; pp. 346-347.
Wesolowska, et al. Cost-effective multiplexing before capture allows screening of 25 000 clinically relevant SNPs in childhood acute lymphoblastic leukemia. Leukemia. Jun. 2011;25(6):1001-6. doi: 10.1038/leu.2011.32. Epub Mar. 18, 2011.
Whitesides, “Soft lithography in biology and biochemistry”, Annual Review of Biomedical Engineering, 3:335-373 (2001).
Williams et al., Amplification of complex gene libraries by emulsion PCR, Nature Methods 3(7):545-550 (2006).
Wiseman, R.W. et al. “Major histocompatibility complex genotyping with massively parallel pyrosequencing” Nature Medicine (Oct. 11, 2009) 15(11):1322-1326.
Woo, et al. G/C-modified oligodeoxynucleotides with selective complementarity: synthesis and hybridization properties. Nucleic Acids Res. Jul. 1, 1996;24(13):2470-5.
Wood AJ, et al. Targeted genome editing across species using ZFNs and TALENs. Science. 2011;333:307.
Xia and Whitesides, Soft Lithography, Ann. Rev. Mat. Sci. 28:153-184 (1998).
Xiao, et al, “Determination of haplotypes from single DNA molecules: a method for single-molecule barcoding”, Hum Mutat., 28:913-21, 2007.
Yamamoto, et al. Chemical modification of Ce(IV)/EDTA-base artificial restriction DNA cutter for versatile manipulation of double-stranded DNA. Nucleic Acids Research. 2007; 35(7):e53.
Yan, Pu et al. “Rapid one-step construction of hairpin RNA” Biochem and Biophys Res Comm (Jun. 12, 2009) 383(4):464-468.
Zeng, et al. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal Chem. Apr. 15, 2010;82(8):3183-90. doi: 10.1021/ac902683t.
Zhang, “Combinatorial marking of cells and organelles with reconstituted fluorescent proteins”, Cell, 119:137-144 (Oct. 1, 2004).
Zhang, et al. Degradable disulfide core-cross-linked micelles as a drug delivery system prepared from vinyl functionalized nucleosides via the RAFT process. Biomacromolecules. Nov. 2008;9(11):3321-31. doi: 10.1021/bm800867n. Epub Oct. 9, 2008.
Zhang F, et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 2011;29:149-153.
Zhang. Genomics of inherited bone marrow failure and myelodysplasia. Dissertation [online]. University of Washington. 2015 [Retrieved on May 3, 2017].
Zhao, J., et al., “Preparation of hemoglobin-loaded Nano-sized particles with porous structure as oxygen carriers,” Biomaterials, vol. 28, pp. 1414-1422 (2007).
Zheng, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. Jan. 16, 2017;8:14049. doi: 10.1038/ncomms14049.
Zheng, X.Y. et al. “Haplotyping germline and cancer genomes with high-throughput linked-read sequencing” Nature Biotech (Feb. 1, 2016) 34(3):303-311.
Zhu et al. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. Accounts of Chemical Research Article ASAP. DOI: 10.1021/acs.accounts.6b00370.
Zhu, et al. Synthesis and self-assembly of highly incompatible polybutadienepoly(hexafluoropropoylene oxide) diblock copolymers. Journal of Polymer Science Part B: Polymer Physics. 2005; 43(24):3685-3694.
Zimmermann et at., Microscale production of hybridomas by hypo-osmolar electrofusion. Hum⋅ Antibodies Hybridomas. Jan. 1992;3(1 ): 14-8.
Zong, et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. Dec. 21, 2012;338(6114):1622-6. doi: 10.1126/science.1229164.
Co-pending U.S. Appl. No. 15/831,847, filed Dec. 5, 2017.
Hamilton, A.J. “microRNA in erythrocytes” Biochem. Soc. Trans. (2010) 38, 229-231.
MiRNA (http://www.exiqon.com/what-are-microRNAs) accessed Oct. 19, 2017.
Orakdogen, N. “Novel responsive poly(N,N-dimethylaminoethyl methacrylate) gel beads: preparation, mechanical properties and pH-dependent swelling behavior” J Polym Res (2012) 19:9914.
“Portable Water Filters” (http://www.portablewaterfilters.org/water-filter-guide/particle-contaminant-size-chart-microns/) 2015, accessed Oct. 19, 2017.
Agasti, et al. Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells. J Amer Chem Soc ePub, Nov. 2, 2012, vol. 134, No. 45, pp. 18499-18502.
Anonymous: “TCEP=HCI” Thermo Scientific, Dec. 31, 2013 (Dec. 31, 2013), XP055508461, Retrieved from the Internet: URL:https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0011306_TCEP_HCI_UG.pdf.
Caruccio, et al. Nextera Technology for NGS DNA Library Preparation: Simultaneous Fragmentation and Tagging by In Vitro Transposition, Nextera Technology, 2009, 16-3, 1-3. (Year: 2009).
