The present invention relates to an auxiliary testing apparatus adopted for use in the biomedical field and particularly to a fluorescent auxiliary testing apparatus that has a simple structure and a small size, and may be fabricated at a low cost.
The biomedical technology has had great advances in recent years. New innovations and breakthroughs appear constantly. With thriving of semiconductor industries, research and development of related electronic elements also have great progress. As a result, biomedical research also advances significantly.
Testing technology is one of the focused areas in biomedical research. Conventional testing methods generally include to placing a bio-chip set on an optical disk that has a data layer and projecting a light of a selected wavelength. An optical reader is used to read the fluorescent signals emitted by the bio-chip set and data layer signals of the optical disk. Finally a data processing unit is employed to process the fluorescent signals and the data layer signals, and rebuild the fluorescent signals of the bio-chip set in a two dimensional format. Reference can be found in U.S. Pat. No. 6,320,660.
Besides the testing method mentioned above, electrophoresis (EP) is a technique widely used to do various types of tests. Its basic principle is that any substance that is ionized by itself or by absorbing other charged particles will moves towards a selected electrode in an electric field. The charged particle may be a small ion, or a larger bio molecule such as protein, nucleic acid, virus, or the like. For instance, the amino acids of the protein are bi-character substances. They can be ionized and charged in a selected pH condition to become a source of electric charge. The charged particle may move to an electrode of an opposite electric polarity in an electric field. This phenomenon is called ‘electrophoresis’.
In the testing areas such as in the biomedicine, the principle of electrophoresis is widely adopted. When a capillary containing a testing object is subject to a high voltage, an electrophoresis phenomenon takes place. The deoxyribonucleic acid (DNA) of the testing object may be coupled with a fluorescent additive. When projected by a light source such as laser, fluorescent lights with different wavelengths will be generated. Then gene characteristics and concentration data of the testing object may be obtained, and test analysis reports may be generated for research and development use.
However, the fluorescent testing apparatus required for capillary electrophoresis gene analysis usually have a complex design and are quite bulky. They are very expensive and maintenance costs also are high. As research organizations generally have procurement budget constraint, it becomes a big concern. This is a problem, which still has to be overcome.
Therefore the present invention aims to provide a fluorescent auxiliary testing apparatus that has a simple structure and a small size, and adopts a modular design and can perform tests simultaneously for a plurality of testing objects and is inexpensive.
The fluorescent auxiliary testing apparatus according to the invention mainly includes a light source module, a collimator, a dichroic mirror, a first converging lens, a filter assembly, a second converging lens and a photo detector. The light source module is for emitting laser light. The collimator is located on one side of the light source module to receive and transform the laser light so that it travels in a parallel fashion. The dichroic mirror is located on one side of the collimator and forms 45° against the parallel traveling direction of the laser light to reflect the laser light. The first converging lens is located on one side of the dichroic mirror to focus and project the reflected laser light on a testing object which emits a corresponding testing fluorescent light.
Then the testing fluorescent light passes through the first converging lens and travels proximately in parallel to pass through the dichroic mirror. The filter assembly is located on one side of the dichroic mirror to receive the testing fluorescent light, passing through the dichroic mirror and blocking scattering lights, to keep the wavelengths of the passed fluorescent light in a selected range. The second converging lens is to converge and focus the filtered fluorescent light. Finally the photo detector on one side of the second converging lens receives the filtered testing fluorescent light and transforms it to photoelectric signals. The photoelectric signals may be transformed to digital signals through a photoelectric signal converter. The transformed digital signals are transferred to data processing equipment, such as a computer for a test analysis.
The fluorescent auxiliary testing apparatus according to the invention may be used on capillary electrophoresis gene analysis instruments, gene chip sets, protein chip sets and the like, that have a fluorescent light testing apparatus. It has a small size and simple construction. It adopts a modular design and can perform testing for a plurality of testing objects simultaneously. The elements are easy to procure, thus production costs are lower.
The foregoing, as well as additional objects, features and advantages of the invention will be more readily apparent from the following detailed description, which proceeds with reference to the accompanying drawings.
Referring to
The filter assembly 60 is located on another side of the dichroic mirror to block scattering lights and background lights from entering, and allow only the testing fluorescent light of wavelengths of a selected range to pass through, thereby limiting the wavelength range of the testing florescent light to meet test requirements. The filter assembly 60, depending on test requirements, may consist of a plurality of optical band pass filters. In general, the flat surface of the filter assembly 60 that receives the testing fluorescent light forms an angle of 90° against the incident direction of the testing fluorescent light. The second converging lens 70 is an aspheric object lens and located on one side of the filter assembly 60 to converge and focus the filtered testing fluorescent light of a selected wavelength range that has passed through the filter assembly 60. Finally the photo detector 80 located on one side of the second converging lens receives the filtered testing fluorescent light and transforms it to photoelectric signals. The photo detector 80 may be substituted by many other devices of similar functions such as a photo-multiplier tube or low noise photo diodes, and the like. As the photo-multiplier tube is bulky and expensive, low noise photo diodes that have a lower operation voltage, a longer service life and a lower price, are preferred choices.
Referring to
The fluorescent auxiliary testing apparatus according to the invention may adopt a modular design as shown in
While the preferred embodiments of the invention have been set forth for the purpose of disclosure, modifications of the disclosed embodiments of the invention as well as other embodiments thereof may occur to those skilled in the art. Accordingly, the appended claims are intended to cover all embodiments, which do not depart from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
092134742 | Dec 2003 | TW | national |