The present invention relates generally to microfluidic systems, and more specifically, to systems and methods for controlling light interaction with microfluidic devices.
Optical analysis of fluids plays an important role in fields such as chemistry, microbiology and biochemistry. These fluids may include liquids or gases and may provide reagents, solvents, reactants, or rinses to chemical or biological processes. While various microfluidic methods and devices, such as microfluidic assays, can provide inexpensive, sensitive and accurate analytical platforms, carrying out accurate optical measurements (e.g., absorbance or transmission) on a microfluidic system can be challenging. Optical measurements of microchannels may require, for example, time-consuming alignment procedures. In addition, optical noise produced by light incident upon areas outside the channels may degrade the quality of the detected signal through the channels. Accordingly, advances in the field that could reduce costs, simplify use, and/or improve optical detection in microfluidic systems would be beneficial.
Systems and methods for controlling light interaction with microfluidic devices are provided. The subject matter of the present invention involves, in some cases, interrelated products, alternative solutions to a particular problem, and/or a plurality of different uses of one or more systems and/or articles.
In one set of embodiments, a series of fluidic devices are provided. In one particular embodiment, a fluidic device comprises an article including first and second opposing sides and first and second microfluidic channel segments, each integral to the first side of the article. The fluidic device also includes an intervening portion positioned substantially between the first and second microfluidic channel segments, and a first optical element integral to the second side of the article and positioned substantially between the first and second channel segments, and opposite the intervening portion. The first optical element is adapted and arranged such that when a portion of the article is exposed to light at a first intensity, the first optical element redirects at least a portion of the light away from the intervening portion, such that the intervening portion is not exposed to the light or is exposed to the light at a second intensity lower than an intensity of the light at the intervening portion absent the first optical element.
In another embodiment, a fluidic device comprises an article comprising first and second sides, a first microfluidic channel segment integral to the first side of the article, and first and second optical elements, each integral to the second side of the article, wherein the first microfluidic channel segment is positioned substantially between the first and second optical elements. A cover is positioned over the first microfluidic channel segment so as to substantially enclose the first microfluidic channel segment. Furthermore, an intervening surface portion at the second side of the article is positioned substantially between the first and second optical elements, the intervening surface portion being substantially parallel to a surface portion of the cover that substantially encloses the first microfluidic channel segment.
In another embodiment, a fluidic device comprises an article comprising first and second sides, and first and second microfluidic channel segments, each integral to the first side of the article. The fluidic device also includes a first substantially triangular optical element integral to the second side of the article and positioned substantially between the first and second channel segments.
In some instances, the first and/or second microfluidic channel segments described above and herein are sections of a microfluidic channel comprising a meandering configuration including multiple turns, each turn of the meandering channel being a different channel segment.
Other advantages and novel features of the present invention will become apparent from the following detailed description of various non-limiting embodiments of the invention when considered in conjunction with the accompanying figures. In cases where the present specification and a document incorporated by reference include conflicting and/or inconsistent disclosure, the present specification shall control. If two or more documents incorporated by reference include conflicting and/or inconsistent disclosure with respect to each other, then the document having the later effective date shall control.
Non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying figures, which are schematic and are not intended to be drawn to scale. In the figures, each identical or nearly identical component illustrated is typically represented by a single numeral. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention. In the figures:
Systems and methods for improved measurement of absorbance/transmission through fluidic systems are described. Specifically, in one set of embodiments, optical elements are fabricated on one side of a transparent fluidic device opposite a series of fluidic channels. The optical elements may guide incident light passing through the device such that most of the light is dispersed away from specific areas of the device, such as intervening portions between the fluidic channels. By decreasing the amount of light incident upon these intervening portions, the amount of noise in the detection signal can be decreased when using certain optical detection systems. In some embodiments, the optical elements comprise triangular grooves formed on or in a surface of the device. The draft angle of the triangular grooves may be chosen such that incident light normal to the surface of the device is redirected at an angle dependent upon the indices of refraction of the external medium (e.g., air) and the device material.
Advantageously, certain optical elements described herein may be fabricated along with the fluidic channels of the device in one step, thereby reducing the costs of fabrication. Furthermore, in some cases the optical elements do not require alignment with a detector and, therefore, facilitate assembly and/or use by an end user. Other advantages are described in more detail below.
Additional techniques may be employed to reduce the amount of stray light transmitted through the fluidic device. For example, in some instances, the widths of the intervening portions between the channel segments may be reduced. Also, the light source may be arranged such that light is emitted only over portions of the device that lie above the channel segments. Both of these techniques may reduce the amount of light transmitted through the intervening portions, thus improving the quality of the optical image. In some embodiments, the fluidic device may include a detector array arranged such that the areas of the array under the channel segments are sensitive to light, while the other areas of the array are not.
The systems and methods described herein may find application in a variety of fields. In some cases, the systems and methods can be used to improve the optical performance of any microfluidic system such as, for example, microfluidic point-of-care diagnostic platforms, microfluidic laboratory chemical analysis systems, optical monitoring systems in cell cultures or bio-reactors, among others. Optical measurements in microfluidic systems may be used to monitor any suitable chemical and/or biological reaction as it takes place, diagnostic or otherwise. As a specific example, an optical measurement step can be used during DNA synthesis to verify the yield of each base addition (e.g., optical trityl monitoring) and during some forms of PCR amplification to monitor the process.
Previous systems, such as those described in International Patent Publication No. WO2006/113727 (International Patent Application Serial No. PCT/US2006/014583), filed Apr. 19, 2006 and entitled “Fluidic Structures Including Meandering and Wide Channels,” have made use of a meandering microchannel to image a two-dimensional space. For example, a microfluidic channel may be in the form of a tight “S” shape having multiple channel segments, forming an area of about 2 mm, e.g., a “measurement area” including both channel and non-channel regions. In certain embodiments, this measurement area does not require fine alignment for optical measurements (unlike a single straight channel) and forms a measurement area which can be easily interrogated optically. For instance, a detector may be positioned over all or a portion of the measurement area made up of channel and non-channel regions. One limitation of the use of meandering structures in the context of transmission measurement, though, is that some of the light shining through these measurement areas will pass through the intervening portions between the microfluidic channel segments (that is, the non-channel regions). This light may reach the optical detector without reflecting changes in the optical density of the contents of the microchannel. This “stray light” can reduce the overall performance of the optical detection. This effect may be particularly problematic when making measurements of channels with high levels of optical density. A large amount of stray light on the detector may wash out any changes in small amounts of light passing through the microchannels.
The inventors have discovered within the context of the invention that the amount of light that passes through an intervening portion between microfluidic channels or channel segments may be reduced or substantially eliminated by fabricating, in the device, at least one optical element. The optical element may redirect at least a portion of the light away from the intervening portion, such that the intervening portion is not exposed to the light or is exposed to the light at a second intensity lower than an intensity of light to which the intervening portion would be exposed in the absence of the optical element. The incorporation of optical elements into microfluidic channel systems enhances the performance of the detection system, allowing the use of simplified optics without compromising the quality of the optical measurements.
Furthermore, the systems and methods described herein may be used to improve alignment in micro-scale optical detection systems. Certain methods for optical detection/measurements in microsystems are challenging in that they require accurate alignment of the optics with micro-scale features (e.g., microchannels). Such alignment can be performed manually (e.g., with a microscope and micrometric stage) in a labor-intensive fashion, or in an automated manner (e.g., using complex robotic positioning systems). These techniques, however, often require a skilled and attentive operator or expensive, delicate automation, making them suboptimal for certain applications. The ability of the optical elements to redirect light away from one or more intervening portions between microfluidic channel segments may eliminate or reduce the need for such complicated alignment procedures.
Additionally, the positioning of a detector over a measurement area without the need for precision is an advantage, since external (and possibly, expensive) equipment such as microscopes, lenses, and alignment stages may not be required. Instead, alignment can be performed by eye, or by low-cost methods that may not require an alignment step by the user. For example, in one embodiment, a fluidic device comprising one or more optical elements and a measurement area including both channel and non-channel regions can be placed in a simple holder (i.e., in a cavity having the same shape as the fluidic device), and the measurement area can be automatically aligned with a beam of light of the detector.
It should be noted that the systems and methods described herein may be used for guiding light in any suitable system utilizing microfabricated structures, and are not limited to microfluidic systems and/or the specific channel configurations described herein.
Additional advantages of devices including optical elements constructed to redirect light are described in more detail below.
The articles, systems, and methods described herein may be combined with those described in International Patent Publication No. WO2005/066613 (International Patent Application Serial No. PCT/US2004/043585), filed Dec. 20, 2004 and entitled “Assay Device and Method”; International Patent Publication No. WO2005/072858 (International Patent Application Serial No. PCT/US2005/003514), filed Jan. 26, 2005 and entitled “Fluid Delivery System and Method”; International Patent Publication No. WO2006/113727 (International Patent Application Serial No. PCT/US06/14583), filed Apr. 19, 2006 and entitled “Fluidic Structures Including Meandering and Wide Channels”; U.S. patent application Ser. No. 12/113,503, filed May 1, 2008 and entitled “Fluidic Connectors and Microfluidic Systems”; U.S. patent application Ser. No. 12/196,392, filed Aug. 22, 2008, entitled “Liquid containment for integrated assays”; U.S. patent application Ser. No. 12/428,372, filed Apr. 22, 2009, entitled “Flow Control in Microfluidic Systems”; U.S. Patent Apl. Ser. No. 61/263,981, filed Nov. 24, 2009, entitled “Fluid Mixing and Delivery in Microfluidic Systems”; and U.S. patent application Ser. No. 12/640,420 filed on Dec. 17, 2009 and entitled, “Improved Reagent Storage in Microfluidic Systems and Related Articles and Methods,” each of which is incorporated herein by reference in its entirety for all purposes. In addition, U.S. Provisional Patent Application Ser. No. 61/149,253, filed Feb. 2, 2009, entitled “Structures for Controlling Light Interaction with Microfluidic Devices,” is incorporated herein by reference in its entirety for all purposes.
Examples of fluidic devices and methods associated therewith are now provided.
As used herein, “first and second sides” of an article generally refers to the relative orientation of two portions of the article. First and second sides may refer to first and second surfaces of the article, or to a portion of the article that does not encompass a surface, e.g., a portion of the article that is embedded within the bulk of the article. For example, first and second microfluidic channel segments that are said to be integral to the first side of the article may be integral to a surface at the first side of the article or embedded within the article at the first side.
