This invention relates generally to fluidized particle abrasion devices.
In its most primitive form “sandblasting” can be accomplished by simply gravity feeding an abrasive media such as sand from a hopper with a hole in the bottom into a pressurized air stream. A slightly more sophisticated version of this is to use a pressurized powder tank instead of a hopper. This combination of pressure and gravity allows for a more consistent flow of the media. A simple metering orifice at the nozzle tip also helps with consistent delivery. These crude forms of abrasive blasting may be adequate for removing rust from an old car body prior to repainting, but they leave much to be desired especially when macro and micro abrading tasks are the norm in today's high technology fields. So the industry's goal has been to develop more sophisticated devices that feature precision, repeatable and consistent control of a fine air abrasion stream. However, fine abrasive powders and surface conditioning media in the 10 to 100 micron range used in these systems do not like to flow easily or consistently! Getting them out of a storage chamber into an air stream in a precision, consistent volume has been problematic. There are numerous reasons for this. Due to their bulk density and or cohesive nature, fine particles like to agglomerate and can result in phenomena such as: caking, bridging or “rat holing” when the media is housed in a hopper or chamber. Prior Art has provided various solutions to these flow problems, some being more successful than others, but each having disadvantages as well.
Some early systems utilized pressurized vessels with incoming air forced through a nozzle internal to the tank with a tip configured to create an excitation or “sandstorm” of the abrasive particles within. This air/particle mix was then propelled out through a port to a nozzle tip. Flow rate for this approach is dependent on how much abrasive is in the hopper. Results are sporadic and lacks repeatability and are further complicated when finer particles, (below 50 micron) are required.
Another step forward in the quest for more consistent powder feed was a chamber configured like a funnel so that gravity would influence abrasive particles to feed through an orifice in the bottom of the chamber and out through a cross hole to the nozzle tip. A further improvement was the addition of a pulsing action on the input side of the pressure tank which encouraged the powder to flow out to the nozzle tip. This scheme offers a refinement but the powder flow is not independent of air pressure and not adjustable. Also as the powder hopper goes from full towards empty the flow rate varies. Furthermore, when changing over from one abrasive type to another, it may be necessary to change the internal orifice in the bottom of the powder chamber a task that can take several minutes.
A significant improvement was the vibratory powder feed system. The first of these consisted of a powder tank mounted on a vibrator. With an assist from gravity, powder was vibrated down through a multi hole orifice plate into a mixing chamber where incoming air would pick up the abrasive particles and deliver them through the exit port and out to the nozzle tip. Abrasive powder flow is adjusted by turning the amplitude of the vibrator via a rheostat. See Black, U.S. Pat. No. 2,696,049.
Although a big step forward in powder flow flexibility, repeatability and consistency the downside for cycles of a short duration (stop and go) is a puff of abrasive at the start of each cycle caused by a venturi like effect when a burst of powder has been sucked into the air stream. Also after the unit has been off for a time the first cycle presents a burst of powder, because due to gravity, abrasive has sifted down through the orifice plate.
A later vibratory feed system consisted of an upper hopper via gravity feeding a lower mixing chamber configured like a bowl feeder mounted on a vibrator coil mounted within an outer tank. The vibration of inner tank would induce the abrasive particles to spiral upward, on a track, where they would then escape though an exit orifice. See Gallant, Kulischenko, U.S. Pat. No. 4,733,503. While eliminating the gravity powder burst problem this design has an issue with abrasive cascading over the rim of the bowl feed chamber into the outer chamber and eventually damping down the vibrator coil within the outer pressure chamber. There is also an issue with the fact that in use the coil heats up and causes the flow rate to fluctuate. (This means the coil must be kept warm at all times). Furthermore the vibrator amplitude and hence the flow rate is not easily adjusted. This results in a very temperamental system.
