Fluidic system for a flow cytometer

Information

  • Patent Grant
  • 8187888
  • Patent Number
    8,187,888
  • Date Filed
    Friday, July 8, 2011
    12 years ago
  • Date Issued
    Tuesday, May 29, 2012
    12 years ago
Abstract
The fluidic system of the preferred embodiment includes a sheath pump to pump sheath fluid from a sheath container into an interrogation zone and a waste pump to pump waste fluid from the interrogation zone into a waste container. The sheath pump and/or the waste pump draw sample fluid from a sample container into the interrogation zone. The fluidic system also includes a controller to adjust the flow rate of the sample fluid from the sample container into the interrogation zone. The fluidic system is preferably incorporated into a flow cytometer with a flow cell that includes the interrogation zone.
Description
TECHNICAL FIELD

This invention relates generally to the flow cytometer field, and more specifically to an improved fluidic system in the flow cytometer field.


BACKGROUND

The fluidic system of a conventional flow cytometer incorporates an air and/or vacuum pump to pressurize and pump sheath fluid from a high-pressure container to the interrogation zone of a flow cell. These fluidic systems are typically arduous to assemble (which increases the costs of the flow cytometer), heavy to haul (which limits the repair options), and challenging to calibrate (which induces errors in the data). Thus, there is a need in the flow cytometer field to create an improved fluidic system. This invention provides such improved fluidic system for a flow cytometer.





BRIEF DESCRIPTION OF THE FIGURE


FIG. 1 is a schematic representation of the fluidic system of the preferred embodiment of the invention; and



FIGS. 2 and 3 are variations of the fluidic capacitors.





DESCRIPTION OF THE PREFERRED EMBODIMENT

The following description of the preferred embodiment of the invention is not intended to limit the invention to this preferred embodiment, but rather to enable any person skilled in the art of flow cytometers to make and use this invention.


As shown in FIG. 1, the fluidic system 10 of the preferred embodiment includes a sheath pump 12 to pump sheath fluid 14 from a sheath container 16 into an interrogation zone 18 and a waste pump 20 to pump the sheath fluid 14 and a sample fluid 26 as waste fluid 22 from the interrogation zone 18 into a waste container 24. The sheath pump 12 and/or the waste pump 20 draw sample fluid 26 from a sample container 28 into the interrogation zone 18. The fluidic system 10 also includes a controller 30 to adjust the flow rate of the sample fluid 26 from the sample container 28 into the interrogation zone 18. The interrogation zone 18 functions to provide a location for the fluidic system 10 and an optical system of the flow cytometer to cooperatively facilitate the analysis of the sample fluid 26. The interrogation zone 18 is preferably enclosed within a removable flow cell 32, but may alternatively be defined by any suitable system or device. The fluidic system 10 is preferably incorporated into a flow cytometer, but may be alternatively incorporated into any suitable system that pumps a first fluid from a first container into an interrogation zone, draws a second fluid from a second container into the interrogation zone, and pumps the combined fluids from the interrogation zone into a third container.


The sheath pump 12 of the preferred embodiment functions to pump sheath fluid 14 from a sheath container 16 into an interrogation zone 18. The sheath fluid 14 functions to hydrodynamically focus the sample fluid 26. The process of hydrodynamic focusing results in laminar flow of the sample fluid 26 within the flow cell 32 and enables the optical system to illuminate, and thus analyze, the particles within the sample fluid 26 with uniformity and repeatability. Preferably, the sheath fluid 14 is buffered saline or de-ionized water, but the sheath fluid 14 may alternatively be any suitable fluid to hydrodynamically focus the sample fluid 26. The sheath container 16 functions to contain the sheath fluid 14. The sheath container 16 is preferably a vented tank with a volume of approximately 1 L, but the sheath tank may alternatively be any suitable container to contain the sheath fluid 14. Preferably, the sheath pump 12 is a positive displacement pump. More preferably, the sheath pump 12 is a peristaltic pump with a flexible tube and one or more cams that pump the sheath fluid 14 through the flexible tube. The sheath pump 12 preferably has a known flow rate to pump speed ratio, such that control of the speed of the sheath pump 12 corresponds to a control of the flow rate of the sheath fluid 14. With this pump type, the fluidic system 10 is relatively easy to assemble, light to haul, quick to control, and easy to clean. Alternatively, the sheath pump 12 may be any suitable pump that pumps sheath fluid 14 from a sheath container 16 into an interrogation zone 18.


