The present invention relates generally to fluidized bed coating systems, and more particularly, to a coating system in which an atomized coating liquid is directed upwardly into a coating chamber within which particles to be coated are circulated between upbed and downbed regions by upwardly directed airflow streams.
Fluidized bed coating systems are known in which particles to be coated are circulated by an upwardly directed airstream through an upbed of particulate material to be coated and downwardly through an annular surrounding outbed of particulate material. Atomized coating liquid is directed centrally into the upbed for coating the particles as they travel upwardly. Airflow is generated within the coating chamber by drawing air through an upper filtering apparatus which blocks the passage of coated particulate.
It is important in such fluidized bed coating systems that the coating fluid be atomized into as small of particles as possible to facilitate efficient coating without undesirable agglomeration of liquid onto the particles to be coated. For this purpose, it is known to utilize pressurized air assisted atomizing liquid spray nozzles which facilitate fine coating liquid particle breakdown.
A problem with such fluidized bed coating systems is that the energy of the pressurized air utilized in atomizing the coating fluid tends to propel the coating particles upward past the particulate matter to be coated such as to prevent effective and efficient coating. The energy of the pressurized air further tends to propel the coated particulate into the filter system at the upper end of the coating chamber, causing clogging, operating inefficiency, and the necessity for frequent cleaning. Lowering the pressure of the atomizing air to minimize such problems, on the other end, results in ineffective atomization and liquid particle breakdown necessary for optimum coating.
It is an object of the invention to provide a fluidized bed coating system adapted for more efficiently and effectively coating particulate matter with finely atomized coating fluid.
Another object of a fluidized bed coating system as characterized above in which a coating fluid is atomized and discharged into the coating chamber in a manner that facilitates more complete interaction and coating of the particulate matter.
A further object to provide a fluidized bed coating system of the foregoing type which is operable for atomizing the coating fluid into finer liquid particles and for controlling the discharging coating particles for optimum interaction with particulate matter in an upbed section of the coating apparatus.
Still another object to provide such a fluidized bed coating system in which the fluidized bed airflow streams circulate the particulate matter in the coating chamber with lesser tendency for clogging of the filter system.
Other objects and advantages of the invention will be apparent upon reading the following detailed description and upon reference to the drawings.
While the invention is susceptible of various modifications and alternative constructions, a certain illustrative embodiment thereof has been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the invention to the specific form disclosed, but on the contrary, the invention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.
Referring now more particularly to
The orifice plate 15 includes an inner annular array of orifices 25 for communicating air from the inlet plenum 14 upwardly through the separator in immediately surrounding relation to a discharge end of the nozzle 16 and smaller diameter orifices 26 radially outwardly of the orifices 25 for communicating air upwardly into the coating chamber 12 outwardly of the cylindrical separator 19. The inner array of orifices 25, being larger in size than the outer orifices 26, will allow a higher volume and velocity of air from the inlet plenum 14 through the orifice plate 15 upwardly into the coating chamber 12, referred to as upbed air, for pneumatically transporting the particulate material upwardly past the spray nozzle 16 in an upbed region 28 (
As the particles rise upwardly in the high velocity upbed airstream, they contact droplets of coating liquid directed upwardly by the spray nozzle 16 and become coated before slowing down by the influence of gravity. The relatively high velocity upbed air stream forces the particles radially outwardly of the upbed region, and once away from the upstream lift provided by the upbed airstream, the particles fall within the bowl to the downbed region 29, eventually reaching the orifice plate 15 for recirculation into the upbed region 28.
To effect good coating of the particles, the coating fluid must be atomized into very fine liquid particles for direction into the upbed region 28, and for this purpose, pressurized air assisted spray nozzles commonly have been employed. As indicated above, however, the energy of the pressurized air directed to the spray nozzles tends to propel the liquid particles rapidly through the upbed region preventing effective coating of the particulate matter. Furthermore, the velocity can cause particles to become imbedded in the overhead filter, which impedes the filtering process and requires frequent cleaning.
In accordance with the present invention, the spray nozzle 16 ultrasonically atomizes the coating liquid into a very fine liquid particle discharge and is operable for controlling the spray discharge in a manner that enhances more effective and efficient coating of the particulate matter, and without clogging of the filter system. More particularly, the spray nozzle 16 atomizes the coating liquid without traditional pressurized air atomization and directs the liquid particles in a controlled fashion for enhanced interaction with the particulate matter in the upbed region of the coating chamber.