Yet another type of system consisted of a funnel shaped pressurized hopper with powder vibrated by a ball and raceway mechanism, the ball orbiting around the perimeter of the exit orifice is propelled by pneumatic pressure. The ball bearing orbiting the orifice along with gravity induces the powder to flow out through an intersecting cross hole orifice in the bottom of the chamber. Up from the bottom of the orifice is a throttling needle like device, also described as a pintle. Pivoting upwards or downwards by moving a lever, the pintle creates an adjustable gap at the bottom of the chamber to allow for variable powder flow rates. See Shipman U.S. Pat. No. 4,569,161. While offering fairly consistent flow rates the downside of this approach is the fact that the pneumatic ball bearing race used to agitate the abrasive powder can tax a compressor as it uses considerable amount of air.
As described above each of these approaches work to a certain degree but each has its inherent weaknesses.
The invention overcomes these weaknesses. The invention is a portable fluidized particle abrasion device for dispensing powders and other granular material comprising: a) a granular material dispensing chamber having an upper portion, a lower portion, side walls and a bottom, the bottom defining an exit orifice; and b) a flow valve for controlling the rate of the granular materials exiting the dispensing chamber through the exit orifice. The flow valve comprises: i) an elongate fluid flow chamber for receiving granular materials exiting the dispensing chamber through the exit orifice, the fluid flow chamber having a longitudinal axis, a cross-sectional area, an inlet port in fluid tight communication with the exit orifice for allowing granular materials exiting the chamber through the exit orifice to enter the fluid flow chamber, a fluid flow inlet port for receiving the flow of a fluid to the fluid flow chamber and a fluidized granular material exit port for dispensing a fluidized granular mixture of the material away from the fluid flow chamber; and ii) a flow regulator comprising a lead screw disposed at an angle with respect to the longitudinal axis of the fluid flow chamber and threadably adjustable to alternatively open and close the exit orifice of the dispensing chamber and to alternatively expand and contract the distance between the lead screw and the exit orifice, so as to control the flow of fluidized granular material dispensed through the fluidized granular material exit port.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description, appended claims, and accompanying drawings where:
The following discussion describes in detail one embodiment of the invention and several variations of that embodiment. This discussion should not be construed, however, as limiting the invention to those particular embodiments. Practitioners skilled in the art will recognize numerous other embodiments as well.
Definitions
As used herein, the following terms and variations thereof have the meanings given below, unless a different meaning is clearly intended by the context in which such term is used.
The terms “a,” “an,” and “the” and similar referents used herein are to be construed to cover both the singular and the plural unless their usage in context indicates otherwise.
As used in this disclosure, the term “comprise” and variations of the term, such as “comprising” and “comprises,” are not intended to exclude other additives, components, integers, ingredients or steps.
The Invention
The invention is a portable fluidized particle abrasion device 10 for dispensing powders and other granular material comprising a granular material dispensing chamber 12 and a flow valve 14. One embodiment of the invention is illustrated in
The granular material dispensing chamber 12 has an upper portion 16, a lower portion 18, side walls 20 and a bottom 22. The bottom 22 defines an exit orifice 24. Typically, the side walls 20 are cone-shape at the lower portion 18 of the dispensing chamber 12 to direct gravitation material within the dispensing chamber 12 toward the exit orifice 24.
It is also typical for the dispensing chamber 12 to be an internally pressurized vessel, having a removable pressure tight screw-on lid 26. In the embodiment illustrated in
A flow facilitator 32 can be placed concentrically around the exit orifice 24 at the bottom 22 of the dispensing chamber 12 to agitate the downwardly gravitating granular material, so as to facilitate the smooth movement of granular material towards the exit orifice 24. One type of flow facilitator 32 is a bourdon tube flow facilitator described in U.S. Pat. App. Ser. No. 61/839,491, filed Jun. 26, 2013 and entitled “Portable Air Abrasion Device With Precision Control Means,” the entirety of which is incorporated herein by reference. An embodiment of such flow facilitator 32 is illustrated in
As can be seen in the embodiment illustrated in
The bourdon tube 34 is typically C-shaped and the flexible duct 38 is a flattened, curved tube. When pressure is applied to the interior of the flexible duct 38, the expansion of the duct 38 tends to straighten out the duct 38. Accordingly, pulsating pressure applied to the duct 38 causes the duct 38 to alternatively unfurl (straighten) and furl (curl back to its normal C-shape). Rapid pressure pulsations can cause the closed end of the duct 38 to vibrate. When the bourdon tube 34 is disposed within a granular material dispensing chamber 12, the alternating straightening and curling of the duct 38 continuously agitates granular material within the dispensing chamber 12, to thereby minimize material flow problems, such as caking, bridging and rat holing.