The waste pump 20 of the preferred embodiment functions to pump the waste fluid 22 from the interrogation zone 18 into a waste container 24. Preferably, the waste fluid 22 includes the sheath fluid 14 and the sample fluid 26. Alternatively, the waste fluid 22 may include any fluid that exits the interrogation zone 18. The waste container 24 is preferably a vented tank with a volume of approximately 1 L, but the waste tank may alternatively be any suitable container to contain the waste fluid 22. Like the sheath pump 12, the waste pump 20 is preferably a positive displacement pump and more preferably a peristaltic pump with a flexible tube and one or more cams that pump the waste fluid 22 through the flexible tube. The waste pump 20 preferably has a known flow rate to pump speed ratio, such that control of the speed of the waste pump 20 corresponds to a control of the flow rate of the waste fluid 22. With this pump type, the fluidic system 10 is relatively easy to assemble, light to haul, quick to control, and easy to clean. Alternatively, the waste pump 20 may be any suitable pump that pumps waste fluid 22 from a waste container 24 into an interrogation zone 18.


The sheath pump 12 and the waste pump 20 of the preferred embodiment cooperate to draw the sample fluid 26 from the sample container 28 and through a drawtube 34. The sample fluid 26 contains particles to be analyzed by the flow cytometer. The sample fluid 26 is preferably blood, but the sample fluid 26 may alternatively be any suitable fluid to be analyzed by the flow cytometer. The sample container 28, which functions to contain the sample fluid 26, is preferably an open beaker with a volume of approximately 5 mL, but may alternatively be any suitable container to contain the sample fluid 26. The drawtube 34, functions to convey the sample fluid 26 from the sample container 28 into the interrogation zone 18, is a conventional drawtube, but may alternatively be any suitable device to convey the sample fluid 26.


The sheath pump 12 and the waste pump 20 preferably cooperate to draw the sample fluid 26 from the sample container 28 into the interrogation zone 18 through the use of a pressure differential (e.g., the sheath pump 12 “pushes” the sheath fluid 14 and the waste pump 20 “pulls” the sheath fluid 14 and the sample fluid 26). In order to allow a variable flow rate of the sample fluid 26, the fluidic system 10 preferably allows for a variable flow rate of the sheath fluid 14 and/or the waste fluid 22. In a first variation, the sheath pump 12 and the waste pump 20 are driven by a single motor, but with a variable drive ratio device (e.g., transmission), such that the sheath pump 12 and the waste pump 20 may be operated at different pump speeds and, therefore, allow for a variable flow rate of the sheath fluid 14 and/or the waste fluid 22. In a second variation, the sheath pump 12 and the waste pump 20 are driven by a single motor, but the fluidic system 10 includes at least one by-pass valve located near the sheath pump 12 and/or the waste pump 20. The by-pass valve diverts a variable amount of the fluid flow and, therefore, allows for a variable flow rate of the sheath fluid 14 and/or waste fluid 22. In a third variation, the sheath pump 12 and the waste pump 20 are driven by a single motor, but the fluidic system 10 includes at least one restrictive valve located near the sheath pump 12 and/or the waste pump 20. The restrictive valve alters the fluid flow and, therefore, allows for a variable flow rate of the sheath fluid 14 and/or waste fluid 22. In a fourth variation, the sheath pump 12 and the waste pump 20 are driven by separate motors with separate controls and, therefore, allows for a variable flow rate of the sheath fluid 14 and/or waste fluid 22. The fluidic system 10 may, however, include other suitable variations that draw the sample fluid 26 from the sample container 28 into the interrogation zone 18 through the use of a pressure differential.


