The field of the present invention is fixtures and components for fluorescent lamps.
Fluorescent lighting has long provided cost effective, efficient and low heat artificial light sources finding utility, inter alia, for overhead lighting in buildings and other structures. Such lighting fixtures typically employ multiple elongate fluorescent tubes arranged horizontally to one side of a reflector and covered by a lens. Such fixtures are commonly found supported on a ceiling of a building structure.
With the advent of mechanisms for enhancing brightness and reducing striking requirements in colder environments, such fluorescent lamps are capable of being employed in garage environments where the ambient temperature is not maintained above the outdoor temperature. One such device for enhancing brightness and striking is illustrated in U.S. Patent Publication 2006/0227552, published Oct. 12, 2006 in the name of Glenn M. Tyson, the disclosure of which is incorporated herein by reference.
In garages having a typical commercial garage layout, a center aisle flanked by parking spaces extending laterally away from the aisle have recommended standards employing a maximum/minimum horizontal illumination uniformity ratio of 10:1. With central lighting in the aisles, the maximum light intensity is found beneath the fixtures while the minimum is found at the outside edges of the parking spaces. Typically, flood light luminaires employed in rows parallel to the center aisle are spaced and arranged to meet the appropriate standard.
The present invention is directed to a fluorescent lamp fixture which employs a fixture housing, an elongate first reflector to one side of the housing and two sets of fluorescent lamp sockets extending outwardly of the first reflector to define fluorescent lamp mounting locations for receipt of fluorescent tubes.
In a first separate aspect of the present invention, an elongate second reflector is displaced from and faces the first reflector. The first reflector extends laterally in both directions beyond the second reflector and the second reflector extends laterally outwardly of the two fluorescent lamp mounting locations. This second reflector has two reflective longitudinal surfaces on either side to reflect light from the adjacent fluorescent lamp mounting locations laterally of the second reflector. This arrangement directs such light outwardly to reduce the maximum/minimum horizontal illumination uniformity ratio.
In a second separate aspect of the present invention, an elongate second reflector is displaced from and faces the first reflector. The first reflector extends laterally in both directions beyond the second reflector and the second reflector extends fully across and laterally outwardly of the two fluorescent lamp mounting locations. This second reflector has two reflective longitudinal surfaces on either side to reflect light from the adjacent fluorescent lamp mounting locations laterally of the second reflector. This arrangement reduces glare downwardly and directs such light outwardly to reduce the maximum/minimum horizontal illumination uniformity ratio.
In a third separate aspect of the present invention, an elongate second reflector is displaced from and faces the first reflector. The first reflector extends laterally in both directions beyond the second reflector and the second reflector extends fully across and laterally outwardly of the two fluorescent lamp mounting locations. This second reflector has two reflective longitudinal surfaces on either side to reflect light from the adjacent fluorescent lamp mount laterally of the second reflector. The first reflector is a diffuse reflector while the second reflector is a specular reflector. This arrangement eliminates light shining directly down from the fluorescent lamp mounting locations. The reflective surfaces are chosen to provide additional diffuse light downwardly to fill in beneath the second reflector while efficiently transmitting direct light outwardly to the lateral extent of the coverage. The reflective longitudinal surfaces direct such light outwardly to reduce the maximum/minimum horizontal illumination uniformity ratio.
In a fourth separate aspect of the present invention, an elongate second reflector is displaced from and faces the first reflector. The first reflector extends laterally in both directions beyond the second reflector and the second reflector extends laterally outwardly of the two fluorescent lamp mounting locations. This second reflector has two reflective longitudinal surfaces on either side to reflect light from the adjacent fluorescent lamp mount laterally of the second reflector. The reflective longitudinal surfaces direct such light outwardly to reduce the maximum/minimum horizontal illumination uniformity ratio. A refracting lens is arranged over the fluorescent lamp mounting locations and the reflectors to distribute and diffuse light from the fixture. This refracting lens may further mount the second reflector.