The flow valve 14 is adapted to control the rate of the granular material exiting the dispensing chamber 12 through the exit orifice 24. The flow valve 14 comprises an elongate fluid flow chamber 40 for receiving granular material exiting the dispensing chamber 12 through the exit orifice 24. The fluid flow chamber 40 has a longitudinal axis 42 and a cross-sectional area. The fluid flow chamber 40 also has (i) a granular material inlet port 44 in fluid tight communication with the exit orifice 24 for allowing granular material exiting the dispensing chamber 12 through the exit orifice 24 to enter the fluid flow chamber 40, (ii) a fluid flow inlet port 46 for receiving the flow of a carrier fluid to the fluid flow chamber 40 and (iii) a fluidized granular material exit port 48 for dispensing a fluidized granular mixture of the granular material out of the fluid flow chamber 40.
The flow valve 14 further comprises a flow regulator 50 comprising a lead screw 52 disposed at an angle, such as 90 degrees, with respect to the longitudinal axis 42 of the fluid flow chamber 40. The lead screw 52 is adjustable to alternatively open and close the exit orifice 24 of the dispensing chamber 12, and to alternatively expand and contract the distance between the lead screw 52 and the exit orifice 24, so as to control the flow of granular material dispensed through the fluidized granular material exit port 40.
As illustrated in
In the embodiment illustrated in the drawings, the lead screw 52 rotates inside a stationary nut 53. A 0.000″ gap (“the home position”) allows no granular material to flow. A gap between the pintle 54 and the exit orifice 24 produces granular material flow into the fluid flow chamber 40. The narrow range of travel of the pintle 54 is very accurately controlled with a fine pitch (i.e., greater than 80 T.P.I., for example 110 T.P.I.) lead screw 52.
The lead screw 52 is preferably moved by use of a motorized driver 56. The use of a stepper motor as the motorized driver 56 is the preferred embodiment, such as with a 5:1 ratio gearhead. Alternate embodiments include the use of a servo motor or other multi-turn rotational means to drive the lead screw 52.
By motor driven lead screw/pintle assembly to its home position, an almost instantaneous shut off of the granular material flow can be achieved, thus allowing only the carrier gas to flow. This temporary, no-abrading, carrier gas only feature is very useful for many procedures. Reversing the motor direction causes the screw/pintle assembly to retract from its home position and allows abrading to resume. These two functions are operator controlled by a two-position foot switch 80.
As can also be seen in
The granular material exit port 48 is typically coaxial with the fluid flow inlet port 46 in the flow valve 14. Also, its inside diameter is typically about 200%-250% larger than the inlet port—which provides the venturi effect—acting as a final encouragement for powder to flow into the air stream. In a typical embodiment, the fluid flow inlet port 46 is 0.040″ in diameter and the fluidized granular material exit port 48 is 0.060 in diameter.
In one embodiment of the invention, a pinch valve 62 is disposed downstream of the flow valve 14 and adapted to block the flow of fluidized granular mixture away from the fluid flow chamber 40. As illustrated in
The pinch valve tube 68 is “pinched” by a plunger 69 in communion with a piston 70 pressurized by a pneumatic solenoid 72. The pinch valve tube 68 is “opened” by a spring 71 acting against the lower portion 66 and the plunger 69 when the pneumatic solenoid 72 is de-energized.
The pinch valve tube 68 defines a vent hole 74 which is squeezed closed when the top portion 64 is attached to the bottom portion 66, but which is open when the top portion 64 is removed from the bottom portion 66.
In the embodiment illustrated in the drawing, the pinch valve tube 68 is held captive by the upper portion 64 and the lower portion 66. Two thumb screws 76 hold the top potion 64 tightly against the lower portion 66.