The illustrated ultrasonic nozzle 16, as best depicted in
For ultrasonically atomizing liquid directed through the liquid inlet tube 36, the nozzle 16 includes an ultrasonic atomizer 40, which can be made of a suitable material such as titanium, disposed adjacent downstream end of the spray nozzle 16. The ultrasonic atomizer 40 in this case includes an ultrasonic cylindrical driver 41 supported within an internal cylindrical cavity 44 in a downstream end of the cylindrical housing 31 and a rod like cannular atomizer stem 45 having an enlarged base 46 disposed in axial spaced relation to driver 41. At an axially forward tip or end, the atomizer stem 45 terminates in an atomizing surface 48, and the cannular atomizer stem 45 has a central liquid passage 49 that communicates with the liquid supply tube 36 through the driver 41 and has a liquid exit orifice 50 in the atomizing surface 48 (
To generate ultrasonic vibrations of the atomizing surface 48, the ultrasonic driver 41 includes a plurality of stacked piezoelectric transducer discs 55. In the illustrating embodiment, two piezoelectric transducer discs 55 are provided which are electrically coupled to an appropriate electronic generator via an electrical line in a raceway passage 56 in the cylindrical body section 31 and to an electrical communication port 58 in the inlet body section 30. As will be understood by one skilled in the art, the transducer discs 55 can be electrically coupled so that each disc 55 has an opposite or reverse polarity of an immediate adjacent disc. When electrical charge is coupled to the stack of piezoelectric discs 55, the discs 55 expand and contract against each other thereby causing the ultrasonic driver 41 to vibrate. The high frequency vibrations are transferred to the atomizing surface 48 via the atomizer stem 45, causing liquid present at the atomizing surface 48 to discharge in a cloud of extremely fine droplets or particles.
In carrying out the invention, the spray nozzle 16 is operable for forming the cloud of fine ultrasonically atomized liquid droplets into a well defined and controlled pattern for optimum interaction and coating of the particulate matter in the upbed region 29 of the coating chamber 12. To this end, the spray nozzle 16 is configured to communicate pressurized gas about the atomizing surface 48 in a manner that propels the atomized droplet cloud forwardly of the atomizing surface 48 in a controlled generally conical controlled pattern within the upbed region 28 for enhanced interaction with the circulating particulate matter within the upbed region 28. In the illustrated embodiment, the cylindrical nozzle body 31 is formed with a shaping air passage way 60 that communicates between a pressurized air inlet 61 in the inlet body section 30 to an annular manifold air chamber 63 about the atomizing stem 45 (
In further keeping with this embodiment, pressurized air communicates from the annular manifold chamber 60 into a hollow swirl chamber 62 about the atomizer stem 45 in a manner to create a tangential air flow within the swirl chamber 62 and through an annular air discharge orifice 65 between a central opening in the aircap 32 and the atomizer stem 45. In the illustrated embodiment, a plurality of circumferentially spaced passages 64 communicate between the manifold air chamber 60 and the swirl chamber 62 for creating a slight swirling action of pressurized air within the swirl chamber 62. The circumferentially spaced passageways 64 in this case are defined in the aircap 32 and are in radially offset relation to the atomizer stem 45, as shown in
In keeping with a further aspect of the illustrated embodiment, for preventing overheating of the vibrating piezoelectric discs 55, the nozzle body 31 is formed with a cooling air passageway 66 which extends between a cooling air inlet 68 in the inlet body section 30 and an annular cavity 69 surrounding the discs 55 (
From the foregoing, it can be seen that the fluidized bed coating system of the present invention is adapted for more efficient and effective coating of particulate matter with very finely atomized coating fluid. The cloud of finely atomized coating fluid is controlled in a manner that facilitates complete interaction and coating of the particulate matter, without traditional air atomization of the coating fluid, and with lesser necessity for cleaning of the filter system.
It will be understated that the use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention.
A preferred embodiment of the invention is described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Moreover, any combination of the above-desired elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law.
This patent application claims the benefit of U.S. Patent Application No. 61/713,305, filed Oct. 12, 2012, which is incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/064200 | 10/10/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/059063 | 4/17/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3241520 | Wurster | Mar 1966 | A |
3694675 | Loveday | Sep 1972 | A |
4320584 | Huttlin | Mar 1982 | A |
4858552 | Glatt | Aug 1989 | A |
6685775 | Jensen | Feb 2004 | B1 |
20030196598 | Jones | Oct 2003 | A1 |
20040250757 | Natsuyama | Dec 2004 | A1 |
20060130748 | Bender et al. | Jun 2006 | A1 |
20080000419 | Bender | Jan 2008 | A1 |
20100258648 | Filicicchia | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
61-259783 | Nov 1986 | JP |
Entry |
---|
Search Report dated Aug. 3, 2016, in European Patent Application No. 13844871.7, filed Oct. 10, 2013. |
Notice of Reasons for Rejection dated Oct. 17, 2017, in Japanese Patent Application No. 2015-536874, filed Oct. 10, 2013. |
Number | Date | Country | |
---|---|---|---|
20150258565 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61713305 | Oct 2012 | US |