In a fifth separate aspect of the present invention, an elongate second reflector is displaced from and faces the first reflector. The first reflector extends laterally in both directions beyond the second reflector and the second reflector extends laterally outwardly of the two fluorescent lamp mounting locations. This second reflector has two reflective longitudinal surfaces on either side to reflect light from the adjacent fluorescent lamp mount laterally of the second reflector. A refracting lens is arranged over the fluorescent lamp mounting locations and the reflectors to distribute and diffuse light from the fixture. Overcenter latches are mounted on the fixture housing and include engagements depending therefrom to engage the refracting lens. Some of the engagements include springs biasing the engagements away from the refracting lens to limit the number of attachment points with the overcenter latches unlatched. This allows for a more facile removal of the refractive lens.
In a sixth separate aspect of the present invention, any of the foregoing aspects are contemplated to be employed in combination to greater advantage.
Thus, it is an object of the present invention to provide an improved fluorescent lamp fixture. Other and further objects and advantages will appear hereinafter.
Turning in detail to the drawings,
Turning to
The optic subassembly 16 also includes an elongate first reflector 30. This reflector 30 forms the lower side of the ceiling housing 10 and extends longitudinally thereof. The reflector is formed in lateral cross section with two concave sections 32, 34 with the concavity facing toward the defined fluorescent lamp mounting locations. The angles to the plane of the fluorescent lamp mounting locations found in each of the concave sections 32, 34 which have been found to be advantageous in this one particular fixture include a 21° angle for the outermost reflecting element 36, an 8° angle for the middle element 38 and a 14° angle in the opposite rotation for the inner element 40. A small center section 42 between the concave sections 32, 34 is parallel to the plane of the fluorescent lamp mounting locations.
The first reflector 30 extends laterally outwardly of the fluorescent lamp mounting locations with the lamp sockets 24, 26 being mounted to the sections 40. Light from the lamps 28 themselves and direct reflection from this first reflector 30 provide a lateral spread of light from the fixture. To increase the dispersion of light from the first reflector 30, the surface thereof is reflective white. This creates a diffuse reflector.
An elongate second reflector 44 is located to the other side of the defined fluorescent lamp mounting locations from the first elongate reflector 30, thus placing the fluorescent lamp mounting locations directly between the two reflectors 30, 44. This elongate second reflector 44 extends fully across below the fluorescent lamp mounting locations so that no direct light from the lamps 28 shines directly downwardly. This elongate second reflector 44 also extends laterally outwardly of the two fluorescent lamp mounting locations to a small extent but not so far as the elongate first reflector 30. Two reflective longitudinal surfaces 46, 48 are arranged at 43° to the plane of the fluorescent lamp mounting locations to reflect light from the adjacent fluorescent lamps 28 laterally of the second reflector 44 to extend the illumination further from the fixture. An elongate flat section 50 spans between the two reflective surfaces 46, 48 to have the elongate second reflector 44 extend fully across below the fluorescent lamps 28. The elongate second reflector 44 is a specular reflector with a polished surface to improve the efficiency of reflection in the lateral direction.
A refracting lens 52 surrounds the first and second reflectors 30, 44 and the fluorescent lamp mounting locations. The refracting lens 52 preferably extends to the end plates 22 of the housing. Further, a gasket 54 may be employed with the refracting lens 52. The refracting lens 52 is a diffuser lens of clear plastic having bumps or angles on the surface to further disperse light. The elongate second reflector 44 is conveniently mounted to the refracting lens 52 as can be seen in
In operation, light from the fluorescent lamps 28 is directed laterally between the reflectors 30, 44 through the refracting lens 52. Additionally, light from the fluorescent lamps 28 encounters the elongate first reflector 30 and is generally reflected with dispersion based on the surface of the reflector 30. Thus, light is diffused to the reflective longitudinal surfaces 46, 48 and then laterally therefrom. Additionally, diffused light is reflected from the elongate first reflector 30 downwardly to fill in the area blocked beneath the elongate second reflector 44. Thus, full dispersion of the light reflected from the elongate first reflector 30 is achieved. Additionally, light directly from the fluorescent lamps 28 is also reflected in a more direct and efficient manner laterally of the fixture off of the elongate second reflector 44 because of the specular reflector surface. The refracting lens then diffuses this light as well to achieve an overall advantageous light pattern for commercial type garages.
The performance of a fixture constructed in accordance with the illustrated preferred embodiment is shown in
Thus, an improved fluorescent lamp fixture is described. While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.