Dimmable ballast systems are employed for providing varying levels of light output. Conventional dimming ballasts include multiple discrete ballasts with one or more being selectively shut off to provide a lower light output. This approach, however, cannot achieve continuous dimming and is instead restricted to a finite number of discrete light output levels. This technique is further limited to multiple lamp installations. Conventional continuous dimming approaches operate lamps in series. This technique, however, can lead to premature lamp degradation or failure through undesirable lamp cooling and/or extinguishment. Moreover, this approach suffers from inability to produce light when one or more lamps fail. Another approach has been proposed in which a DC bus amplitude is varied via pulse width modulation (PWM) control to power a voltage or current fed inverter for driving one or more lamps, but this technique adds cost and has only proven feasible to about 10% of the rated lamp current, and thus does not provide the desired amount of dimming for certain applications. Thus, there is a continuing need for improved fluorescent lamp dimming apparatus and techniques for providing cost-effective varying light levels without lamp stress or damage.
The present disclosure provides simple low cost dimming ballast apparatus and control techniques that may be employed to facilitate dimming operation over a wide range of output levels, down to less than 1% of rated current, without lamp damage and uniform light intensity between lamps in a multiple lamp fixture, producing light while one or more lamps are replaced in a parallel output ballast.
A dimming ballast is disclosed, which includes an input rectifier and a DC-DC converter driving a frequency-controlled self-oscillating inverter which produces an AC signal to power one or more fluorescent lamps. An inverter control system is provided which includes first and second regulators to control the inverter operating frequency in order to adjust the inverter output current and voltage. The first control regulator modifies the inverter operating frequency at least partially based on a sensed lamp current value and a current setpoint value, such as an external dimming control signal. The second regulator adjusts the inverter output according to a voltage setpoint value and a sensed AC bus node voltage value. The ballast can thus be used in multiple-lamp configurations to perform dimming control while accommodating removal of one or more lamps without allowing excess current conditions.
In one embodiment, the inverter provides first and second switching devices coupled in series across a DC input, along with associated drive circuits each including a drive control inductance and a resonance inductance. The inverter in this embodiment also includes a resonant circuit with an inductance that is inductively coupled with the drive circuit inductances and is connected between a center node of the switching devices and an AC bus node so that the drive circuits oscillate for complementary actuation of the first and second switching devices at an inverter operating frequency. The inverter provides an output with one or more ballast capacitances coupled between the AC bus node and the lamp load(s) to drive the lamps in a controlled fashion. The first regulator in this embodiment includes a frequency control inductance inductively coupled with the drive circuit control inductances, and the first regulator selectively varies a loading associated with the first frequency control inductance to modify the drive circuit inductance and thus control the inverter operating frequency so as to adjust the inverter output according to the current setpoint value and the sensed lamp current. The first regulator thus operates in normal dimming mode to regulate the lamp current around the dimming control (current) setpoint. The second regulator also has a (second) frequency control inductance inductively coupled with the drive circuit control inductances, and operates to selectively vary the loading of the second frequency control inductance to control the inverter operating frequency so as to adjust the output of the inverter based on the voltage setpoint value and the sensed AC bus node voltage value. In exemplary embodiments, the second regulator performs voltage regulation to regulate the AC bus node voltage to be at or below a voltage threshold value. This limits the output voltage of the inverter during delamping or when lamps eventually fail.
In some embodiments, the second regulator also includes a cathode heat circuit which selectively heats one or more lamp cathodes and controls the inverter frequency to reduce the output to a predetermined value when the sensed lamp current value is below a threshold value. The cathodes are effectively operated in parallel to maintain a constant voltage.
Certain embodiments of the first regulator include a current setpoint circuit with input terminals to receive a dimming level setpoint signal, as well as a current sense circuit operatively coupled with the inverter to sense a lamp current value and a current regulator that regulates the lamp current according to the dimming level setpoint signal.
A method is provided for powering at least one fluorescent lamp, which includes energizing a self-oscillating inverter to produce an AC signal to power at least one fluorescent lamp, sensing an AC bus node voltage value of the inverter, sensing a lamp current value, receiving a current setpoint value, selectively adjusting the inverter operating frequency to control an output of the inverter based at least partially on the current setpoint value and the sensed lamp current value in a dimming control mode, selectively adjusting the inverter operating frequency to control the output of the inverter to regulate an AC bus node voltage to be at or below a voltage threshold value, and selectively heating one or more lamp cathodes and selectively adjusting the inverter operating frequency to reduce the output of the inverter to a predetermined value when the sensed lamp current value is below a lamp current threshold value.