As shown illustratively in
In some embodiments, channel segments refer to a series of repetitive units of one or more channels; for example, each channel of an array of channels may be a channel segment. In another example, a channel includes a plurality of reaction areas positioned in series, and each channel portion associated with a distinct reaction area is a channel segment. In certain cases, channel segments are sections of a fluidic channel having a meandering configuration, each “turn” of the meandering channel being a different channel segment. As used herein, a “meandering channel” (i.e., a channel having a meandering region) includes at least a first segment that has a flow path in a first direction and a second segment that has a flow path in a second direction substantially opposite (e.g., greater than 135 degrees from) the first direction. Often, a meandering channel will include more than two alternating channel segments that extend in opposite directions. Examples of meandering channel regions are provided below.
In some embodiments, the two or more channel segments of a device are spaced apart from each other by intervening portions, i.e., non-channel portions. For instance, first side 20 includes intervening portions 27 and 29. An intervening portion may include portions of a surface of an article (e.g., surface portion 14′ of
The fluidic device illustrated in
In the set of embodiments illustrated in
The optical elements described herein may be, in some cases, substantially transparent (e.g., to visible light, infrared radiation, etc.). In other embodiments, optical elements may comprise a substantially opaque material. In some cases, optical elements may comprise one or more reflective surfaces. For example, an optical element may comprise a channel, the walls of which are coated with a reflective material such as a metal (e.g., Ni, Ag, Au, Pt) or a semi-conductor (e.g., Si, glass).
An optical element may comprise a groove, which may be open or substantially enclosed. As shown in the embodiment illustrated in
In some cases, an optical element may be a feature that protrudes from a surface of an article. For example,
An optical element may comprise, in some cases, one or more fluids (e.g., a dye). For example, in one set of embodiments, the optical element is formed as a channel (e.g., by placing a cover over surface 16 of the article) and the channel is filled with a light-absorbing fluid such as an opaque dye. Dyes of any suitable concentration may be used. In some embodiments, the concentration of the dye may be at least about 0.1 grams, at least about 0.5 grams, at least about 1 gram, at least about 5 grams, at least about 10 grams, at least about 50 grams, or at least about 100 grams of dye material per mL of solvent (e.g., water).
One or more optical elements may be constructed and arranged to redirect at least about 10%, at least about 25%, at least about 50%, at least about 75%, or at least about 90% of incident light away from an intervening portion. As light is redirected, the intervening portions are not exposed to the light or are exposed to the light at a second intensity lower than an intensity of the light at the intervening portion absent the optical elements. For example, in some cases, at least one optical element is adapted and arranged such that the intervening portions are exposed to the light at a second intensity at least about 50% lower, at least about 75% lower, or at least about 90% lower than an intensity of the light at the intervening portion absent the optical elements.
In some embodiments, one or more optical elements are adapted and arranged so as to redirect at least a portion of the light away from the center plane (e.g., 32′ and 34′ in
An example of the use of optical elements to redirect light is shown in
In some cases, one or more optical elements are adapted and arranged to redirect at least a portion of the incident light into one or more fluidic channels on the opposite side of the article. For example, as shown in
It should be understood that while much of the description and figures herein describe the positioning of optical elements at a side of an article opposite the channels, in some cases the optical elements may positioned at the same side as the channels. For instance, optical elements 32 and 34 of
The trajectory of refracted light is determined by Snell's Law:
n1 sin(β1)=n2 sin(β2) [1]
where n1 and n2 are the indices of refraction of the medium in which the light originates and is transmitted, respectively, β1 is the angle between the angle of incidence and the normal at the interface, and β2 is the angle of refraction, as outlined in
Design features that may be varied to increase the amount of light redirected away from the intervening portions include, for example, the width of the channel (W), the pitch of the optical elements (P1), the pitch of the channels (P2), the depth of the channel (D), the width of the optical elements (V), the draft angle of the optical elements (α), the thickness of the microfluidic substrate (T), the index of refraction of microfluidic substrate (n2), the index of refraction of external medium (n1), and the incident angle of light on the substrate (assume perpendicular to substrate).
For example,
The pitch of two channels is measured as the distance between a first point on a first channel and a second point on a second channel, wherein the first and second points are located in similar positions within their respective channels. In other words, the pitch is equal to the width of a channel plus the gap between that channel and the adjacent channel. For example, in
To minimize stray light, improved results are obtained in some embodiments when the pitch (P1) of the optical elements matches the pitch of the channels (P2). The width of the optical elements (V) may be chosen such that the area between the optical elements (P-V) is less than the width of the channel (W). As (P-V) decreases relative to W, the percentage of incident light that is redirected by the optical elements increases. To increase the amount of light redirected away from the intervening portions by the optical elements, the thickness of the system may be set so that light refracted by the optical elements is directed onto the channels. Since there may be multiple channels, there may be multiple preferred thicknesses for the system.
One may create a model to calculate preferred thicknesses by imagining an incident light ray (e.g., perpendicular to the article) striking the article halfway between the bottom and the edge of the optical element (see, for example, light ray 240 in
β1=90 deg.−α [2]
θ=90 deg.−α−β2=β1−β2 [3]
Using Snell's Law (Equation 1), the angle of refraction (β2) can be calculated as:
If one were to assume a draft angle (α) of 35.3°, an article refractive index (n2) of 1.57 (e.g., polystyrene), and a refractive index of air (n1) of roughly 1.0, the internal angle of refraction would be 23.4°.
Following this ray of from the center of the side of the optical element to the center of a channel, this angle can be used to calculate an intermediate measure of thickness (t):
The distance (x) from the point below the incident light and the center of a the closest channel is half the pitch minus the distance between the bottom of the optical element and the edge (V/4). The center of any additional channel is a multiple of the pitch. Note that in
This yields:
The total thickness of the substrate also includes the depth of the channels and half the depth of the triangular optical elements. Thus, a preferred thickness for a device including triangular optical elements and multiple channel segments can be calculated as:
Example 2 includes a description of experiments performed using a device designed in this manner.
It should be understood that while triangular optical elements are shown in
Light scattering or stray light may be reduced by fabricating the walls of these optical elements to be very smooth. In some embodiments, the root mean square (RMS) surface roughness may be, for example, less than about 1 μm. In other embodiments, the RMS surface roughness may be less than about 0.8 μm, less than about 0.5 μm, less than about 0.3 μm, or less than about 0.1 μm. RMS surface roughness is a term known to those skilled in the art, and may be expressed as:
where A is the surface to be examined, and |z−zm| is the local height deviation from the mean. Substantial roughness on the surface of an optical element may result in unwanted scattering or redirection of light at an undesired angle.
As described herein, optical elements may have various shapes, sizes and configurations. For example, in one set of embodiments, the largest cross-sectional dimension of an optical element is at least about 300 microns, 500 microns, 700 microns, 1 mm, 1.5 mm, 2 mm, or greater (typically, less than 1 cm). In some embodiments, the largest cross-sectional dimension of an optical element is its width. For instance, as shown in
In some cases, e.g., as illustrated in
Optical elements may, in some cases, span at least about 50%, at least about 60%, at least about 70%, at least about 80%, or at least about 90% of the length of one or more channel segments on or in the article. For example, in
In some fluidic devices described herein, one or more optical elements and/or channels have a non-zero draft angle. As known to those of ordinary skill in the art, a draft angle is the amount of taper, e.g., for molded or cast parts, perpendicular to the parting line. For example, as shown in
The draft angle of an optical element, channel, or other component may be, for example, between about 1° and about 40°, between about 1° and about 30°, between about 1° and about 20°, between about 1° and about 10°, between about 2° and about 15°, between about 3° and about 10°, or between about 3° and about 8°. For instance, the draft angle may be greater than or equal to about 1°, 2°, 3°, 4°, 5°, 6°, 7°, 8°, 9°, or 10°, 20°, 37.5°, or 40°. In some cases, it is desirable for optical elements or channels to have specific draft angles so that they are compatible with a certain detection technique.
As described herein, optical elements may be combined with a fluidic device comprising one or more meandering channels. As shown in a top view of the illustrative embodiment of
As shown in
In
In some embodiments, the optical elements described herein are integral to a surface of the article. As used herein, “integral” refers to a condition of being a single, unitary construction, as opposed to separate parts that are connected by other means. For instance, integral optical elements of article may be formed in a surface of the article. Integral optical elements may be either concave or convex relative to the surface on which they are formed. For example, optical elements 32 and 34 in
As shown in various embodiments herein, one or more optical elements may be positioned substantially between two channel segments and/or one or more channel segments may be positioned substantially between two optical elements. A first object is said to be positioned “substantially between” second and third other objects when substantially all of the first object lies between the center planes of the second and third objects. As used herein, a “center plane” of an object refers to an imaginary plane that intersects the geometric center of the cross section of the object and is substantially perpendicular to the substrate in or on which the object is positioned or formed. The term “geometric center” (or “centroid”) is given its normal meaning in the art. For example, in
In some embodiments, one or more optical elements of a device lie on a substantially different plane than one or more channels of the device. For example, in
In other embodiments, however, all or a portion of an optical element lies on the same plane as one or more channel or channel segment. For instance, an optical element may be formed in or on the same surface as the channels. In another example, an optical element is formed on a side opposite a channel, but extends such that a plane perpendicular to the surface of the article passes through both the channel and the optical element. In some cases, a line drawn between a first point on or within a first channel segment and a second point on or within a second channel segment intersects a point on or within the optical element.
Fluidic devices described herein comprising optical elements may be optionally combined with other features (e.g., certain detection systems, lenses, etc.) for reducing the amount of stray light and/or for increasing the signal to noise ratio.
In some embodiments, additional techniques may be employed that compensate for the transmission of stray light through the microfluidic device. For example, the size (e.g., width, surface area, volume) of the intervening portions in the system may be reduced, thus reducing the percentage of light incident on the intervening portions. It should be noted that while it may not be practical to eliminate the intervening portions between the channels, as discussed in International Patent Publication No. WO2006/113727, thinner intervening portions and/or wider fluidic channels may result in less stray light transmitted and, therefore, improved performance.
The effects of reducing the size of the intervening portions on the amount of transmitted stray light can be evaluated by measuring transmission or absorbance in the system when the microchannels are filled with a perfectly absorbent fluid. Transmission through such a system is calculated as:
where Io is the intensity of light transmitted with a perfectly clear (index matched) fluid in the channels, and I is the intensity of light transmitted with a perfectly absorbent fluid in the channel.
