Fluorescent nanoparticles

Information

  • Patent Grant
  • 8410225
  • Patent Number
    8,410,225
  • Date Filed
    Tuesday, September 8, 2009
    15 years ago
  • Date Issued
    Tuesday, April 2, 2013
    12 years ago
Abstract
A fluorescent nanoparticle includes a core comprising an alkenylbenzene; an intermediate layer, an outer shell layer, and a fluorescent portion. The fluorescent portion includes a structure represented by the following formula:
Description
FIELD

The technology disclosed herein is generally related to fluorescent nanoparticles. More particularly, it relates to a fluorescent nanoparticle comprising a core, an intermediate layer, and a shell. This disclosure also provides a method of making the fluorescent nanoparticles.


BACKGROUND

Fluorescent microparticles may be prepared by several practical methods from a variety of polymerizable monomers, including styrenes, dienes, acrylates and unsaturated chlorides, esters, acetates, amides and alcohols. For example, U.S. Pat. No. 4,326,008 to Rembaum discloses fluorescent microspheres obtained by copolymerizing an acrylic monomer containing a covalent bonding group such as hydroxyl, amine, or carboxyl with a fluorescent co-monomer such as dansyl allyl amine. U.S. Pat. No. 5,194,300 to Cheung and U.S. Pat. No. 4,774,189 to Schwartz disclose fluorescent microspheres that are coated by covalently attaching to their surface one or more fluorescent dyes. U.S. Pat. No. 5,073,498 to Schwartz and U.S. Pat. No. 4,717,655 to Fulwyler disclose fluorescent dyes added during particle polymerization process. In Uniform Latex Particles; Seragen Diagnostics Inc. 1984, p. 40, L. B. Bangs describes a method of internally embedding or diffusing a dye after particles have been already polymerized. U.S. Pat. No. 5,723,218 to Haugland et al. discloses diffusely dyeing microparticles with one or more dipyrrometheneboron difluoride dyes.


Fluorescent particles to which biological molecules have been attached have been used for immunoassays, as described, for example, in U.S. Pat. No. 4,808,524 to Snyder et al.; as labels for cell surface antigens, as described, for example, in Jett, Keller, Martin, Nguyen, & Saunders, Ultrasensitive Molecular-Level Flow Cytometry, in FLOW CYTOMETRY AND SORTING, p. 381, 2nd ed., Wiley-Liss Inc., N.Y. 1990; and as tracers to study cellular metabolic processes, as described, for example, in Hook & Odeyale, Confocal Scanning Fluorescence Microscopy: A New Method for Phagocytosis Research, J. LEUKOCYTE BIOL. 45: 277 (1989).


Particles based on micelle formation are also known, for example, U.S. Pat. Nos. 6,437,050, 6,689,469, 6,956,084, 7,112,369, which are hereby incorporated by reference in their entirety. These patents disclose the method of making styrene-core and butadiene-shell micelle particles. Related publications include “Dendrimers and Dendrons, Concept, Synthesis, Application”, edited by Newkome G. R, Wiley-VCH, 2001; and “Synthesis, Functionalization and Surface Treatment of Nanoparticles”, edited by Baraton M-I, ASP (Am. Sci. Pub.), Stevenson Ranch, Calif., 2003.


Over the past several years, polymer nanoparticles have also attracted increased attention not only in the technical fields such as catalysis, combinatorial chemistry, protein supports, magnets, and photonics, but also in the manufacture of rubber products such as tires. For example, nanoparticles can modify rubbers by uniformly dispersing throughout a host rubber composition as discrete particles. The physical properties of rubber such as moldability and tenacity can often be improved through such modifications.


The production and use of fluorescent labels in medicine and biology have grown rapidly and have been very profitable in the market. The availability of a new class of fluorescent markers offering clearly improved performance and safety is a strategic interest for this market. Today, biologists employing fluorescent techniques rely on dye molecules that have serious drawbacks. Particularly, many of these dye molecules are carcinogenic. Therefore there is a need for a safer, better performing material for use in the fluorescent/bio-optical market.