The controller 30 of the preferred embodiment functions to adjust the flow rate of the sample fluid 26 from the sample container 28 into the interrogation zone 18. Preferably, the controller 30 adjusts the flow rate of the sample fluid 26 by adjusting the variable flow rate of the sheath fluid 14 and/or the waste fluid 22. More preferably, the controller 30 adjusts the flow rate of the sample fluid 26 by allowing an adjustable flow rate of the sheath fluid 14 from the sheath container 16 to the interrogation zone 18, while maintaining a consistent flow rate of the waste fluid 22 from the interrogation zone 18 into the waste container 24. The advantage of this arrangement is a finer control of the flow rate of the sample fluid 26. Alternatively, the controller 30 may adjust the flow rate of waste fluid 22 while maintaining the flow rate of the sheath fluid 14, or may simultaneously adjust the flow rates of the sheath fluid 14 and the waste fluid 22. Furthermore, the controller 30 may employ one technique (such as allowing an adjustable flow rate of the sheath fluid 14, while maintaining a consistent flow rate of the waste fluid 22) in most situations, and may employ another technique (such as simultaneously adjusting the flow rates of the sheath fluid 14 and the waste fluid 22) in other situations to quickly response to a user input. The controller 30 is preferably a proportional-integral-derivative (PID) controller, but may alternatively be a proportional-integral (PI) controller, a proportional-derivative (PD) controller, a proportional (P) controller, or any other suitable controller.


The fluidic system 10 of the preferred embodiment also includes a pressure sensor 36 that functions to measure a pressure of the sheath fluid 14 as close as possible to the inlet for the sample fluid 26. This measured pressure is an adequate estimate for the pressure of the sample fluid 26. The pressure sensor 36 preferably measures a pressure differential between the top of the drawtube 34 near the flow cell 32 and the bottom of the drawtube 34 near the sample container 28, but may alternatively measure a pressure differential between the drawtube 34 and atmosphere. The controller 30 is preferably connected to the pressure sensor 36 and adjusts the flow rate of the sample fluid 26 based on the measured pressure. The controller 30 may alternatively or additionally be connected to other suitable devices to assist in the control of the flow rate of the sample fluid 26. In a first variation, the fluidic system 10 may include a flow meter 46 that functions to measure the flow rate of the sample fluid 26 from the sample container 28 into the interrogation zone 18. In a second variation, the fluidic system 10 may include an input device 48 that functions to receive information related to a fluidic resistance of a drawtube 34 that transports the sample fluid 26 from the sample container 28 into the interrogation zone 18. The input device 48 is preferably an optical device (e.g., a bar code scanner) or an electromagnetic device (e.g., a RFID receiver) that functions to automatically scan and read a code on the drawtube 34. The code is preferably cross-referenced with empirically derived information regarding the fluidic resistance of the drawtube 34. The input device 48 may alternatively be a user-interface device that accepts a code or value related to the fluidic resistance of the drawtube 34. In a third variation, the fluidic system 10 may be substantially self-calibrating according to the following steps: the user places a drawtube 34 of the flow cell 32 into a known fluid (such as buffered saline), the user pumps waste fluid 22 from the interrogation zone 18 into a waste container 24 while maintaining a negligible flow rate of the sheath fluid 14 thereby drawing the known fluid through the drawtube 34 and into the interrogation zone 18, and the fluidic system 10 (through measurement of the flow rate of the waste fluid 22 or any other suitable parameter) estimates the resistance of the drawtube 34. With this estimated resistance of the drawtube 34 for the flow cell 32 combined with the measured pressure of the sheath fluid 14, the controller 30 adjusts the flow rate of the sample fluid 26 with greater accuracy and control.