The optical density (OD) is a measure of absorbance in such a system, which is calculated as the negative log of transmission:
OD=−log(Trans) [11]
A system with a minimum amount of stray light transmissions results in a large OD. In theory, a measurement zone filled with a perfectly absorbent fluid and with no intervening portions and no stray light would have a transmission of 0% and very large OD. In practice, it is difficult to completely eliminate stray light in any system. A transmission measurement through an extremely absorbent fluid in a microwell (no walls, or even channels) might be 0.01%, yielding an OD of 4. In general, though, transmission measurements below 1% can be difficult to achieve. A reasonable range of ODs that may be achieved may be within the range of about 0 to about 2.
Assuming a perfectly absorbent fluid in the channels, the transmission through a meandering channel region (without optical elements to block or re-direct light) is simply a function of the width of the intervening portions and the width of the channel. For example, in a system with intervening portions with widths of x and channels with widths of y, the minimum transmission would be x/(x+y). In the case of a meandering channel with identical widths for all intervening portions and channels, the value of x/(x+y) is 50% (yielding a maximum OD of 0.3). Similarly, a system with channels twice the width of the intervening portions would yield a minimum transmission of 33% (a maximum OD of 0.477). There is an upper (and lower) range for the channel widths based on the flow required in the system, since an increase in width of the channel results in an increase in cross section and changes in the properties of the channels, such as a reduction in the resistance to flow. Likewise, there is a lower range at which intervening portions can be reliably fabricated (e.g., depending on the fabrication technique). Example 3 outlines a set of experiments in which the widths of the intervening portions were varied.
In some embodiments, a detection system includes measuring the light transmitted through the channel portions independently of the light transmitted through the intervening portions. For example, one may image the measurement area with a digital camera, measure the intensity of light on the pixels that correspond to the channels and discard the pixels corresponding to the channel walls or the intervening portions. Optionally, lenses may be incorporated to focus the image on the plane of the channels. Such a measurement system could potentially deliver extremely high performance (avoiding stray light) and yield maximum ODs greater than about 2, e.g., OD=2-4.
However, in some cases, including a camera/imaging system may result in a relatively high cost of the imaging device, relatively high cost of lenses, precision required in positioning and alignment, robustness to shock or environmental conditions, and implementation of software to identify which pixels are to be measured and which to be ignored. Accordingly, these factors may be weighed with their benefits and may be suitable for certain, but not all, applications.
In one embodiment, a relatively inexpensive and robust imaging system was developed for a channel system utilizing a linear image sensor. A linear image sensor is a one-dimensional array of multiple small optical detectors which can be individually measured.
Examples of linear image sensors include the Hamamatsu 59227, a 6.4 mm long array of 512, 250-micron wide pixels at 12.5 micron spacing, the Fairchild Imaging CMOS 1421, a 14.5 mm-long array of 2048, 7-micron wide pixels with 7 um center-to-center spacing, and the Panavision SVI LIS-500, a 3.9 mm long array of 500, 62.5-wide pixels with 7.8 um center-to-center spacing. Example 4 outlines the use of a linear image sensor in conjunction with the devices and methods described herein.
In some cases, the system may be designed to eliminate potential stray light before it reaches the fluidic device. For example, stray light may be eliminated by creating a light source that includes a geometry that matches the pattern of channel(s), directing light only onto the channels and away from the channel walls or intervening portions.
A variety of determination (e.g., measuring, quantifying, detecting, and qualifying) techniques may be used with devices described herein. Determination techniques may include optically-based techniques such as light transmission, light absorbance, light scattering, light reflection as well as luminescence techniques such as photoluminescence (e.g., fluorescence), chemiluminescence, bioluminescence, and/or electrochemiluminescence. Those of ordinary skill in the art know how to modify microfluidic devices in accordance with the determination technique used. For instance, for devices including chemiluminescent species used for determination, an opaque and/or dark background may be preferred. For determination using metal colloids, a transparent background may be preferred. Furthermore, any suitable detector may be used with devices described herein. For example, simplified optical detectors, as well as conventional spectrophotometers and optical readers (e.g., 96-well plate readers) can be used.
When more than one chemical and/or biological reaction (e.g., a multiplex assay) is performed on a device, the signal acquisition can be carried out by moving a detector over each analysis region. In an alternative approach, a single detector can detect signal(s) in each of the analysis regions simultaneously. In another embodiment, an analyzer can include, for example, a number of parallel optical sensors/detectors, each aligned with a analysis region and connected to the electronics of a reader. Additional examples of detectors and detection methods are described in more detail in U.S. patent application Ser. No. 12/196,392, filed Aug. 22, 2008, entitled “Liquid containment for integrated assays”, which is incorporated herein by reference.
As described herein, a meandering channel of an analysis region may be configured and arranged to align with a detector such that upon alignment, the detector can measure a single signal through more than one adjacent channel segments of the meandering channel. In some embodiments, the detector is able to detect a signal within at least a portion of the area of the meandering channel and through more than one segments of the meandering channel such that a first portion of the signal, measured from a first segment of the meandering channel, is similar to a second portion of the signal, measured from a second segment of the meandering channel. In such embodiments, because the signal is present as a part of more than one segment of the meandering channel, there is no need for precise alignment between a detector and an analysis region.
Additional examples and descriptions of detection systems are provided in the Examples section.
In some embodiments, the fluidic devices described herein include a reaction site in fluid communication with one or more channels or channel segments. For example, the fluidic device may comprise a reaction site comprising a binding partner (e.g., an antibody, antigen, etc.) associated with a surface of a channel segment. An entity in the fluid flowing in the channel segment may interact (e.g., bind, chemically react, etc.) with the binding partner, and the interaction may be optically detectable.
In one set of embodiments, a fluidic device described herein is used for performing an immunoassay. The immunoassay may be, for example, a direct immunoassay, a sandwich (e.g., 2-site) immunoassay, or a competitive immunoassay, as known to those of ordinary skill in the art. Certain devices may include a combination of one or more such immunoassays.
In one particular embodiment, a fluidic device is used for performing an immunoassay (e.g., for human IgG or PSA) and, optionally, uses sliver enhancement for signal amplification. A device described herein may have one or more similar characteristics as those described in U.S. patent application Ser. No. 12/113,503, filed May 1, 2008 and entitled “Fluidic Connectors and Microfluidic Systems”, which is incorporated herein by reference. In such an immunoassay, after delivery of a sample containing human IgG to a reaction area or analysis region, binding between the human IgG and anti-human IgG can take place. One or more reagents, which may be optionally stored in the device prior to use, can then flow over this binding pair complex. One of the stored reagents may include a solution of metal colloid (e.g., a gold conjugated antibody) that specifically binds to the antigen to be detected (e.g., human IgG). This metal colloid can provide a catalytic surface for the deposition of an opaque material, such as a layer of metal (e.g., silver), on a surface of the analysis region. The layer of metal can be formed by using a two component system: a metal precursor (e.g., a solution of silver salts) and a reducing agent (e.g., hydroquinone), which can optionally be stored in different channels prior to use.
As a positive or negative pressure differential is applied to the system, the silver salt and hydroquinone solutions can merge at a channel intersection, where they mix (e.g., due to diffusion) in a channel, and then flow over the analysis region. Therefore, if antibody-antigen binding occurs in the analysis region, the flowing of the metal precursor solution through the region can result in the formation of an opaque layer, such as a silver layer, due to the presence of the catalytic metal colloid associated with the antibody-antigen complex. The opaque layer may include a substance that interferes with the transmittance of light at one or more wavelengths. Any opaque layer that is formed in the microfluidic channel can be detected optically, for example, by measuring a reduction in light transmittance through a portion of the analysis region (e.g., a meandering channel region) compared to a portion of an area that does not include the antibody or antigen. Alternatively, a signal can be obtained by measuring the variation of light transmittance as a function of time, as the film is being formed in a analysis region. The opaque layer may provide an increase in assay sensitivity when compared to techniques that do not form an opaque layer. Additionally, various amplification chemistries that produce optical signals (e.g., absorbance, fluorescence, glow or flash chemiluminescence, electrochemiluminescence), electrical signals (e.g., resistance or conductivity of metal structures created by an electroless process) or magnetic signals (e.g., magnetic beads) can be used to allow detection of a signal by a detector.
It should be understood that devices described herein may be used for any suitable chemical and/or biological reaction, and may include, for example, other solid-phase assays that involve affinity reaction between proteins or other biomolecules (e.g., DNA, RNA, carbohydrates), or non-naturally occurring molecules. In some embodiments, a chemical and/or biological reaction involves binding. Different types of binding may take place in devices described herein. The term “binding” refers to the interaction between a corresponding pair of molecules that exhibit mutual affinity or binding capacity, typically specific or non-specific binding or interaction, including biochemical, physiological, and/or pharmaceutical interactions. Biological binding defines a type of interaction that occurs between pairs of molecules including proteins, nucleic acids, glycoproteins, carbohydrates, hormones and the like. Specific examples include antibody/antigen, antibody/hapten, enzyme/substrate, enzyme/inhibitor, enzyme/cofactor, binding protein/substrate, carrier protein/substrate, lectin/carbohydrate, receptor/hormone, receptor/effector, complementary strands of nucleic acid, protein/nucleic acid repressor/inducer, ligand/cell surface receptor, virus/ligand, etc. Binding may also occur between proteins or other components and cells. In addition, devices described herein may be used for other fluid analyses (which may or may not involve binding and/or reactions) such as detection of components, concentration, etc.