One or more exemplary embodiments are set forth in the following detailed description and the drawings, in which:
Referring now to the drawings, where like reference numerals are used to refer to like elements throughout, and wherein the various features are not necessarily drawn to scale, the present disclosure relates to electronic lighting and more particularly to dimming ballasts for use in connection with fluorescent lamps and will be described with particular reference thereto, although the exemplary ballasts described herein can also be used in other lighting applications, and are not limited to the aforementioned application.
The inverter 140 includes transformers T2-T4 for output power sensing and control for self-oscillation with adjustable inverter operating frequency, as well as a transformer T1 for cathode heating operation.
Transformer T2 has a first winding T2A in series between the inverter output 211 and the HFB 212 along with windings T2B and T2C in switch drive control circuits 221 and 222 associated with the switching devices Q1 and Q2, respectively. In operation of the inverter 140, the winding T2A acts as a primary in the resonant circuit 213 and the secondary windings T2B and T2C are connected in the gate drive circuits for Q1 and Q2, respectively for oscillatory actuation of the switches according to the resonance of the circuit 213.
The transformer T3 has a first winding T3A operative as a frequency control inductance in the second regulator 150b and windings T3B and T3C in the switch control circuits 221 and 222, where each drive control circuit 221, 222 includes a series combination of windings from T2 and T3. The third transformer T3 is used by the controller 150 to selectively control the inductance of the gate drive circuits 221 and 222 and thus to control the inverter operating frequency for closed loop operation of the inverter 140 to control the amount of power delivered to the lamps 108 at the output 106.
AC power from the high frequency bus 212 provides an AC output 106 used to drive one or more lamp loads 108 (four lamps 108 shown in the illustrated example of
A transformer T1 is provided to implement selective heating for lamp cathodes, including a primary winding T1A coupled to the inverter output 211 via a capacitor C223 and coupled via a node FT to a cathode heat circuit 154 (
The high frequency bus is generated at the node 212 by the inverter 140 and the resonant circuit 213, which includes a resonant inductance T2A as well as an equivalent resonant capacitance including the equivalent of capacitors C1 and C2 connected in series between the DC+ and GND1 nodes, with a center node coupled to the bus 212 via capacitor 213. A clamping circuit is formed by diodes D1 and D2 individually coupled in parallel with the capacitances C1 and C2, respectively. The switches Q1 and Q2 are alternately activated to provide a square wave of amplitude VDC/2 at the common inverter output node 211 (e.g., half the DC bus voltage across the terminals 122a and 122b), and this square wave inverter output excites the resonant circuit 213. Gate or control lines 214 and 216 include resistances R1 and R2 to provide control signals to the control terminals of Q1 and Q2, respectively.
The switch gating signals are generated using the drive circuits 221 and 222, with the first drive circuit 221 coupled between the inverter output node 211 and a first circuit node 218, and the second drive circuit 222 coupled between the circuit ground GND1 and node 216. The drive circuits 221 and 222 include the first and second driving inductors T2B and T2C or transformer T2, which are secondary windings mutually coupled to the resonant inductor T2A of the resonant circuit 213 to induce voltage in the driving inductors T2B and T2C proportional to the instantaneous rate of change of current in the resonant circuit 213 for self-oscillatory operation of the inverter 140. In addition, the drive circuits 221 and 222 include the secondary inductors T3B and T3C serially connected to the respective first and second driving inductors T2B and T2C and the gate control lines 214 and 216. The windings T3B and T3C operate as drive control inductances with the inverter control regulators 150a and 150b each having tertiary frequency control inductance windings (T3D and T3A, respectively) by which the controller 150 can change the oscillatory frequency of the inverter 140 by varying the inductance of the windings T3B and T3C through control of the current through the frequency control inductance(s).
In operation, the gate drive circuits 221 and 222 maintain Q1 in an “ON” state for a first half of a cycle and the switch Q2 “ON” for a second half of the cycle to generate a generally square wave at the output node 211 for excitation of the resonant circuit 213. The gate to source voltages Vgs of the switching devices Q1 and Q2 in one embodiment are limited by bi-directional voltage clamps Z1, Z2 and Z3, Z4 (e.g., back-to-back Zener diodes) coupled between the respective switch sources and the gate control lines 214 and 216. In this embodiment, the individual bi-directional voltage clamp Z1, Z2 and Z3, Z4 cooperate with the respective inductor T3B and T3C to control the phase angle between the fundamental frequency component of voltage across the resonant circuit 213 and the AC current in the resonant inductor T2A.