The fluidic system 10 of the preferred embodiment also includes a first fluidic capacitor 38 located between the sheath container 16 and the interrogation zone 18 and a second fluidic capacitor 40 located between the interrogation zone 18 and the waste container 24. The fluidic capacitors 38 and 40 function to attenuate pulsations within the fluidic system 10. More specifically, the first fluidic capacitor 38 functions to temporarily expand/contract to thereby accumulate/release the sheath fluid 14 and attenuate pulsations within the sheath fluid 14. Similarly, the second fluidic capacitor 40 functions to temporarily expand/contract to thereby accumulate/release the waste fluid 22 and attenuate pulsations within the waste fluid 22. The fluidic capacitors 38 and 40 are selected from the group consisting of bellows-type 41 with a diaphragm, bellows-type 41 without a diaphragm, captive ball-type, and flexible tube-type 43. The fluidic capacitors 38 and 40 are preferably similar to the fluidic attenuators described in U.S. patent application Ser. No. 11/297,667 entitled “Pulsation Attenuator For A Fluidic System” and filed 07 Dec. 2005, which is hereby incorporated in its entirety by this reference. The fluidic capacitors 38 and 40 may, however, be any suitable device to attenuate pulsations within the fluidic system 10.


The fluidic system 10 of the preferred embodiment also includes a valve 42 located between the first fluidic capacitor and the interrogation zone 18, and a valve 44 located between the interrogation zone 18 and the second fluidic capacitor. The valves 42 and 44 function to facilitate the control of the sheath fluid 14 and the waste fluid 22. The valves 42 and 44 are preferably check-valves, but may alternatively be any suitable valve to facilitate the control of the sheath fluid 14 and the waste fluid 22.


The fluidic system 10 of the preferred embodiment is preferably operated with the following steps: (1) pumping sheath fluid 14 from a sheath container 16 into an interrogation zone 18 and pumping the sheath fluid 14 and the sample fluid 26 as waste fluid 22 from the interrogation zone 18 into a waste container 24, thereby drawing sample fluid 26 from a sample container 28 into the interrogation zone 18; and (2) adjusting the flow rate of the sample fluid 26 from the sample container 28 into the interrogation zone 18. As explained above, step (2) preferably includes allowing a substantially adjustable flow rate of the sheath fluid 14 from the sheath container 16 to the interrogation zone 18, while maintaining a substantially consistent flow rate of the waste fluid 22 from the interrogation zone 18 into the waste container 24. The operation of the fluidic system 10 also preferably includes attenuating pulsations within the sheath fluid 14 and the waste fluid 22.


As a person skilled in the art of flow cytometers will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiment of the invention without departing from the scope of this invention defined in the following claims.