Non-limiting examples of analytes that can be determined using fluidic devices described herein include specific proteins, viruses, hormones, drugs, nucleic acids and polysaccharides; specifically antibodies, e.g., IgD, IgG, IgM or IgA immunoglobulins to HTLV-I, HIV, Hepatitis A, B and non A/non B, Rubella, Measles, Human Parvovirus B19, Mumps, Malaria, Chicken Pox or Leukemia; human and animal hormones, e.g., thyroid stimulating hormone (TSH), thyroxine (T4), luteinizing hormone (LH), follicle-stimulating hormones (FSH), testosterone, progesterone, human chorionic gonadotropin, estradiol; other proteins or peptides, e.g. troponin I, c-reactive protein, myoglobin, brain natriuretic protein, prostate specific antigen (PSA), free-PSA, complexed-PSA, pro-PSA, EPCA-2, PCADM-1, ABCA5, hK2, beta-MSP (PSP94), AZGP1, Annexin A3, PSCA, PSMA, JM27, PAP; drugs, e.g., paracetamol or theophylline; marker nucleic acids, e.g., PCA3, TMPRS-ERG; polysaccharides such as cell surface antigens for HLA tissue typing and bacterial cell wall material. Chemicals that may be detected include explosives such as TNT, nerve agents, and environmentally hazardous compounds such as polychlorinated biphenyls (PCBs), dioxins, hydrocarbons and MTBE. Typical sample fluids include physiological fluids such as human or animal whole blood, blood serum, blood plasma, semen, tears, urine, sweat, saliva, cerebro-spinal fluid, vaginal secretions; in-vitro fluids used in research or environmental fluids such as aqueous liquids suspected of being contaminated by the analyte. In some embodiments, one or more of the above-mentioned reagents is stored in a channel or chamber of a fluidic device prior to first use in order to perform a specific test or assay.
Some embodiments of the invention are in the form of a kit that may include, for example, a microfluidic system, a source for promoting fluid flow (e.g., a vacuum), and/or one, several, or all the reagents necessary to perform an analysis except for the sample to be tested. In some embodiments, the microfluidic system of the kit may have a configuration similar to one or more of those shown in the figures and/or as described herein. The fluidic device of the kit may be portable and may have dimensions suitable for use in point-of-care settings.
The kit may include reagents and/or fluids that may be provided in any suitable form, for example, as liquid solutions or as dried powders. In some embodiments, a reagent is stored in the microfluidic system prior to first use, as described in more detail herein. When the reagents are provided as a dry powder, the reagent may be reconstituted by the addition of a suitable solvent, which may also be provided. In embodiments where liquid forms of the reagent are provided, the liquid form may be concentrated or ready to use. The fluids may be provided as specific volumes (or may include instructions for forming solutions having a specific volume) to be flowed in the microfluidic system.
The kit may be designed to perform a particular analysis such as the determination of a specific disease condition. For instance, markers (e.g., PSA) for specific diseases (e.g., prostate cancer) may be included (e.g., stored) in a device or kit in a fluid or dry form prior to first use of the device/kit. In order to perform a particular analysis or test using the kit, the fluidic device may be designed to have certain geometries, and the particular compositions, volumes, and viscosities of fluids may be chosen so as to provide optimal conditions for performing the analysis in the system. For example, if a reaction to be performed at an analysis region requires the flow of an amplification reagent over the analysis region for a specific, pre-calculated amount of time in order produce an optimal signal, the fluidic device may be designed to include a channel segment having a particular cross-sectional area and length to be used with a fluid of specific volume and viscosity in order to regulate fluid flow in a predetermined and pre-calculated manner. Washing solutions and buffers may also be included. The device may optionally include one or more reagents stored therein prior to first use. Furthermore, the kit may include a device or component for promoting fluid flow, such as a source of vacuum dimensioned to be connected to an outlet. The device or component may include one or more pre-set values so as to create a known (and optionally constant) pressure drop between an inlet and an outlet of the fluidic device. Thus, the kit can allow one or more reagents to flow for a known, pre-calculated amount of time at an analysis region, or at other regions of the system, during use. Those of ordinary skill in the art can calculate and determine the parameters necessary to regulate fluid flow using general knowledge in the art in combination with the description provided herein.
A kit described herein may further include a set of instructions for use of the kit. The instructions can define a component of instructional utility (e.g., directions, guides, warnings, labels, notes, FAQs (“frequently asked questions”), etc., and typically involve written instructions on or associated with the components and/or with the packaging of the components for use of the microfluidic system. Instructions can also include instructional communications in any form (e.g., oral, electronic, digital, optical, visual, etc.), provided in any manner such that a user will clearly recognize that the instructions are to be associated with the components of the kit.
In some embodiments, microfluidic systems described herein contain stored reagents prior to first use of the device and/or prior to introduction of a sample into the device. In some cases, one or both of liquid and dry reagents may be stored on a single article. Additionally or alternatively, the reagents may also be stored in separate vessels such that a reagent is not in fluid communication with the microfluidic system prior to first use. The use of stored reagents can simplify use of the microfluidic system by a user, since this minimizes the number of steps the user has to perform in order to operate the device. This simplicity can allow microfluidic systems described herein to be used by untrained users, such as those in point-of-care settings, and in particular, for devices designed to perform immunoassays. It has been demonstrated previously that the storage of the reagents in the form of liquid plugs separated by air gaps were stable for extended periods of time (see, for example, International Patent Publication No. WO2005/072858 (International Patent Application Serial No. PCT/US2005/003514), filed Jan. 26, 2005 and entitled “Fluid Delivery System and Method,” which his incorporated herein by reference in its entirety). Fluidic devices for storing reagents may also include a configuration as described in U.S. patent application Ser. No. 12/640,420 filed on Dec. 17, 2009 and entitled, “Improved Reagent Storage in Microfluidic Systems and Related Articles and Methods,” which is incorporated herein by reference in its entirety. In other embodiments, however, microfluidic devices described herein do not contain stored reagents prior to first use of the device and/or prior to introduction of a sample into the device.
As used herein, “prior to first use” of the device means a time or times before the device is first used by an intended user after commercial sale. First use may include any step(s) requiring manipulation of the device by a user. For example, first use may involve one or more steps such as puncturing a sealed inlet to introduce a reagent into the device, connecting two or more channels to cause fluid communication between the channels, preparation of the device (e.g., loading of reagents into the device) before analysis of a sample, loading of a sample onto the device, preparation of a sample in a region of the device, performing a reaction with a sample, detection of a sample, etc. First use, in this context, does not include manufacture or other preparatory or quality control steps taken by the manufacturer of the device. Those of ordinary skill in the art are well aware of the meaning of first use in this context, and will be able easily to determine whether a device of the invention has or has not experienced first use. In one set of embodiments, devices of the invention are disposable after first use, and it is particularly evident when such devices are first used, because it is typically impractical to use the devices at all after first use.
The devices described herein may comprise one or more channels or channel segments. A “channel” or “channel portion”, as used herein, means a feature on or in an article or substrate (e.g., formed in a surface/side of an article or substrate) that at least partially directs the flow of a fluid. A channel, channel portion, or channel segment, etc. can have any cross-sectional shape (circular, oval, triangular, irregular, square or rectangular, trapezoidal, or the like) and can be covered or uncovered. In embodiments where it is covered, at least one portion of the channel can have a cross-section that is substantially enclosed, or the entire channel may be substantially enclosed along its entire length with the exception of its inlet(s) and outlet(s). In some cases, the inlet and/or outlet may also be enclosed or sealed, e.g., to prevent fluids and/or other reagents from being removed from the device (e.g., due to evaporation).
A channel, channel segment, channel portion, etc., may also have an aspect ratio (length to average cross-sectional dimension) of at least 2:1, more typically at least 3:1, 5:1, or 10:1 or more. In some embodiments, one or more channels, channel segments, channel portions, intervening channels, etc., is microfluidic. “Microfluidic,” as used herein, refers to a device, apparatus or system including at least one fluid channel having a cross-sectional dimension of less than 1 mm, and a ratio of length to largest cross-sectional dimension of at least 3:1. A “microfluidic channel” or “microfluidic channel segment” as used herein, is a channel meeting these criteria. Though in some embodiments, devices of the invention may be microfluidic, in certain embodiments, the invention is not limited to microfluidic systems and may relate to other types of fluidic systems. Furthermore, it should be understood that all or a majority of the channels described herein may be microfluidic in certain embodiments. The “cross-sectional dimension” (e.g., a diameter, a height, and/or a width) of a channel, channel segment, channel portion, or intervening channel, etc. is measured perpendicular to the direction of fluid flow. In one set of embodiments, the maximum cross-sectional dimension of one or more channels or channel segments containing embodiments described herein are less than about 750 microns, less than about 500 microns, less than about 300 microns, less than about 200 microns, less than about 100 microns, less than about 50 microns, less than about 25 microns, less than about 10 microns, or less than about 5 microns. In some cases, at least two cross-sectional dimensions (e.g., a height and a width) of a channel, channel segment, or channel portion have one or more of the dimensions listed above (e.g., a width of less than 500 microns and a height of less than 200 microns).
One or more channels or channel segments described herein may have any suitable length. In some cases, the channels or channel segments may be at least about 1 mm long, at least about 2 mm long, at least about 5 mm long, at least about 10 mm long, at least about 20 mm long, at least about 50 mm long, or longer.
The channels or channel segments may also be spaced any suitable distance apart from each other. For example, in some cases, the width of one or more intervening portions between channels or channel segments may be less than about 5 mm, less than about 2 mm, less than about 1 mm, less than about 500 microns, less than about 300 microns, less than about 200 microns, less than about 100 microns, less than about 50 microns, less than about 25 microns, less than about 10 microns, less than about 5 microns, or less. In certain embodiments, channel segments may be separated by a distance of less than 0.01 times, less than 0.1 times, less than 0.25 times, less than 0.5 times, less than 1 times, less than 2 times, less than 5 times, or less than 10 times the average largest width of the channel segment.
The channels or channel segments may also be oriented in any suitable manner. In some instances, all channels or channel segments are spaced a substantially equal distance from each other (i.e., the widths of the intervening portions are all substantially the same). The channels or channel segments may also be oriented such that two or more (e.g., all) are substantially parallel to each other.
In some cases the dimensions of a channel may be chosen such that fluid is able to freely flow through the article or substrate. The dimensions of the channel may also be chosen, for example, to allow a certain volumetric or linear flowrate of fluid in the channel. Of course, the number of channels and the shape of the channels can be varied by any method known to those of ordinary skill in the art. In some cases, more than one channel or capillary may be used.
In some embodiments described herein, microfluidic systems include only a single interconnected channel with, for example, less than 5, 4, 3, 2, or 1 channel intersection(s) when in use. A layout based on a single channel with minimal or no intersections may be reliable because there is only one possible flow path for any fluid to travel across the microfluidic chip.
A microfluidic system described herein may have any suitable volume for carrying out a chemical and/or biological reaction or other process. The entire volume of a microfluidic system includes, for example, any reagent storage areas, reaction areas, liquid containment regions, waste areas, as well as any fluid connectors, and microfluidic channels associated therewith. In some embodiments, small amounts of reagents and samples are used and the entire volume of the microfluidic system is, for example, less than 10 milliliters, less than 5 milliliters, less than 1 milliliter, less than 500 microliters, less than 250 microliters, less than 100 microliters, less than 50 microliters, less than 25 microliters, less than 10 microliters, less than 5 microliters, or less than 1 microliter.