The pinch valve tube 68 is made from an elastomeric, abrasion resistant material and is held in compression around the hose fittings on each end by the clamping pressure of the blocks. The vent hole 74 is located underneath one of the compression areas. Because of compression provided by the interaction of the top portion 64 and the bottom portion 66, the rubber like material of the pinch valve tube 68 seals the vent hole 74. Removing the block thumb screws 76 breaks the seal and vents fluid from the system through a vent conduit 77. After pressure within the pinch valve tube 68 is vented via the vent hole 74, the pinch valve tube 68 can be quickly removed from the pinch valve 62 and replaced with a new pinch valve tube 68. Replacing the upper portion 64 tightly against the lower portion 66 and tightening the two thumb screws 76 completes the exchange and re-seals the depressurizing vent hole 74 in the new pinch valve tube 68.
The invention provides an improved portable air abrasion device when can be conveniently employed for surface conditioning of various substrates. The invention is useful for many applications including deburring, deflashing, cleaning, etching, coating removal, surface conditioning, fossil preparation, artistic carving and cutting or abrading of hard and/or delicate brittle materials.
This embodiment of the invention 10 can be effectively employed in a wide range of dentistry procedures, including preparations for sealants and decay on occlusal surfaces of teeth, removing inter proximal decay from between teeth, preparing for veneers, inlays, on-lays and crowns, prepping teeth along receding gingival margins to add composite to those areas with exposed dentin, removing failed composites an sealants, remove temporary cement before the permanent prosthesis is cemented in, removing the black stain down inside a cavity when the amalgam is removed, disclosing access points during an endodontic procedure, air abrading many ceramic and hybrid prosthetic materials before cementing them into the mouth.
1. A pressurized dispensing chamber 12 with a transparent lid 26 for storing and dispensing abrasive or surface conditioning media.
2. A flow facilitator 32 inside the dispensing chamber 12 in the form of a bourdon tube 34 driven by an electronically controlled pulsator.
3. A flow valve 14 that mates with the underside of the dispensing chamber 12. Flow rate of granular material is controlled electro-mechanically by control functions referenced on the membrane control panel.
4. Adjustable carrier gas regulation means whose pressure is electro-mechanically controlled by the pressure control function on a membrane panel 84.
5. A pressure regulator 78 to reduce the incoming carrier gas pressure to the level desired in the system.
6. An external pressurized carrier gas source. The system can utilize either compressed air or helium for abrading, but air is needed for the general pneumatic system of the device.
7. Operator control means in the form of the membrane switch panel 84 which has the following functions:
Controls and Status Indicators For:
Status Indicators For:
All of the above functions feature LED backlit illumination
8. A foot switch 80 which is a stand-alone additional operator control. It is wireless. It has two switching functions. The first foot push enables air only to flow. A further foot push activates the second switch which makes the air abrasion stream active.
9. Electronics support means in the form of a printed circuit board module. It handles all of the electrical requirements of the system.
10. Pneumatic means consisting of numerous electro/pneumatic switching valves, check valves and pneumatic circuits needed to support the system functions.
11. A battery consisting of two 6 volt rechargeable nickel metal hydride (NiMH) battery packs wired in series to produce the 12V DC system voltage.
12. A pinch valve 62 which is a pneumatic/mechanical module that “pinches off” the air of the air abrasive stream flowing through a pinch valve tube 68. The pinch tube valve 68 comprises a short section of elastomeric abrasion resistant tubing that is in line with the air abrasive stream. It is “opened” when pneumatic solenoid 2 is energized venting to atmosphere. It is “pinched” closed when the pneumatic solenoid 72 is de-energized. The pinch valve tube 68 requires periodic replacement and is therefore placed externally on the rear of the device for easy access.
The membrane switch panel 84 can be a module of multi-layer construction consisting of various membrane sheets, tactile and non-tactile switches, LED lights and a ribbon cable. As illustrated in
Control and Status
Status Only
All of the above functions are illuminated by LED backlighting.