Claims
  • 1. A fluidic system for pumping sheath fluid from a sheath container and sample fluid from a sample container into an interrogation zone of a flow cytometer, comprising: a sheath pump that pumps sheath fluid from the sheath container into the interrogation zone of the flow cytometer;a waste pump that pumps waste fluid from the interrogation zone into a waste container, wherein the sheath pump and the waste pump cooperate to draw sample fluid from the sample container into the interrogation zone;a first fluidic capacitor, located between the sheath pump and the interrogation zone, that temporarily expands and accumulates sheath fluid to attenuate pulsations within the sheath fluid;a second fluidic capacitor located between the interrogation zone and the waste container and that temporarily expands and accumulates the waste fluid to attenuate pulsations within the waste fluid;a drawtube, coupled to the sample container, that conveys the sample fluid from the sample container to the interrogation zone;a pressure sensor that measures a pressure differential of the sample fluid between the top of the drawtube and the bottom of the drawtube; anda controller, coupled to the pressure sensor, that adjusts the flow rate of the sample fluid from the sample container into the interrogation zone by controlling at least one of the flow rates of the sheath fluid and the waste fluid.
  • 2. The fluidic system of claim 1, wherein the controller adjusts the flow rate of the sample fluid based on the measured pressure differential.
  • 3. The fluidic system of claim 1, further comprising a motor with motor controls coupled to at least one of the sheath and waste pumps, wherein the controller is coupled to the motor controls.
  • 4. The fluidic system of claim 3, further comprising a second motor with second motor controls, wherein the first motor with first motor controls is coupled to the sheath pump and the second motor with second motor controls is coupled to the waste pump, and wherein the controller is coupled to the first and second motor controls.
  • 5. The fluidic system of claim 3, wherein the controller adjusts the flow rate of the sample fluid by adjusting the flow rate of the sheath fluid from the sheath container into the interrogation zone.
  • 6. The fluidic system of claim 5, wherein the controller adjusts the flow rate of the sample fluid by adjusting the flow rate of the sheath fluid from the sheath container to the interrogation zone while simultaneously maintaining a substantially consistent flow rate of the waste fluid from the interrogation zone into the waste container.
  • 7. The fluidic system of claim 6, wherein the controller is a proportional-integral-derivative (PID) controller.
  • 8. The fluidic system of claim 1, wherein the first fluidic capacitor is selected from the group consisting of bellows-type and flexible tube-type.
  • 9. The fluidic system of claim 1, wherein the second fluidic capacitor is selected from the group consisting of bellows-type and flexible tube-type.
  • 10. The fluidic system of claim 1, further comprising a first check-valve located between the first fluidic capacitor and the interrogation zone and a second check-valve located between the interrogation zone and the second fluidic capacitor.
  • 11. The fluidic system of claim 1, wherein the sheath pump is a peristaltic pump.
  • 12. The fluidic system of claim 11, wherein the waste pump is a peristaltic pump.
  • 13. The fluidic system of claim 1, wherein the waste pump is located relative to the interrogation zone such that the waste pump is configured to pump a combination of sample fluid and sheath fluid.
  • 14. The fluidic system of claim 1, wherein the sheath pump and waste pump cooperate to create a fluidic pressure differential.
  • 15. The fluidic system of claim 1, further comprising a flow meter that measures the flow rate of the sample fluid from the sample container into the interrogation zone, wherein the controller is coupled to the flow meter and adjusts the flow rate of the sample fluid based on the measured flow rate.
  • 16. A method for pumping sheath fluid from a sheath container and sample fluid from a sample container into an interrogation zone of a flow cytometer, comprising the steps of: simultaneously pumping sheath fluid from the sheath container into the interrogation zone of the flow cytometer and pumping waste fluid from the interrogation zone into the waste container, wherein the flow rate of the sheath fluid is different from the flow rate of the waste fluid thereby drawing sample fluid through a drawtube coupled to the sample container;measuring, with a pressure sensor, a pressure differential of the sample fluid between the top of the drawtube and the bottom of the drawtube; andattenuating pulsations within the sheath fluid between the sheath pump and the interrogation zone;attenuating pulsations within the waste fluid between the interrogation zone and the waste pump;adjusting the flow rate of the sample fluid from the sample container into the interrogation zone based on the measured pressure differential, wherein adjusting the flow rate of the sample fluid includes adjusting at least one of the flow rate of the sheath fluid from the sheath container into the interrogation zone and the flow rate of the waste fluid from the interrogation zone into the waste container.
  • 17. The method of claim 16, wherein adjusting the flow rate of the sample fluid from the sample container includes adjusting the flow rate of the sheath fluid from the sheath container into the interrogation zone.
  • 18. The method of claim 17, wherein adjusting the flow rate of the sample fluid from the sample container includes adjusting the flow rate of the sheath fluid from the sheath container to the interrogation zone while simultaneously maintaining a substantially consistent flow rate of the waste fluid from the interrogation zone into the waste container.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of prior application Ser. No. 11/370,714, filed 08 Mar. 2006, which is incorporated in its entirety by this reference.