A fluidic device and/or an article described herein may be portable and, in some embodiments, handheld. The length and/or width of the device and/or article may be, for example, less than or equal to 20 cm, 15 cm, 10 cm, 8 cm, 6 cm, or 5 cm. The thickness of the device and/or article may be, for example, less than or equal to 5 cm, 3 cm, 2 cm, 1 cm, 8 mm, 5 mm, 3 mm, 2 mm, or 1 mm. Advantageously, portable devices may be suitable for use in point-of-care settings.
All or a portion of a fluidic device such as an article or a cover can be fabricated of any suitable material. For example, articles that include channels may be formed of a suitable for forming a microchannel. Non-limiting examples of materials include polymers (e.g., polyethylene, polystyrene, polymethylmethacrylate, polycarbonate, poly(dimethylsiloxane), PTFE, PET, and a cyclo-olefin copolymer), glass, quartz, and silicon. The article and/or cover may be hard or flexible. Those of ordinary skill in the art can readily select a suitable material based upon e.g., its rigidity, its inertness to (e.g., freedom from degradation by) a fluid to be passed through it, its robustness at a temperature at which a particular device is to be used, its transparency/opacity to light (e.g., in the ultraviolet and visible regions), and/or the method used to fabricate features in the material. For instance, for injection molded or other extruded articles, the material used may include a thermoplastic (e.g., polypropylene, polycarbonate, chlorotrifluoroethylene, acrylonitrile-butadiene-styrene, nylon 6), an elastomer (e.g., polyisoprene, isobutene-isoprene, nitrile, neoprene, ethylene-propylene, hypalon, silicone), a thermoset (e.g., epoxy, unsaturated polyesters, phenolics), or combinations thereof. In some embodiments, the material and dimensions (e.g., thickness) of an article and/or cover are chosen such that it is substantially impermeable to water vapor. For instance, a fluidic device designed to store one or more fluids therein prior to first use may include a cover comprising a material known to provide a high vapor barrier, such as metal foil, certain polymers, certain ceramics and combinations thereof. In other cases, the material is chosen based at least in part on the shape and/or configuration of the device. For instance, certain materials can be used to form planar devices whereas other materials are more suitable for forming devices that are curved or irregularly shaped.
In some instances, a fluidic device is formed of a combination of two or more materials, such as the ones listed above. For instance, the channels of the device may be formed in a first material (e.g., poly(dimethylsiloxane)), and a cover that is formed in a second material (e.g., polystyrene) may be used to seal the channels. In another embodiment, a first set of channels is formed in a first article comprising a first material and a second set of channels is formed in a second article comprising a second material. In yet another embodiment, channels of the device may be formed in polystyrene or other polymers (e.g., by injection molding) and a biocompatible tape may be used to seal the channels. The biocompatible tape may include a material known to improve vapor barrier properties (e.g., metal foil, polymers or other materials known to have high vapor barriers). A variety of methods can be used to seal a microfluidic channel or portions of a channel, or to join multiple layers of a device, including but not limited to, the use of adhesives (such as acrylic or silicone based adhesives), use adhesive tapes, gluing, bonding, lamination of materials, or by mechanical methods (e.g., clamping).
Sealing a channel and/or any inlets and outlets may protect and retain any gases, liquids, and/or dry reagents that may be stored within a channel. In addition or alternatively to one or more covers described herein, in certain embodiments, a fluid having low volatility, such as an oil or glycol may be placed in the end of a tube to help prevent evaporation and/or movement of other fluids contained therein.
Devices comprising optical elements and channels (e.g., microchannels) described herein may be fabricated using a variety of techniques. For example, the devices described herein may be formed using injection molding, hot embossing, or other plastic engineering techniques. The devices may also be manufactured using traditional machining techniques. In some cases, the devices may be fabricated by producing a mold and transferring the features of the mold to a hardenable polymer (e.g., PDMS). Molds may be fabricated by, for example, etching features into a silicon wafer (e.g., via an anisotropic KOH etch) and transferring the features onto a hardenable material (e.g., SU-8) which may then serve as a mold. In some cases, the microfluidic devices described herein include an article that is a single, integral piece of material without joined layers.
In one set of embodiments, purely photolithographic techniques are used to fabricated the channels and optical elements in a polymer.
The manufacturing processes used to produce devices by injection molding (or other plastic engineering techniques, such as hot embossing), often require molds having non-zero draft angles on some or all of the features to be replicated in plastic. As discussed above, a draft angle is the amount of taper for molded or cast parts perpendicular to the parting line (a square channel with walls perpendicular to the floor having a draft angle of zero degrees). A non-zero draft angle is often necessary to allow demolding of the replica from the molding tool.
The fabrication of elements with non-zero draft angles is challenging. For instance, for microfluidic structures (e.g., channels) having various depths, the corresponding mold must have features with multiple heights in addition to non-zero draft angles. These types of molds can be challenging to fabricate on the microscale, as molding microchannels in plastic with constrictions in draft angle, depth, as well as in width is not trivial.
In fact, few techniques can yield the appropriate shapes for a mold having non-zero draft angles. To widen the breadth of technologies able to produce the appropriate shapes, an indirect route to the fabrication of the mold can be chosen. For instance, the channels themselves can be created in various materials, by various techniques to produce a master. The negative shape of the master is then obtained (e.g., by electrodeposition), resulting in a mold for injection molding. The techniques capable of yielding a master with non-zero draft angles and various depths include: (1) milling with one or more trapezoidal-shaped bits, (2) photolithographic techniques in combination with thick photosensitive polymers, for instance photosensitive glass or photoresist like SU8, in combination with a back-side exposure or a top-side exposure with light with a non-normal angle. An example of the use of non-normal top-side exposure with photosensitive glass to produce features with non-zero draft angles is described in U.S. Pat. No. 4,444,616. The preparation of multiple depths can be achieved by multiple photolithographic exposures onto multiple layers of photosensitive material. (3) KOH etching on silicon substrates can also produce non-zero draft angles, according to the crystalline planes of the silicon. (4) Alternative to straight draft angles, channels having rounded side-walls can also produce suitable master for molds. Such rounded side-walls can be achieved by isotropic etching onto planar surface (e.g., HF etching on Pyrex wafers), or by reflowing structures photoresist by heat treatment. (5) Deep Reactive Ion Etching (DRIE) can also produce non-zero degree draft angles under certain parameters.
The following examples are intended to illustrate certain embodiments of the present invention, but are not to be construed as limiting and do not exemplify the full scope of the invention.
A method for fabricating a microfluidic channel system is described.
Channel systems, such as the ones shown in
In other embodiments, the microfluidic channels were made in polystyrene or other thermoplastics by injection molding. This method is known to those of ordinary skill in the art. The volume of an injection molding cavity can be defined by a bottom surface and a top surface separated by a hollow frame which determines the thickness of the molded article. For an article including channel features and or other microscale elements on two opposing sides of the article, the bottom and top surfaces of the molding cavity may include raised features that create the channel features on either side of the article. For an article including channel features on only one side of the article, only the top or bottom surface of the molding cavity includes such features. Thru-holes that pass through the entire thickness of the article can be produced by pins traversing the cavity, embedded in one or more surfaces of the cavity and contacting the other side. For instance, the pins may extend from only the top surface, only the bottom surface, or from both the top and bottom surfaces.
This example describes the transmission profiles of systems employing a meandering channel, one with triangular optical elements (grooves) and another without. An article was fabricated in polystyrene with identical systems of fluidic channels on one side. Some of these channels included triangular optical elements between the channels on the other side (shielded channels). Other channels did not include triangular optical elements between them (normal/standard channels with no shielding). The channels were 160 microns in width. Intervening portions between the channels were 60 microns in width. The article thickness was designed using the model described above. Triangular optical elements were also designed as described in the model above with an angle of 35.3°, a width of 160 microns, and a pitch of 220 microns. Optical measurements were performed using a single collimated LED light source and a single photodiode detector.
Measurements were performed with an approximate index-matching liquid in the channels (water) and with a concentrated absorbing dye (Methylene Blue, 20 mg/ml in water). Using water in the “normal” channel (channel without optical elements) as the baseline, the following transmission measurements were made:
Assuming a perfectly absorbing dye, the transmission through normal channels should be 27%, since the channel walls make up 60/(60+160)=27% of the area of the measurement zone. Experimental results confirmed this prediction. Note that the range of ODs provided by a non-shielded channel of these dimensions would be 0 to 0.56. In shielded channels with dye, only 1% of the incident light was transmitted. The triangular optical element was designed to either block light that would be transmitted through the intervening portions or directed the light into the channels. The dye in the channels absorbed most, if not all, the light striking the channels.
With water in the shielded channels, 26% of the light incident on the measurement zone was transmitted. With a width 60 microns and a pitch of 220 microns, the triangular optical elements blocked 73% of the top surface of the measurement area. The remaining 27% of the area was positioned directly above channels. Since these channels were filled with index matching liquid, it was assumed that they transmitted all of the light striking them. A total transmission of 26% indicated that, in this particular experiment, significantly more of the light incident on the optical elements was reflected out of the system than was directed to the channels.
To understand the measurement range of the shielded channels, a comparison was made between the intensity of light transmitted through the shielded channels with dye and the intensity of light transmitted through the shielded channels with water. Using the shielded channels with water as a baseline, the transmission with dye was 4%. This indicated that the range of ODs provided by the shielded system with channels of these dimensions would be 0 to 1.40. This represents a significant improvement over the normal configuration.
A more detailed comparison of transmitted light can be obtained using the linear image sensor system described above.
In this example, several samples with various widths of intervening portions were fabricated and tested.
This example describes the use of a linear image sensor in conjunction with the systems and methods described herein.
A linear image sensor was positioned underneath a meandering channel as shown in
Measurements of the system were performed with various fluids in the channel including index-matching liquid, dye diluted in water, and concentrated dye.
A total transmission value was calculated by averaging the measurements from all the identified channel pixels.
Various concentrations of dyes were imaged in the channels (corresponding to various levels of absorption in the channels). Transmissions were calculated using the method explained above and converted into ODs.