Co-pending U.S. Appl. No. 16/033,065, filed Jul. 11, 2018.
Co-pending U.S. Appl. No. 16/044,374, filed Jul. 24, 2018.
Co-pending U.S. Appl. No. 16/107,685, filed Aug. 21, 2018.
Co-pending U.S. Appl. No. 16/138,448, filed Sep. 21, 2018.
Co-pending U.S. Appl. No. 16/144,832, filed Sep. 27, 2018.
Co-pending U.S. Appl. No. 16/160,576, filed Oct. 15, 2018.
Co-pending U.S. Appl. No. 16/160,719, filed Oct. 15, 2018.
Co-pending U.S. Appl. No. 16/165,389, filed Oct. 19, 2018.
Co-pending U.S. Appl. No. 16/170,980, filed Oct. 25, 2018.
Co-pending U.S. Appl. No. 16/196,684, filed Nov. 20, 2018.
Co-pending U.S. Appl. No. 16/206,168, filed Nov. 30, 2018.
Co-pending U.S. Appl. No. 16/212,441, filed Dec. 6, 2018.
Co-pending U.S. Appl. No. 16/228,362, filed Dec. 20, 2018.
Co-pending U.S. Appl. No. 16/231,142, filed Dec. 21, 2018.
Co-pending U.S. Appl. No. 16/231,185, filed Dec. 21, 2018.
Delehanty, et al. Peptides for specific intracellular delivery and targeting of nanoparticles: implications for developing nanoparticle-mediated drug delivery. Ther Deliv. Sep. 2010;1(3):411-33.
Epicentre., “EZ-Tn5TM Custom Transposome Construction Kits”, http://www.epicentre.com, pp. 1-17, 2012.
Gao et al., Toehold of dsDNA Exchange Affects the Hydrogel Swelling Kinetic of a Polymer-dsDNA Hybrid Hydrogel, Royal Soc. Chem. 7:1741-1746 (Dec. 20, 2010).
Greenleaf, et al. Assaying the epigenome in limited number of cells. Methods. Jan. 15, 2015;72:51-6. doi: 10.1016/j.ymeth.2014.10.010. Epub Oct. 22, 2014.
“How many species of bacteria are there” (wisegeek.com; accessed Jan. 21, 2014).
Hu et al., Shape Controllable Microgel Particles Prepared by Microfluidic Combining External Crosslinking, Biomicrofluidics 6:26502 (May 18, 2012).
Jin, et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature. Dec. 3, 2015;528(7580):142-6. doi: 10.1038/nature15740.
Lebedev, A. et al. “Hot Start PCR with heat-activatable primers: a novel approach for improved PCR performance” NAR (2008) 36(20):E131-1.
“List of sequenced bacterial genomes” (Wikipedia.com; accessed Jan. 24, 2014).
Margulies 2005 Supplementary methods (Year: 2005).
McGinnis, et al. MULTI-seq: Scalable sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. bioRxiv 387241; doi: https://doi.org/10.1101/387241.
“Meyer, et al., From micrograms to picograms: quantitative PCR reduces the material demands of high-throughput sequencing, Nucleic Acids Research, 2008, vol. 36, No. 1, 6 pages”.
Savva, et al. The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature. Feb. 9, 1995;373(6514):487-93.
Thaxton, C.S. et al. “A Bio-Bar-Code Assay Based Upon Dithiothreitol Oligonucleotide Release” Anal Chem (2005) 77:8174-8178.
Ullal et al. Cancer Cell Profiling by Barcoding Allows Multiplexed Protein Analysis in Fine-Needle Aspirates. Sci Transl Med. Jan. 15, 2014; 6(219): 219ra9.
Zhang, et al. Reconstruction of DNA sequencing by hybridization. Bioinformatics. Jan. 2003;19(1):14-21.
Anonymous: “Three Ways to Get Intimate with Epigenetic Marks”. Oct. 24, 2012. Retrieved from Internet: https://epigenie.com/three-ways-to-get-intimate-with-epigenetic-marks/.
Co-pending U.S. Appl. No. 16/180,356, filed Nov. 5, 2018.
Co-pending U.S. Appl. No. 16/180,378, filed Nov. 5, 2018.
Co-pending U.S. Appl. No. 16/228,261, filed Dec. 20, 2018.
Co-pending U.S. Appl. No. 16/230,936, filed Dec. 21, 2018.
Co-pending U.S. Appl. No. 16/242,962, filed Jan. 8, 2019.
Co-pending U.S. Appl. No. 16/246,322, filed Jan. 11, 2019.
Co-pending U.S. Appl. No. 16/249,688, filed Jan. 16, 2019.
Meyer, et al. Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Res. 2007;35(15):e97.
Related Publications (1)
Number Date Country
20170348691 A1 Dec 2017 US
Provisional Applications (1)
Number Date Country
61977804 Apr 2014 US
Continuations (1)
Number Date Country
Parent 14682952 Apr 2015 US
Child 15596754 US