US Referenced Citations (214)
Number Name Date Kind
3347273 Russell Oct 1967 A
3601128 Hakim Aug 1971 A
3672402 Bloemer Jun 1972 A
4112735 McKnight Sep 1978 A
4138879 Liebermann Feb 1979 A
4371786 Kramer Feb 1983 A
4448538 Mantel May 1984 A
4559454 Kramer Dec 1985 A
4570639 Miodownik Feb 1986 A
4691829 Auer Sep 1987 A
4755021 Dyott Jul 1988 A
4790653 North, Jr. Dec 1988 A
4818103 Thomas et al. Apr 1989 A
4824641 Williams Apr 1989 A
4826660 Smith et al. May 1989 A
4844610 North, Jr. Jul 1989 A
4933813 Berger Jun 1990 A
5028127 Spitzberg Jul 1991 A
5040890 North, Jr. Aug 1991 A
5043706 Oliver Aug 1991 A
5083862 Rusnak Jan 1992 A
5138868 Long Aug 1992 A
5139609 Fields et al. Aug 1992 A
5150037 Kouzuki Sep 1992 A
5150313 Van Den et al. Sep 1992 A
5155543 Hirako Oct 1992 A
5204884 Leary et al. Apr 1993 A
5224058 Mickaels et al. Jun 1993 A
5230026 Ohta et al. Jul 1993 A
5270548 Steinkamp Dec 1993 A
5301685 Guirguis Apr 1994 A
5308990 Takahashi et al. May 1994 A
5367474 Auer et al. Nov 1994 A
5374395 Robinson et al. Dec 1994 A
5395588 North, Jr. et al. Mar 1995 A
5403552 Pardikes Apr 1995 A
5466946 Kleinschmitt et al. Nov 1995 A
5469375 Kosaka Nov 1995 A
5539386 Elliott Jul 1996 A
5552885 Steen Sep 1996 A
5559339 Domanik et al. Sep 1996 A
5616124 Hague et al. Apr 1997 A
5684480 Jansson Nov 1997 A
5739902 Gjelsnes et al. Apr 1998 A
5797430 Becke et al. Aug 1998 A
5798222 Goix Aug 1998 A
5804507 Perlov et al. Sep 1998 A
5883378 Irish et al. Mar 1999 A
5920388 Sandberg et al. Jul 1999 A
5960129 Kleinschmitt Sep 1999 A
5981180 Chandler et al. Nov 1999 A
6016376 Ghaemi et al. Jan 2000 A
6039078 Tamari Mar 2000 A
6067157 Altendorf May 2000 A
6070477 Mark Jun 2000 A
6091502 Weigl et al. Jul 2000 A
6097485 Lievan Aug 2000 A
6108463 Herron et al. Aug 2000 A
6110427 Uffenheime Aug 2000 A
6115065 Yadid-Pecht et al. Sep 2000 A
6139800 Chandler Oct 2000 A
6154276 Mariella, Jr. Nov 2000 A
6156208 Desjardins et al. Dec 2000 A
6181319 Fujita et al. Jan 2001 B1
6183697 Tanaka et al. Feb 2001 B1
6288783 Auad Sep 2001 B1
6377721 Walt et al. Apr 2002 B1
6382228 Cabuz et al. May 2002 B1
6403378 Phi-Wilson et al. Jun 2002 B1
6427521 Jakkula et al. Aug 2002 B2
6431950 Mayes Aug 2002 B1
6456769 Furusawa et al. Sep 2002 B1
6469787 Meyer et al. Oct 2002 B1
6473171 Buttry et al. Oct 2002 B1
6519355 Nelson Feb 2003 B2
6522775 Nelson Feb 2003 B2
6568271 Shah et al. May 2003 B2
6587203 Colon Jul 2003 B2
6602469 Maus et al. Aug 2003 B1
6636623 Nelson et al. Oct 2003 B2
6675835 Gerner et al. Jan 2004 B2
6694799 Small Feb 2004 B2
6700130 Fritz Mar 2004 B2
6710871 Goix Mar 2004 B1
6718415 Chu Apr 2004 B1