SUMMARY

A new class of fluorescent nanoparticles, and a method for their preparation is described and claimed.


As depicted in the example shown in FIG. 1, the nanoparticles described herein are each made up of a group or a collection of several polymer chains that are organized around a center 1. The polymer chains are linked together by a core formed from dialkenylbenzene(s). The polymer chains extend from the core 2 outwardly to form an intermediate layer 3. The intermediate layer 3 includes the monomer portions of the polymers that are not at the outer terminal end of the polymers (i.e., the intermediate layer includes monomer units that are not in the shell 4). It should be understood that the intermediate layer is not limited to a single monomer unit in each polymer chain, but may include several monomer units. Additionally, the intermediate layer may be separated into sublayers, and the sublayers may include blocks of various homopolymer or copolymer. For example a sublayer may include a block of randomized styrene-butadiene copolymer or a homopolymer such as polyisoprene or polystyrene. A shell layer or shell 4, is comprised of the monomer units or functionally or non-functionally initiated polymer chain heads at the outer terminal ends of each polymer. The shell layer 4 is the outermost portion of the nanoparticle.


The living polymers form micelles due to the aggregation of ionic chain ends and the chemical interactions of the hydrophobic polymer chains in hydrocarbon solvent. When the alkenylbenzene is added, the micelles become crosslinked and the stable nanoparticle is formed.


In one example, a fluorescent nanoparticle comprises (1) a core made from alkenylbenzene; (2) an intermediate layer; (3) a shell layer comprising the outer surface of the nanoparticle; and (4) a fluorescent portion that arises from the addition of a corresponding monomer with a structure represented by the following formula:




embedded image


where L is a direct bond or a linker group, and F is any fluorescent moiety. The fluorescent portion is located in at least one of the following locations: the core, the intermediate layer, or the shell layer of the nanoparticle.


An example method of preparing such fluorescent nanoparticles includes: (i) preparing a living polymer with a fluorescent portion by a step selected from the group consisting of: (a) copolymerizing a fluorescent monomer with a monomer or monomers; (b) polymerizing a monomer or monomers with a fluorescent initiator; and (c) polymerizing a monomer to produce a living polymer, and subsequently adding a fluorescent monomer to the living polymer to create a fluorescent block; (ii) adding a crosslinking agent; and (iii) quenching the ionic chain ends with a proton source. After (i) but before (ii), the ionic chain ends of the polymers with fluorescent portions aggregate into micelles. The addition of the crosslinking agent causes the nanoparticle to form by producing a crosslinked core.


In yet another example, a fluorescent nanoparticle includes a core, an intermediate layer, and a shell layer. The intermediate and shell layers include ionic chain ends that extend from the intermediate layer into the core. The shell is the outermost layer of the nanoparticle. The core includes alkenylbenzene monomer units that have crosslinked the ionic chain ends of the intermediate layer. The alkenylbenzene monomers may have the same structure or may be a mixture of two or more different structures. A fluorescent portion is located in at least one of the intermediate or shell layers, or at the core. The fluorescent portion includes at least one fluorescent monomer with a structure represented by the following formula:




embedded image



where L is a direct bond or a linker group, and F is a fluorescent moiety. The fluorescent monomer may be located at the core, the intermediate layer, or the shell layer.


The fluorescent nanoparticles can be used in rubber compositions.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an example diagram of a nanoparticle;



FIG. 2 is a transmission electron microscopy (TEM) photograph of fluorescent nanoparticles; and



FIG. 3 is the microscopy picture of a film containing the fluorescent nanoparticles.





DETAILED DESCRIPTION

An exemplary fluorescent nanoparticle comprises a core including crosslinked alkenylbenzene monomers, an intermediate layer that includes polymer chains, and an outer shell layer that includes the head of the polymer chains. A fluorescent portion is located along the polymer chain in the intermediate layer, the shell, or at the core. It should be understood that the intermediate layer may have various thicknesses, i.e. the polymers may include one or many monomers. Preferably, the nanoparticle is less than 200 nm in diameter (expressed as a mean average diameter), more preferably less than about 100 nm, and most preferably less than about 50 nm. The nanoparticles are preferably spherical, though shape defects are acceptable, provided the nanoparticles generally retain their discrete nature with little or no polymerization between particles.