To start the inverter 140, series coupled resistors R3 and R4 across the input terminals 122a and 122b cooperate with a resistor R110 (coupled between the inverter output node 211 and the circuit GND1) to initiate regenerative operation of the gate drive circuits 221 and 222. The inverter switch control circuitry further includes capacitors C3 and C4 coupled in series with the windings T3B and T3C, respectively. When DC power is initially provided to the inverter 140, C3 is charged from the positive DC input 122a via R3, R4 and R110, while a resistor R5 shunts the capacitor C4 in the drive circuit 222 to prevent C4 from charging and thereby prevents concurrent activation of Q1 and Q2. Since the voltage across C3 is initially zero, the series combination of T2B and T3B acts as a short circuit due to a relatively long time constant for charging of the capacitor C3. Once C3 charges up to the threshold voltage of the Vgs of Q1, (e.g., 2-3 volts in one embodiment), Q1 turns ON and a small bias current flows through Q1. This current biases Q1 in a common drain, Class A amplifier configuration having sufficient gain to allow the combination of the resonant circuit 213 and the gate control circuit 221 to produce a regenerative action to begin oscillation of the inverter 140 at or near the resonant frequency of the network including C3, T3B, and T2B, which is above the natural resonant frequency of the resonant circuit 213. As a result, the resonant voltage seen at the high frequency bus node 212 lags the fundamental of the inverter output voltage at node 211, thereby facilitating soft-switching operation of the inverter 140. The inverter 140 therefore begins operation in a linear mode at startup and transitions into switching Class D mode. The inverter will not start up until the 5V power supply reaches at least the threshold of the depletion mode MOSFET Q106. When this happens, the voltage at the gate of Q2 rises and allows the inverter 140 to begin oscillating.
In steady state operation of the ballast 102, the square wave voltage at the inverter output node 211 has an amplitude of approximately one-half of the voltage of the positive terminal 122a (e.g., Vdc/2), and the initial bias voltage across C3 drops. In the illustrated inverter a first network 224 including the capacitor C3 and inductor T3B and a second network 226 including the capacitor C4 and inductor T3C are equivalently inductive with an operating frequency above the resonant frequency of the first and second networks 224, 226. In steady state oscillatory operation, this results in a phase shift of the gate circuit to allow the current flowing through the inductor T2A to lag the fundamental frequency of the voltage produced at the inverter output node 211, thus facilitating steady-state soft-switching of the inverter 140. The output voltage of the inverter 140 in one embodiment is clamped by the serially connected clamping diodes D1 and D2 to limit high voltage seen by the resonant circuit capacitors C1 and C2. As the inverter output voltage at node 211 increases, the clamping diodes D1, D2 start to clamp, preventing the voltage across the capacitors C1 and C2 from changing sign and limiting the output voltage to a value that prevents thermal damage to components of the inverter 140.
The controller 150 senses the output load current signal sensed by the primary winding T4A to perform various control functions to regulate the lamp current by varying the inductances of the inverter windings T3B and T3C, and hence the operating frequency of the inverter 140, by changing the loading seen by one or both of the tertiary windings T3A and T3D. In the illustrated inverter 140, as the operating frequency decreases, the output current increases, and vice versa. The inverter frequency, moreover, decreases with decreased loading of either T3A or T3D. Thus, the control regulators 150a and/or 150b (
U301 of the current regulator circuit 152 compares the setpoint with the sensed lamp current value to control switch Q301 via resistors R304, R302, and R312 and capacitor C304 to control the loading of the first frequency control inductance T3D, where fully shorting the rectifier connected to T3D (Q301 fully ON) loads the winding T3D and thus lowers the inverter output 106. In closed loop fashion, the current regulator 152 selectively varies the loading of the frequency control inductance T3D to control the inverter operating frequency to regulate the lamp current according to the dimming level setpoint signal 160 to achieve dimmer control operation of the ballast 102, where increasing the loading of T3D (e.g., by increasing the gating signal to Q301) decreases the inductance of the transformer windings T3B and T3C and thereby increases the inverter frequency and decreases the output lamp current when the sensed lamp current level is above the setpoint value, and vice versa when the sensed lamp current level is below the setpoint 160. The current regulator 152 thus operates to selectively vary the loading of the frequency control inductance T3D to control the inverter operating frequency to regulate the lamp current according to the dimming level setpoint signal 160. The exemplary second regulator 150a, moreover, is referenced to a second ground GND2, where the DC supply voltage 5V for U301 and U302 is established using current from the 15V supply via a 5 volt zener Z301, resistor R301, and capacitor C301.
Referring also to
The second regulator 150b in the embodiment of
The resistors R213 and R207 establish a bias point for operation of the voltage regulation such that higher bus voltages cause Q203 to increase the loading on T3A thereby increasing the inverter frequency to lower the output power, whereby the high frequency bus voltage at node 212 will not exceed a predetermined threshold 161 set by the bias point. In operation, when an end user removes one or more lamps 108 or if a lamp 108 fails and the normal current control of the first regulator 150a drives the inverter 140 to the setpoint total output current level, the voltage regulator 156 takes over once the sensed HFB voltage has risen too far, and will regulate the bus voltage to be at or below a voltage threshold value 161. When the user thereafter replaces the lamp(s) 108, the first rectifier 150a can then resume steady-state current regulation around the dimming level setpoint value 160 after another preheat cycle.