The controls on the switch panel 86 are preferably ergonomic and graphic. They may consist of finger width, horizontal membrane pads with multiple pressure sensitive “wipe” switches underneath. Each has a peripheral raised bezel. Each array consists of nine non-tactile (no click response) switches. As one “swipes” one's finger across the pad from left to right, the switches sequentially tell the electronics to increase the propellant pressure or powder flow. Reversing the wipe direction will correspondingly reduce same. Wherever one stops the finger wipe is where the control will be set. Above each wipe pad is an array of LED lights arranged in vertical bar graph form to visually indicate the present control setting. Any switches that are wiped will have their corresponding bar graph lights remain lit. Alternatively, instead of a wiping action, a single finger “poke” anywhere in the membrane pad will result in setting the control at that point as well as lighting all the corresponding lower LED lights.
As shown in
Within the system are various minor components such as:
As best seen in
To use this embodiment of the device 10, one must first charge the internal battery packs by connecting a charger to the rear 12V D.C. in connector. With a charged battery, the external carrier gas source (either air or helium) can be connected. If helium is to be the carrier gas of choice, a pressurized air source must also be connected as this is what the pneumatic functions of the device operate on.
The foot switch 80 with fresh batteries is placed on the floor in a convenient location. Pressing the power switch on the switch panel 84 and then selecting the carrier fluid of choice readies the device 10 for use.
Next, the settings for carrier fluid pressure and granular material flow need to be set. This is accomplished by “wiping” one's finger horizontally across the switch panel 84 portion marked “Pressure” and “Powder”. Bar graph LED lights will sequentially light to indicate the degree of pressure or flow you have selected.
Having independent easy operator control of these two functions is an important and unique aspect of this device. Because of different media sizes and types and different nozzle inside diameters to select from, optimum abrading or surface conditioning of various substrates can be easily obtained. Clogging of nozzles can also be eliminated by reducing the amount of powder flowing into a given air stream pressure.
Pressing one's foot down partway on the foot switch 80 will activate a carrier gas only stream to flow out of the nozzle. This can be used for “blowing off”, cleaning or drying of surfaces. Further depressing of the foot switch 80 activates the fluidized granular material stream to whatever setting has been selected on the main device control panel.
Compressed air, either from a compressor or a pressurized cylinder is the carrier gas for most typical sand blast systems. Other gases may also be used in specific applications.
Helium, for example, though not as readily available, has some very interesting characteristics that make it a strong candidate for the abrasive particle carrier gas. This is particularly true for intraoral dental procedures on teeth. While compressed air at 80 psi is very commonly used to ablate enamel and sometimes dentin, helium will cut 40% faster than air at any given pressure setting. And it does so with no increase in patient sensitivity. Sometimes even less sensitivity is seen. This phenomenon is likely due to the fact that the helium atom is one seventh the size of the air molecule and simply stated is therefore a better leaker than air and propels the particles more efficiently. Helium atoms also accelerate as they exit an orifice and try to get away from each other as fast as possible. In turn, this means the abrasive particles have no encumbrances to retard their acceleration. Helium also has the characteristic of warming slightly when exiting through an orifice from a pressure vessel which may also account for a reduction in patient sensitivity.
When patient sensitivity becomes an issue when ablating in dentin, it is a well-known technique for many clinicians familiar with the art, to reduce air pressure down to say 40 psi, for example, this can reduce patient sensitivity. The disadvantage with air however is that it also dramatically increases the time required to do a preparation. In contrast reducing pressure to 40 psi when using Helium means dentin is ablating away at a pace equivalent to air at about 80 psi. The result is faster prep time for the clinician. Furthermore reducing pressure down to 20 psi, to elicit even less patient discomfort, while impractical with air, is very doable with helium.
The primary reason helium has not been used in most of the other previously discussed air abrasion powder feed schemes, is that too much powder is introduced into the air stream making an already messy powder feed system even messier and harder to control.
The invention with its precise adjustable powder feed control will make using helium a very practical choice for the clinician. Furthermore, when the clinician deems that helium is not required, a push of a button will switch the system over to compressed air.