While several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the functions and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the present invention. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the teachings of the present invention is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present invention.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
This is a continuation application of U.S. patent application Ser. No. 14/316,069, filed Jun. 26, 2014, and entitled “Structures for Controlling Light Interaction with Microfluidic Devices,” which is a continuation application of U.S. patent application Ser. No. 13/898,028, filed May 20, 2013, and entitled “Structures for Controlling Light Interaction with Microfluidic Devices,” which is a divisional application of U.S. patent application Ser. No. 13/490,055, filed Jun. 6, 2012, and issued as U.S. Pat. No. 8,480,975 on Jul. 9, 2013, and entitled “Structures for Controlling Light Interaction with Microfluidic Devices,” which is a continuation of U.S. patent application Ser. No. 12/698,451, filed Feb. 2, 2010 and issued as U.S. Pat. No. 8,221,700 on Jul. 17, 2012, and entitled “Structures for Controlling Light Interaction with Microfluidic Devices,” which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 61/149,253, filed Feb. 2, 2009, and entitled “Structures for Controlling Light Interaction with Microfluidic Devices,” each of which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3735640 | Chizhov et al. | May 1973 | A |
4318994 | Meyer et al. | Mar 1982 | A |
4517302 | Saros | May 1985 | A |
4871233 | Sheiman | Oct 1989 | A |
4918025 | Grenner | Apr 1990 | A |
4963498 | Hillman et al. | Oct 1990 | A |
5051237 | Grenner et al. | Sep 1991 | A |
5219762 | Katamine et al. | Jun 1993 | A |
5234813 | McGeehan et al. | Aug 1993 | A |
5268147 | Zabetakis et al. | Dec 1993 | A |
5286454 | Nilsson et al. | Feb 1994 | A |
5376252 | Ekström et al. | Dec 1994 | A |
5478751 | Oosta et al. | Dec 1995 | A |
5486335 | Wilding et al. | Jan 1996 | A |
5516639 | Tindall et al. | May 1996 | A |
5571410 | Swedberg et al. | Nov 1996 | A |
5585069 | Zanzucchi et al. | Dec 1996 | A |
5599503 | Manz et al. | Feb 1997 | A |
5614372 | Lilja et al. | Mar 1997 | A |
5635358 | Wilding et al. | Jun 1997 | A |
5637469 | Wilding et al. | Jun 1997 | A |
5638828 | Lauks et al. | Jun 1997 | A |
5672480 | Dowell et al. | Sep 1997 | A |
5726026 | Wilding et al. | Mar 1998 | A |
5731212 | Gavin et al. | Mar 1998 | A |
5840501 | Allard et al. | Nov 1998 | A |
5842787 | Koph-Sill et al. | Dec 1998 | A |
5866345 | Wilding et al. | Feb 1999 | A |
5876675 | Kennedy | Mar 1999 | A |
5923481 | Skidmore et al. | Jul 1999 | A |
5939533 | Lilja et al. | Aug 1999 | A |
5942443 | Parce et al. | Aug 1999 | A |
5955028 | Chow | Sep 1999 | A |
5957579 | Kopf-Sill et al. | Sep 1999 | A |
6019944 | Buechler | Feb 2000 | A |
6042709 | Parce et al. | Mar 2000 | A |
6046056 | Parce et al. | Apr 2000 | A |
6100541 | Nagle et al. | Aug 2000 | A |
6103199 | Bjornson et al. | Aug 2000 | A |
6136272 | Weigl et al. | Oct 2000 | A |
6146489 | Wirth | Nov 2000 | A |
6146589 | Chandler | Nov 2000 | A |
6168948 | Anderson et al. | Jan 2001 | B1 |
6176962 | Soane et al. | Jan 2001 | B1 |
6184029 | Wilding et al. | Feb 2001 | B1 |
6186660 | Kopf-Sill et al. | Feb 2001 | B1 |
6207369 | Wohlstadter et al. | Mar 2001 | B1 |
6209928 | Benett et al. | Apr 2001 | B1 |
6214560 | Yguerabide et al. | Apr 2001 | B1 |
6238538 | Parce et al. | May 2001 | B1 |
6241560 | Furusawa et al. | Jun 2001 | B1 |
6251343 | Dubrow et al. | Jun 2001 | B1 |
6274337 | Parce et al. | Aug 2001 | B1 |
6296020 | McNeely et al. | Oct 2001 | B1 |
6319476 | Victor et al. | Nov 2001 | B1 |
6331439 | Cherukuri et al. | Dec 2001 | B1 |
6333200 | Kaler et al. | Dec 2001 | B1 |
6361958 | Shieh et al. | Mar 2002 | B1 |
6413782 | Parce et al. | Jul 2002 | B1 |
6416642 | Alajoki et al. | Jul 2002 | B1 |
6429025 | Parce et al. | Aug 2002 | B1 |
6432720 | Chow | Aug 2002 | B2 |
6479299 | Parce et al. | Nov 2002 | B1 |
6488872 | Beebe et al. | Dec 2002 | B1 |
6488894 | Miethe et al. | Dec 2002 | B1 |
6488896 | Weigl et al. | Dec 2002 | B2 |
6495104 | Unno et al. | Dec 2002 | B1 |
6498353 | Nagle et al. | Dec 2002 | B2 |
6499499 | Dantsker et al. | Dec 2002 | B2 |
6536477 | O'Connor et al. | Mar 2003 | B1 |
6551841 | Wilding et al. | Apr 2003 | B1 |
6557427 | Weigl et al. | May 2003 | B2 |
6558945 | Kao | May 2003 | B1 |
6585939 | Dapprich | Jul 2003 | B1 |
6610499 | Fulwyler et al. | Aug 2003 | B1 |
6613512 | Kopf-Sill et al. | Sep 2003 | B1 |
6613525 | Nelson et al. | Sep 2003 | B2 |
6620625 | Wolk et al. | Sep 2003 | B2 |
6632619 | Harrison et al. | Oct 2003 | B1 |
6638482 | Ackley et al. | Oct 2003 | B1 |
6656430 | Sheppard, Jr. et al. | Dec 2003 | B2 |
6660367 | Yang et al. | Dec 2003 | B1 |
6669831 | Chow et al. | Dec 2003 | B2 |
6705357 | Jeon et al. | Mar 2004 | B2 |
6709869 | Mian et al. | Mar 2004 | B2 |
6710870 | Marowsky et al. | Mar 2004 | B1 |
6716620 | Bashir et al. | Apr 2004 | B2 |
6729352 | O'Connor et al. | May 2004 | B2 |
6742661 | Schulte et al. | Jun 2004 | B1 |
6759662 | Li | Jul 2004 | B1 |
6761962 | Bentsen et al. | Jul 2004 | B2 |
6780584 | Edman et al. | Aug 2004 | B1 |
6794197 | Indermuhle et al. | Sep 2004 | B1 |
6818184 | Fulwyler et al. | Nov 2004 | B2 |
6827095 | O'Connor et al. | Dec 2004 | B2 |
6828143 | Bard | Dec 2004 | B1 |
6830936 | Anderson et al. | Dec 2004 | B2 |
6858185 | Kopf-Sill et al. | Feb 2005 | B1 |
6875403 | Liu et al. | Apr 2005 | B2 |
6878271 | Gilbert et al. | Apr 2005 | B2 |
6878755 | Singh et al. | Apr 2005 | B2 |
6906797 | Kao et al. | Jun 2005 | B1 |
6949377 | Ho | Sep 2005 | B2 |
6953550 | Sheppard, Jr. et al. | Oct 2005 | B2 |
6982787 | Wapner et al. | Jan 2006 | B1 |
6989128 | Alajoki et al. | Jan 2006 | B2 |
7005292 | Wilding et al. | Feb 2006 | B2 |
7015046 | Wohlstadter et al. | Mar 2006 | B2 |
7018830 | Wilding et al. | Mar 2006 | B2 |
7019831 | Grossman et al. | Mar 2006 | B2 |
7027683 | O'Connor et al. | Apr 2006 | B2 |
7046357 | Weinberger et al. | May 2006 | B2 |
7067263 | Parce et al. | Jun 2006 | B2 |
7087148 | Blackburn et al. | Aug 2006 | B1 |
7091048 | Parce et al. | Aug 2006 | B2 |
7157053 | Hahn et al. | Jan 2007 | B2 |
7182371 | Renzi | Feb 2007 | B1 |
7202945 | Erlbacher et al. | Apr 2007 | B2 |
7262838 | Fritz | Aug 2007 | B2 |
7262859 | Larson et al. | Aug 2007 | B2 |
7276330 | Chow et al. | Oct 2007 | B2 |
7475916 | Muller et al. | Jan 2009 | B2 |
7513535 | Charles et al. | Apr 2009 | B2 |
7515261 | Sharma | Apr 2009 | B2 |
7524462 | Leonard et al. | Apr 2009 | B2 |
7598091 | Wang | Oct 2009 | B2 |
7605003 | Chan et al. | Oct 2009 | B2 |
7611616 | Cohen et al. | Nov 2009 | B2 |
7736890 | Babak et al. | Jun 2010 | B2 |
7763856 | Kiesel et al. | Jul 2010 | B2 |
7799558 | Dultz | Sep 2010 | B1 |
7863037 | Dultz | Jan 2011 | B1 |
7872104 | Pettersson et al. | Jan 2011 | B2 |
7894071 | Frese et al. | Feb 2011 | B2 |
7934519 | Zantl | May 2011 | B2 |
7951529 | Li et al. | May 2011 | B2 |
7952705 | Shen et al. | May 2011 | B2 |
8000762 | Calasso et al. | Aug 2011 | B2 |
8030057 | Linder et al. | Oct 2011 | B2 |
8173433 | Folkman et al. | May 2012 | B2 |
8202492 | Linder et al. | Jun 2012 | B2 |
8221700 | Steinmiller et al. | Jul 2012 | B2 |
8282896 | Facer et al. | Oct 2012 | B2 |
8329118 | Padmanabhan et al. | Dec 2012 | B2 |
8389272 | Linder et al. | Mar 2013 | B2 |
8409527 | Linder et al. | Apr 2013 | B2 |
8475737 | Linder et al. | Jul 2013 | B2 |
8480975 | Steinmiller et al. | Jul 2013 | B2 |
8574924 | Sia et al. | Nov 2013 | B2 |
8580569 | Linder et al. | Nov 2013 | B2 |
8591829 | Taylor et al. | Nov 2013 | B2 |
8633013 | Kaiser et al. | Jan 2014 | B2 |
8765062 | Linder et al. | Jul 2014 | B2 |
8802029 | Steinmiller et al. | Aug 2014 | B2 |
8802445 | Linder et al. | Aug 2014 | B2 |
8808647 | Cherubini et al. | Aug 2014 | B2 |
8932523 | Linder et al. | Jan 2015 | B2 |
9075047 | Linder et al. | Jul 2015 | B2 |
9116124 | Linder et al. | Aug 2015 | B2 |
9116148 | Linder et al. | Aug 2015 | B2 |
9234888 | Linder et al. | Jan 2016 | B2 |
9672329 | Vickers et al. | Jun 2017 | B2 |
20010048637 | Weigl et al. | Dec 2001 | A1 |
20020001695 | Tajima et al. | Jan 2002 | A1 |
20020001818 | Brock | Jan 2002 | A1 |
20020019059 | Chow et al. | Feb 2002 | A1 |
20020071788 | Fujii et al. | Jun 2002 | A1 |