Voltage regulator 156 also includes an anti-flash circuit 158 integrator including MOSFET Q204, capacitor C226, and resistor R211 which operates to delay the transition after preheating so as to allow C226 to slowly charge up if the dimming setpoint value 160 is low. In operation, this allows the voltage regulator 156 to start regulating at a lower bus voltage until the voltage across C226 gradually increases to a steady level.
Referring now to
The heating mode in the illustrated embodiment continues for a pre-determined time period set by a one-shot circuit formed by a Schmidt trigger U201, resistor R223, and capacitor C210, which is powered by a 5.3 volt zener circuit including zener Z210, capacitor C220 and resistor R225. The output of the one-shot trigger U201 is coupled to the output of U202 to end the heating activation of T1 after this preset time period. The one-shot signal output is pulled up to the 5V supply via resistor R224 and also activates MOSFET pair Q205a, Q205b for selectively shorting the frequency control inductance T3A during the heating period via terminals CT3 and CT4. In this manner, the cathode heat circuit 154 also varies the loading of T3A to reduce the inverter output to a predetermined low value when the sensed lamp current value is below the lamp current threshold value 162 during cathode heating.
The disclosed techniques further provide a method of powering one or more fluorescent lamps, which includes energizing a self-oscillating inverter 140 to produce an AC signal 212 to power at least one fluorescent lamp 108, sensing an AC bus node voltage value of the inverter 140, sensing a lamp current value, receiving a current setpoint value 160, selectively adjusting the inverter operating frequency to control an output of the inverter 140 based at least partially on the current setpoint value 160 and the sensed lamp current value in a dimming control mode, selectively adjusting the inverter operating frequency to control the output of the inverter 140 to regulate an AC bus node voltage (HFB) to be at or below a voltage threshold value 161, and selectively heating one or more lamp cathodes and selectively adjusting the inverter operating frequency to reduce the output of the inverter 140 to a predetermined value when the sensed lamp current value is below a lamp current threshold value 162.
The above examples are merely illustrative of several possible embodiments of various aspects of the present disclosure, wherein equivalent alterations and/or modifications will occur to others skilled in the art upon reading and understanding this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices, systems, circuits, and the like), the terms (including a reference to a “means”) used to describe such components are intended to correspond, unless otherwise indicated, to any component, such as hardware, software, or combinations thereof, which performs the specified function of the described component (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the illustrated implementations of the disclosure. In addition, although a particular feature of the disclosure may have been illustrated and/or described with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, references to singular components or items are intended, unless otherwise specified, to encompass two or more such components or items. Also, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in the detailed description and/or in the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”. The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations.
This application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/154,580, which was filed Feb. 23, 2009, entitled FLUORESCENT DIMMING BALLAST, the entirety of which application is hereby incorporated by reference. This application relates to U.S. Pat. No. 7,436,124, filed Jan. 31, 2006, entitled VOLTAGE FED INVERTER FOR FLUORESCENT LAMPS to Nerone et al., and to currently pending U.S. patent application Ser. No. 12/040,216 to Nerone et al., filed Feb. 29, 2008 and entitled DIMMABLE INSTANT START BALLAST.
Number | Name | Date | Kind |
---|---|---|---|
5162700 | Soileau | Nov 1992 | A |
5796214 | Nerone | Aug 1998 | A |
5872429 | Xia et al. | Feb 1999 | A |
5917289 | Nerone et al. | Jun 1999 | A |
6078143 | Nerone | Jun 2000 | A |
6175195 | Janczak et al. | Jan 2001 | B1 |
6326740 | Chang et al. | Dec 2001 | B1 |
6417631 | Chen et al. | Jul 2002 | B1 |
6429604 | Chang | Aug 2002 | B1 |
6509696 | Bruning et al. | Jan 2003 | B2 |
6815908 | Glaser et al. | Nov 2004 | B2 |
6836077 | Nerone | Dec 2004 | B2 |
6867553 | Nerone et al. | Mar 2005 | B2 |
7288901 | Yu et al. | Oct 2007 | B1 |
7414372 | Ribarich | Aug 2008 | B2 |
20050184685 | Sekine et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
0 340 049 | Nov 1989 | EP |
0 479 352 | Apr 1992 | EP |
Number | Date | Country | |
---|---|---|---|
20100213850 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 61154580 | Feb 2009 | US |
Child | 12486086 | US |