It should also be noted that even when helium is the propellant gas of choice the ancillary pneumatic functions of our device are being operated with compressed air so as to better conserve the supply of Helium.
In summary, while air is certainly more readily available, the unique characteristics of speed combined with the reduction in patient discomfort make helium a very strong candidate for intraoral dental procedures.
Having thus described the invention, it should be apparent that numerous structural modifications and adaptations may be resorted to without departing from the scope and fair meaning of the instant invention as set forth herein above and described herein below by the claims.
This application claims priority from U.S. Patent Application Ser. No. 61/839,491, entitled “Portable Air Abrasion Device With Precision Control Means,” filed Jun. 26, 2013 and U.S. Patent Application Serial No. 61/818,161, entitled “Flow Facilitator,” filed May 1, 2013, the entirety of both of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2048139 | Porteous | Jul 1936 | A |
2170258 | Borch | Aug 1939 | A |
2192287 | Goebels | Mar 1940 | A |
2696049 | Black | Dec 1954 | A |
2734782 | Galle | Feb 1956 | A |
2740561 | Coffman, Jr. | Apr 1956 | A |
2878969 | Griswold | Mar 1959 | A |
3337094 | Houston | Aug 1967 | A |
3407972 | Cymbalisty | Oct 1968 | A |
3432208 | Draper et al. | Mar 1969 | A |
3525445 | Barger | Aug 1970 | A |
3595437 | Howard | Jul 1971 | A |
4176767 | Franche | Dec 1979 | A |
4383766 | Eriksson | May 1983 | A |
4416568 | Anderson | Nov 1983 | A |
4472091 | Callahan | Sep 1984 | A |
4502819 | Fujii et al. | Mar 1985 | A |
4569161 | Shipman | Feb 1986 | A |
4591075 | Eriksson | May 1986 | A |
4733503 | Gallant et al. | Mar 1988 | A |
4810156 | Pendleton et al. | Mar 1989 | A |
4934569 | Womack et al. | Jun 1990 | A |
5012957 | Mihail | May 1991 | A |
5490745 | Thiele et al. | Feb 1996 | A |
6079911 | Wangermann et al. | Jun 2000 | A |
6083001 | Deardon et al. | Jul 2000 | A |
6186360 | Becker et al. | Feb 2001 | B1 |
6244788 | Hernandez | Jun 2001 | B1 |
6283680 | Vidal | Sep 2001 | B1 |
6708851 | DaSilva | Mar 2004 | B2 |
6776361 | Watanabe et al. | Aug 2004 | B1 |
6802685 | Federhen | Oct 2004 | B1 |
6892748 | Junier et al. | May 2005 | B2 |
8200367 | Foley et al. | Jun 2012 | B2 |
20020137005 | Cevey et al. | Sep 2002 | A1 |
20030024955 | Maguire | Feb 2003 | A1 |
20030131666 | Ewers et al. | Jul 2003 | A1 |
20090001101 | Zahradka et al. | Jan 2009 | A1 |
20110204094 | Meckstroth et al. | Aug 2011 | A1 |
20120015592 | Eliason | Jan 2012 | A1 |
20120181345 | Mueller | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
09253401 | Sep 1997 | JP |
2000280173 | Oct 2000 | JP |
2003230562 | Aug 2003 | JP |
Entry |
---|
U.S. Appl. No. 14/156,959, filed Jan. 16, 2014, titled “Micro Particle Flow Facilitator”. |
“Backlash (engineering).” Wikipedia. (publication date unknown) <http://en.wikipedia.org/w/index.php?title=Backlash—(engineering)&printable=yes>. |
Office Action dated Jul. 31, 2014 issued in U.S. Appl. No. 14/156,959. |
International Search Report and Written Opinion issued in PCT/US2014/035717 on Aug. 21, 2014. |
International Search Report and Written Opinion issued on Sep. 1, 2014 in International Application No. PCT/US2014/035718. |
Number | Date | Country | |
---|---|---|---|
20140328636 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61839491 | Jun 2013 | US | |
61818161 | May 2013 | US |