20020092767 | Bjornson et al. | Jul 2002 | A1 |
20020135780 | Budach et al. | Sep 2002 | A1 |
20020142618 | Parce et al. | Oct 2002 | A1 |
20020199094 | Strand et al. | Dec 2002 | A1 |
20030012697 | Hahn et al. | Jan 2003 | A1 |
20030063851 | Hillendahl | Apr 2003 | A1 |
20030082081 | Fouillet et al. | May 2003 | A1 |
20030103207 | Kopf-Sill et al. | Jun 2003 | A1 |
20030118486 | Zhou et al. | Jun 2003 | A1 |
20030124623 | Yager et al. | Jul 2003 | A1 |
20030138969 | Jakobsen et al. | Jul 2003 | A1 |
20030207328 | Yguerabide et al. | Nov 2003 | A1 |
20030235816 | Slawin et al. | Dec 2003 | A1 |
20030235905 | Spiecker | Dec 2003 | A1 |
20040077074 | Ackley et al. | Apr 2004 | A1 |
20040101914 | Pettersson et al. | May 2004 | A1 |
20040115094 | Gumbrecht et al. | Jun 2004 | A1 |
20040195728 | Slomski et al. | Oct 2004 | A1 |
20040196569 | Quake et al. | Oct 2004 | A1 |
20040228771 | Zhou et al. | Nov 2004 | A1 |
20050026300 | Samper et al. | Feb 2005 | A1 |
20050068526 | Avrutsky | Mar 2005 | A1 |
20050118061 | Mototsu et al. | Jun 2005 | A1 |
20050118073 | Facer et al. | Jun 2005 | A1 |
20050148063 | Cracauer et al. | Jul 2005 | A1 |
20050161669 | Jovanovich et al. | Jul 2005 | A1 |
20050179901 | Ostlin et al. | Aug 2005 | A1 |
20050221281 | Ho | Oct 2005 | A1 |
20050238545 | Parce et al. | Oct 2005 | A1 |
20050255003 | Summersgill et al. | Nov 2005 | A1 |
20050257885 | Hobbs | Nov 2005 | A1 |
20060002827 | Curcio et al. | Jan 2006 | A1 |
20060013740 | Berndtsson et al. | Jan 2006 | A1 |
20060094119 | Ismagilov et al. | May 2006 | A1 |
20060227328 | Vanwiggeren et al. | Oct 2006 | A1 |
20060257992 | McDevitt et al. | Nov 2006 | A1 |
20060275852 | Montagu | Dec 2006 | A1 |
20070029202 | Falk-Jordan et al. | Feb 2007 | A1 |
20070048189 | Cox et al. | Mar 2007 | A1 |
20070065954 | Taya et al. | Mar 2007 | A1 |
20070202538 | Glezer et al. | Aug 2007 | A1 |
20070298433 | Sia et al. | Dec 2007 | A1 |
20080019015 | Fernandez et al. | Jan 2008 | A1 |
20080038839 | Linder et al. | Feb 2008 | A1 |
20080085219 | Beebe et al. | Apr 2008 | A1 |
20080112059 | Choi et al. | May 2008 | A1 |
20080219616 | Wimberger-Friedl et al. | Sep 2008 | A1 |
20080245971 | Wimberger-Friedl et al. | Oct 2008 | A1 |
20080248590 | Gulliksen et al. | Oct 2008 | A1 |
20080280365 | Grumann et al. | Nov 2008 | A1 |
20080286858 | Cracauer et al. | Nov 2008 | A1 |
20090019953 | Bommarito et al. | Jan 2009 | A1 |
20090084496 | Fonverne et al. | Apr 2009 | A1 |
20090190121 | Hegyi et al. | Jul 2009 | A1 |
20090290157 | Dultz et al. | Nov 2009 | A1 |
20100158756 | Linder et al. | Jun 2010 | A1 |
20100196207 | Steinmiller et al. | Aug 2010 | A1 |
20100233038 | Park et al. | Sep 2010 | A1 |
20110015091 | Glezer et al. | Jan 2011 | A1 |
20120022793 | Barker et al. | Jan 2012 | A1 |
20120140208 | Magnusson et al. | Jun 2012 | A1 |
20120237401 | Steinmiller et al. | Sep 2012 | A1 |
20120269701 | Linder et al. | Oct 2012 | A1 |
20130157286 | Linder et al. | Jun 2013 | A1 |
20130273643 | Vickers et al. | Oct 2013 | A1 |
20140023565 | Taylor et al. | Jan 2014 | A1 |
20140038166 | Linder et al. | Feb 2014 | A1 |
20140038167 | Linder et al. | Feb 2014 | A1 |
20140134603 | Sia et al. | May 2014 | A1 |
20140234180 | Linder et al. | Aug 2014 | A1 |
20150086997 | Linder et al. | Mar 2015 | A1 |
20150196908 | Steinmiller et al. | Jul 2015 | A9 |
20150233901 | Linder et al. | Aug 2015 | A1 |
20150343443 | Linder et al. | Dec 2015 | A1 |
20160025732 | Linder et al. | Jan 2016 | A1 |
20160282349 | Linder et al. | Sep 2016 | A1 |
20160305878 | Steinmiller et al. | Oct 2016 | A1 |
20160305938 | Linder et al. | Oct 2016 | A1 |
20160320394 | Dong et al. | Nov 2016 | A1 |
20170089904 | Dong et al. | Mar 2017 | A1 |
20170091379 | Vickers et al. | Mar 2017 | A1 |
20170091380 | Vickers et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
198 16 224 | Oct 1998 | DE |
0 110 771 | Mar 1988 | EP |
0 488 947 | Jun 1992 | EP |
0 643 307 | Mar 1995 | EP |
1 054 259 | Nov 2000 | EP |
1 946 830 | Jul 2008 | EP |
2 071 026 | Jun 2009 | EP |
2006-038726 | Feb 2006 | JP |
2006-308428 | Nov 2006 | JP |
2007-017354 | Jan 2007 | JP |
WO 9101003 | Jan 1991 | WO |
WO 9526796 | Oct 1995 | WO |
WO 9614934 | May 1996 | WO |
WO 9615269 | May 1996 | WO |
WO 9706437 | Feb 1997 | WO |
WO 0222250 | Mar 2002 | WO |
WO 03054513 | Jul 2003 | WO |
WO 2004022233 | Mar 2004 | WO |
WO 2004061418 | Jul 2004 | WO |
WO 04087951 | Oct 2004 | WO |
WO 04087951 | Oct 2004 | WO |
WO 2004087951 | Oct 2004 | WO |
WO 2004105946 | Dec 2004 | WO |
WO 2005056186 | Jun 2005 | WO |
WO 2005056186 | Jun 2005 | WO |
WO 2005072858 | Aug 2005 | WO |
WO 2006018044 | Feb 2006 | WO |
WO 2006056787 | Jun 2006 | WO |
WO 2006113727 | Oct 2006 | WO |
WO 2007060523 | May 2007 | WO |
WO 2007077218 | Jul 2007 | WO |
WO 2008118098 | Oct 2008 | WO |
WO 2008123112 | Oct 2008 | WO |
WO 2008137008 | Nov 2008 | WO |
WO 2010080115 | Jul 2010 | WO |
WO 2013134179 | Sep 2013 | WO |
WO 2013172779 | Nov 2013 | WO |
Entry |
---|
U.S. Appl. No. 14/316,069, filed Jun. 26, 2014, Steinmiller et al. |
U.S. Appl. No. 15/196,922, filed Jun. 29, 2016, Steinmiller et al. |
PCT/US2008/005577, Apr. 3, 2009, International Search Report and Written Opinion. |
PCT/US2008/005577, Oct. 5, 2009, International Preliminary Report on Patentabillity. |
PCT/US2010/000286, Jun. 17, 2010, International Search Report and Written Opinion. |
PCT/US2010/000286, Mar. 24, 2011, International Preliminary Report on Patentability. |
International Search Report and Written Opinion for PCT/US2008/005577 dated Apr. 3, 2009. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/005577 dated Oct. 5, 2009. |
International Search Report and Written Opinion for PCT/US2010/000286 dated Jun. 17, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2010/000286 dated Mar. 24, 2011. |
Ahn et al., Disposable Smart Lab on a Chip for Point-of-Care Clinical Diagnostics, Proceedings of the IEEE. 2004; 92(1):154-173. |
Andersson et al., Micromachined flow-through filter-chamber for chemical reactions on beads. Sensors and Actuators. 2000; B67:203-208. |
Atencia et al., Capillary inserts in microcirculatory systems. Lab Chip. Apr. 2006;6(4):575-7. Epub Jan. 20, 2006. |
Atencia et al., Steady flow generation in microcirculatory systems. Lab Chip. Apr. 2006;6(4):567-74. Epub Jan. 20, 2006. |
Daridon et al., Chemical sensing using an integrated microfluidic system based on the Berthelot reaction. Sensors and Actuators B. 2001;76:235-243. |
Dodge et al., Electrokinetically driven microfluidic chips with surface-modified chambers for heterogeneous immunoassays. Anal Chem. Jul. 15, 2001;73(14):3400-9. |
Dong et al., Variable-Focus Liquid Microlenses and Microlens Arrays Actuated by Thermoresponsive Hydrogels. Advanced Materials. 2007;19:401-5. |
Fredrickson et al., Macro-to-micro interfaces for microfluidic devices. Lab Chip. Dec. 2004;4(6):526-33. Epub Nov. 10, 2004. |
Grodzinski et al., A Modular Microfluidic System for Cell Pre-concentration and Genetic Sample Preparation. Biomedical Microdevices. 2003;5(4):303-310. |
Jo et al., Three-Dimensional Microchannel Fabrication in PDMS Elastomer. J. Microelectro Sys. 2000;9(1):76-81. |
Juncker et al., Autonomous microfluidic capillary system. Anal Chem. Dec. 15, 2002;74(24):6139-44. |
Kuswandi, et al., Optical Sensing Systems for Microfluidic Devices: A Review. Analytica Chimica Acta. 2007;601(2):141-55. |
Linder et al., Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Anal Chem. Jan. 1, 2005;77(1):64-71. |
Llobera et al., Multiple Internal Reflection Poly(dimethylsiloxane) Systems for Optical Sensing. Lab Chip. 2007;7:1560-6. |
Lucas et al., An Improved Method for Double-Sided Molding of PDMS. J. Micromech Microeng. 2008;18(7):1-5. |
Maselli, et al., Integration of Optical Waveguides and Microfluidic Channels Fabricated by Femtosecond Laser Irradiation. Lasers and Electro-Optics 2007. CLEO 2007. Conference on, May 6-11, 2007, pp. 1-2. |
Moorthy et al., Microfluidic Tectonics Platform: A colorimetric, disposable botulinum toxin enzyme-linked immunosorbent assay system. Electrophoresis. Jun. 2004;25(10-11):1705-13. |
Obeid et al., Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle No. selection. Anal Chem. Jan. 15, 2003;75(2):288-95. |