6778910 Vidal et al. Aug 2004 B1
6809804 Yount et al. Oct 2004 B1
6816257 Goix Nov 2004 B2
6825926 Turner et al. Nov 2004 B2
6852284 Holl et al. Feb 2005 B1
6859570 Walt et al. Feb 2005 B2
6869569 Kramer Mar 2005 B2
6872180 Reinhardt et al. Mar 2005 B2
6890487 Sklar et al. May 2005 B1
6897954 Bishop et al. May 2005 B2
6901964 Kippe et al. Jun 2005 B2
6908226 Siddiqui et al. Jun 2005 B2
6912904 Storm, Jr. et al. Jul 2005 B2
6936828 Saccomanno Aug 2005 B2
6941005 Lary et al. Sep 2005 B2
6944322 Johnson et al. Sep 2005 B2
7009189 Saccomanno Mar 2006 B2
7012689 Sharpe Mar 2006 B2
7019834 Sebok et al. Mar 2006 B2
7024316 Ellison et al. Apr 2006 B1
7061595 Cabuz et al. Jun 2006 B2
7075647 Christodoulou Jul 2006 B2
7105355 Kurabayashi et al. Sep 2006 B2
7106442 Silcott et al. Sep 2006 B2
7113266 Wells Sep 2006 B1
7130046 Fritz et al. Oct 2006 B2
7232687 Lary et al. Jun 2007 B2
7262838 Fritz Aug 2007 B2
7274316 Moore Sep 2007 B2
7328722 Rich Feb 2008 B2
7362432 Roth Apr 2008 B2
7403125 Rich Jul 2008 B2
7471393 Trainer Dec 2008 B2
7520300 Rich Apr 2009 B2
7628956 Jindo Dec 2009 B2
7738099 Morrell et al. Jun 2010 B2
7739060 Goebel et al. Jun 2010 B2
7776268 Rich Aug 2010 B2
7780916 Bair et al. Aug 2010 B2
7843561 Rich Nov 2010 B2
7857005 Rich et al. Dec 2010 B2
7981661 Rich Jul 2011 B2
7996188 Olson et al. Aug 2011 B2
8017402 Rich Sep 2011 B2
8031340 Rich et al. Oct 2011 B2
20010014477 Pelc et al. Aug 2001 A1
20010039053 Liseo et al. Nov 2001 A1
20020028434 Goix et al. Mar 2002 A1
20020049782 Herzenberg et al. Apr 2002 A1
20020059959 Qatu et al. May 2002 A1
20020080341 Kosaka Jun 2002 A1
20020123154 Burshteyn Sep 2002 A1
20020192113 Uffenheimer et al. Dec 2002 A1
20030035168 Qian et al. Feb 2003 A1
20030048539 Oostman et al. Mar 2003 A1
20030054558 Kurabayashi Mar 2003 A1
20030062314 Davidson et al. Apr 2003 A1
20030072549 Facer et al. Apr 2003 A1
20030078703 Potts et al. Apr 2003 A1
20030129090 Farrell Jul 2003 A1
20030134330 Ravkin et al. Jul 2003 A1
20030148379 Roitman et al. Aug 2003 A1
20030175157 Micklash, II et al. Sep 2003 A1
20030202175 Van den Engh et al. Oct 2003 A1
20030211009 Buchanan Nov 2003 A1
20030223061 Sebok Dec 2003 A1
20030235919 Chandler Dec 2003 A1
20040031521 Vrane et al. Feb 2004 A1
20040048362 Trulson et al. Mar 2004 A1
20040112808 Takagi et al. Jun 2004 A1
20040119974 Bishop et al. Jun 2004 A1
20040123645 Storm, Jr. et al. Jul 2004 A1
20040131322 Ye et al. Jul 2004 A1
20040143423 Parks et al. Jul 2004 A1
20040175837 Bonne et al. Sep 2004 A1
20040201845 Quist et al. Oct 2004 A1
20040246476 Bevis et al. Dec 2004 A1
20050044110 Herzenberg et al. Feb 2005 A1