Proceedings of uTAS 2004, 8th International Conference on Miniaturized Systems in Chemistry and Life Sciences, Sep. 26-30, Malmo, Sweden, Edited by Thomas Laurell, Johan Nilsson, Klays Jensen, D. Jed Harrison, Jorg P. Kutter, The Royal Society of Chemistry, pp. 1-135 (2004). |
Sia et al., An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew Chem Int Ed Engl. Jan. 16, 2004;43(4):498-502. |
Sia et al., Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis. Nov. 2003;24(21):3563-76. |
Song et al., A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed. 2003;42(7):767-772. |
Weigl et al., Lab-On-A-Chip for Drug Development. Adv Drug Deliv Rev. Feb. 24, 2003;55(3):349-77. |
Yang et al., New Production Method of Convex Microlens Arrays for Integrated Fluorescence Microfluidic Detection Systems. Microsyst Technol.2006;12: 907-12. |
Yun et al., Fabrication of Complex Multilevel Microchannels in PDMS by Using Three-Dimensional Photoresist Masters. Lab Chip. 2008;8:245-50. |
Becker et al., Sensitive and specific immunodetection of human glandular kallikrein 2 in serum. Clin Chem. Feb. 2000;46(2):198-206. |
Benchikh et al., A panel of kallikrein markers can predict outcome of prostate biopsy following clinical work-up: An independent validation study from the European Randomized Study of Prostate Cancer screening, France. BMC Cancer, 10:635 (2010). |
Chun et al., Development and external validation of an extended 10-core biopsy nomogram. European Urology, 52:436-445 (2007). |
Eriksson et al., Dual-label time-resolved immunofluorometric assay of free and total prostate-specific antigen based on recombinant Fab fragments. Clin Chem. May 2000;46(5):658-66. |
Genbank Accession No. 93091201. Feb. 23, 2011. |
Gupta et al., A four-kallikrein panel for the prediction of repeat prostate biopsy: Data from the European Randomized Study of Prostate Cancer Screening in Rotterdam, Netherlands. Br. J. Cancer, 103:708-714 (2010). |
Hara et al., Total and free prostate-specific antigen indexes in prostate cancer screening: value and limitation for Japanese populations. Asian J. Androl., 8(4):429-434 (2006). |
Khan et al., Clinical utility of proPSA and “benign” PSA when percent free PSA is less than 15%. Urology, 64(6):1160-1164 (2004). |
Lee et al., A meta-analysis of the performance characteristics of the free prostate-specific antigen test. Urology, 67(4):762-768 (2006). |
Lilja et al., Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat. Rev. Cancer, 8(4):268-278 (2008). |
Lilja et al., Prostate-specific antigen in serum occurs predominantly in complex with alpha 1-antichymotrypsin. Clin Chem. Sep. 1991;37(9):1618-25. |
Lövgren et al., Enzymatic action of human glandular kallikrein 2 (hK2). Substrate specificity and regulation by Zn2+ and extracellular protease inhibitors. Eur J Biochem. Jun. 1999;262(3):781-9. |
Lövgren et al., Production and activation of recombinant hK2 with propeptide mutations resulting in high expression levels. Eur J Biochem. Dec. 1999;266(3):1050-5. |
Michielsen et al., Prediction of free PSA, PSA density and PSA density transition zone in the outcome of sextant prostate biopsies in patients with total PSA between 3 and 15 ng/ml. UroOncology, 4(2):71-76 (2004). |
Nam et al., Assessing individual risk for prostate cancer. J. Clin. Oncol., 25(24):3582-3588 (2007). |
Nam et al., Prospective multi-institutional study evaluating the performance of prostate cancer risk calculators. J. Clin. Oncol., 29(22):2959-2964 (2011). |
Nam et al., Variants of the hK2 protein gene (KLK2) are associated with serum hK2 levels and predict the presence of prostate cancer at biopsy. Clin. Cancer Res., 12(21):6452-6458 (2006). |
Nurmikko et al., Production and characterization of novel anti-prostate-specific antigen (PSA) monoclonal antibodies that do not detect internally cleaved Lys145-Lys146 inactive PSA. Clin Chem. Oct. 2000;46(10):1610-8. |
Parekh et al., External validation of the Prostate Cancer Prevention Trial risk calculator in a screened population. Urology, 68(6):1152-1155 (2006). |
Peltola et al., Immunoassay for the discrimination of free prostate-specific antigen (fPSA) forms with internal cleavages at Lys(145) or Lys(146) from fPSA without internal cleavages at Lys(145) or Lys(146). J Immunol Methods, Jun. 30, 2011;369(1-2):74-80. doi: 10.1016/j.jim.2011.04.006. Epub Apr. 28, 2011. |
Peltola et al., Intact and internally cleaved free prostate-specific antigen in patients with prostate cancer with different pathologic stages and grades. Urology, 77(4):1009.e1-1009.e8 (2011). |
Piironen et al., Determination and analysis of antigenic epitopes of prostate specific antigen (PSA) and human glandular kallikrein 2 (hK2) using synthetic peptides and computer modeling. Protein Sci. Feb. 1998;7(2):259-69. |
Rajakoski et al., Epitope mapping of human prostate specific antigen and glandular kallikrein expressed in insect cells. Prostate Cancer Prostatic Dis. Sep. 1997;1(1):16-20. |
Sokoll et al., A prospective, multicenter, National Cancer Institute Early Detection Research Network study of [−2]proPSA: improving prostate cancer detection and correlating with cancer aggressiveness. Cancer Epidemiol. Biomarkers Prev., 19(5):1193-1200 (2010). |
Talvitie, Delfia immunoassays: Guide to Converting ELISA Assays to DELFIA. PerkinElmer Life and Analytical Sciences. Dec. 18, 20026:1-16. Retrieved on Jun. 11, 2015 from http://www.perkinelmer.com/cmsresources/images/man—delfia—elisa—conversion.pdf. |
Thompson et al., Assessing prostate cancer risk: results from the prostate cancer prevention trial. J. Natl. Cancer Inst., 98:529-534 (2006). |
Ulmert et al, Prostate-specific antigen at or before age 50 as a predictor of advance prostate cancer diagnosed up to 25 years later: A case-control study. BMC Medicine, 6(6):1-8 (2008). |
Ulmert et al., Reproducibility and accuracy of measurements of free and total prostate-specific antigen in serum vs plasma after long-term storage at -20 degrees C. Clin. Chem., 52(2):235-239 (2006). |
Van Vugt et al., Prediction of prostate cancer in unscreened men: external validation of a risk Calculator. Eur. J. Cancer 47(6):903-909 (2011). |
Vickers et al., A four-kallikrein panel predicts prostate cancer in men with recent screening: Data from the European Randomized Study of Prostate Cancer Screening, Rotterdam. Clin. Cancer Res., 16(12):3232-3239 (2010). |
Vickers et al., A panel of kallikrein marker predicts prostate cancer in a large, population-based cohort followed for 15 years without screening. Cancer Epidemiol. Biomarkers Prey., 20(2):255-261 (2011). |
Vickers et al., a panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: Data from the European Randomized Study of Prostate Cancer Screening in Goteborg, Sweden. BMC Med., 6:19 (2008). |
Vickers et al., Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making. Nov.-Dec. 2006;26(6):565-74. |
Vickers et al., Impact of recent screening on predicting the outcome of prostate cancer biopsy in men with elevated PSA: Data from the European Randomized Study of Prostate Cancer Screening in Gothenburg, Sweden. Cancer, 116(11):2612-2620 (2010). |
Vickers et al., Reducing unnecessary biopsy during prostate cancer screening using a fourkallikrein panel: an independent replication. J. Clin. Oncol., 28(15):2493-2498 (2010). |
Wenske et al., Evaluation of molecular forms of prostate-specific in predicting biochemical failure after radical prostatectomy. Int J Cancer. Feb. 1, 2009;124(3):659-63. doi: 10.1002/ijc.23983. |
[No Author Listed], Human Prostate-Specific Antigen (PSA) Kit Technical Data Sheet. AlphaLISA Research Reagents. Perkin Elmer. Waltham, MA. 2009. 9 pages. |
Nurmikko et al., Discrimination of prostate cancer from benign disease by plasma measurement of intact, free prostate-specific antigen lacking an internal cleavage site at Lys145-Lys146. Clin Chem. Aug. 2001;47(8):1415-23. |
U.S. Appl. No. 15/197,107, filed Jun. 29, 2016, Linder et al. |
U.S. Appl. No. 15/197,148, filed Jun. 29, 2016. |
U.S. Appl. No. 15/197,172, filed Jun. 29, 2016 |
Number | Date | Country | |
---|---|---|---|
20160305937 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61149253 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13490055 | Jun 2012 | US |
Child | 13898028 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14316069 | Jun 2014 | US |
Child | 15196975 | US | |
Parent | 13898028 | May 2013 | US |
Child | 14316069 | US | |
Parent | 12698451 | Feb 2010 | US |
Child | 13490055 | US |