20050047292 Park et al. Mar 2005 A1
20050057749 Dietz et al. Mar 2005 A1
20050069454 Bell Mar 2005 A1
20050073686 Roth et al. Apr 2005 A1
20050078299 Fritz et al. Apr 2005 A1
20050105091 Lieberman et al. May 2005 A1
20050162648 Auer et al. Jul 2005 A1
20050163663 Martino et al. Jul 2005 A1
20050195605 Saccomanno et al. Sep 2005 A1
20050195684 Mayer Sep 2005 A1
20050252574 Khan et al. Nov 2005 A1
20060002634 Riley et al. Jan 2006 A1
20060015291 Parks et al. Jan 2006 A1
20060023219 Meyer et al. Feb 2006 A1
20060161057 Weber et al. Jul 2006 A1
20060177937 Kurabayashi et al. Aug 2006 A1
20060219873 Martin et al. Oct 2006 A1
20060281143 Liu et al. Dec 2006 A1
20060286549 Sohn et al. Dec 2006 A1
20070003434 Padmanabhan et al. Jan 2007 A1
20070041013 Fritz et al. Feb 2007 A1
20070096039 Kapoor et al. May 2007 A1
20070124089 Jochum et al. May 2007 A1
20070127863 Bair et al. Jun 2007 A1
20070144277 Padmanabhan et al. Jun 2007 A1
20070212262 Rich Sep 2007 A1
20070224684 Olson et al. Sep 2007 A1
20070243106 Rich Oct 2007 A1
20080055595 Olson et al. Mar 2008 A1
20080064113 Goix et al. Mar 2008 A1
20080092961 Bair et al. Apr 2008 A1
20080152542 Ball et al. Jun 2008 A1
20080215297 Goebel et al. Sep 2008 A1
20080228444 Olson et al. Sep 2008 A1
20090104075 Rich Apr 2009 A1
20090174881 Rich Jul 2009 A1
20090201501 Bair et al. Aug 2009 A1
20090202130 George et al. Aug 2009 A1
20090216478 Estevez-Labori Aug 2009 A1
20090260701 Rich et al. Oct 2009 A1
20090293910 Ball et al. Dec 2009 A1
20100012853 Parks et al. Jan 2010 A1
20100032584 Dayong et al. Feb 2010 A1
20100118298 Bair et al. May 2010 A1
20100119298 Huang May 2010 A1
20100302536 Ball et al. Dec 2010 A1
20100319469 Rich Dec 2010 A1
20100319786 Bair et al. Dec 2010 A1
20110008816 Ball et al. Jan 2011 A1
20110058163 Rich Mar 2011 A1
20110061471 Rich et al. Mar 2011 A1
Foreign Referenced Citations (25)
Number Date Country
466490 Jan 1992 EP
1391611 Feb 2004 EP
1396736 Mar 2004 EP
1521076 Apr 2005 EP
356169978 Dec 1981 JP
04086546 Mar 1992 JP
6-194299 Jul 1994 JP
06221988 Dec 1994 JP
08201267 Aug 1996 JP
09288053 Nov 1997 JP
10227737 Aug 1998 JP
2001050887 Feb 2001 JP
9956052 Nov 1999 WO
0194914 Dec 2001 WO
2005017499 Feb 2005 WO
2005068971 Jul 2005 WO
2005073694 Aug 2005 WO
2005091893 Oct 2005 WO
2006055722 May 2006 WO
2007067577 Jun 2007 WO
2007100723 Sep 2007 WO
2007103969 Sep 2007 WO
2007136749 Nov 2007 WO
2008058217 May 2008 WO
2010101623 Sep 2010 WO
Related Publications (1)
Number Date Country
20110306031 A1 Dec 2011 US
Continuations (1)
Number Date Country
Parent 11370714 Mar 2006 US
Child 13178776 US