The fluorescent nanoparticles can be copolymerized in several ways. In one example, one or more monomers are polymerized with an initiator such as butyl lithium. The resulting ionic chain ends self-assemble into micelles around a center to form an aggregate core, while the hydrophobic polymer chains radiate out away from the ionic chain ends. A crosslinking agent, such as DVB, is then added along with a fluorescent monomer (or optionally the fluorescent monomer can be added in a separate step). The ionic chain ends within the aggregate core randomly react with both the DVB and fluorescent monomer to yield a crosslinked core containing fluorescent moieties. A proton source is used to quench the living polymer chains. Suitable proton sources are well known to those of skill in the art and include, but are not limited to, alcohols such as isopropanol.


In another example, one or more monomers are polymerized using a fluorescent initiator. The fluorescent initiator can be formed from a fluorescent monomer and an initiator such as butyl lithium. The resulting polymers have a fluorescent portion at one end. In a hydrocarbon solvent, the ionic chain ends aggregate into a micelle with the fluorescent portion on the outer surface. Then a crosslinking agent, such as DVB, is added to crosslink portions of the ionic chain ends of the micelle, thereby forming and stabilizing the core of the nanoparticle. A proton source is used to quench the living polymer chains.


In another example, one or more monomers and at least one fluorescent monomer are copolymerized using an initiator such as butyl lithium. The resultant living copolymers have a fluorescent portion within the chains. The ionic chain ends then self-assemble into micelles in a hydrocarbon solvent. A crosslinking agent, such as DVB, is added to crosslink portions of the ionic chain ends of the micelle, thereby forming and stabilizing the core of the nanoparticle. A proton source is used to quench the living polymer chains.


In another example, one or more monomers are polymerized using an initiator such as butyl lithium to a desired degree of polymerization. The resulting polymers are then copolymerized with one or more fluorescent monomers. This yields living copolymer chains with fluorescent portions within the chain. The living copolymer chains then self-assemble into micelles in a hydrocarbon solvent. A crosslinking agent, such as DVB, is added to crosslink portions of the ionic chain ends within the micelle, thereby forming and stabilizing the core of the nanoparticle. A proton source is used to quench the living polymer chains.


In variations of the above exemplary nanoparticle assembly methods, additional monomers can be copolymerized with the monomer, yielding various copolymers. Furthermore, the fluorescent monomer can be added at various stages in the copolymerization so as to control where in the polymer chain the fluorescent monomer is located.


Examples of the types of monomers that may be used to prepare the polymer chains of the nanoparticles include: styrene, t-butyl styrene, butadiene, isoprene, copolymers of a combination of these, or derivatives thereof. Mixtures of different polymers and copolymers are also possible in a single nanoparticle.


An exemplary fluorescent nanoparticle synthesis method comprises a multi-stage anionic polymerization. Multi-stage anionic polymerizations have been conducted to prepare block-copolymers, for example in U.S. Pat. No. 4,386,125, which is incorporated herein by reference.


A liquid hydrocarbon medium can function as the solvent, and may be selected from any suitable aliphatic hydrocarbon, alicyclic hydrocarbon, or mixture thereof, with a proviso that it exists in liquid state during the preparation of the nanoparticles. Exemplary aliphatic hydrocarbons include, but are not limited to, pentane, isopentane, 2,2 dimethyl-butane, hexane, heptane, octane, nonane, decane, and the like. Exemplary alicyclic hydrocarbons include, but are not limited to, cyclopentane, methyl cyclopentane, cyclohexane, methyl cyclopentane, cycloheptane, cyclooctane, cyclononane, cyclodecane, and the like. Generally, aromatic hydrocarbons and polar solvents are not preferred as the liquid medium. In exemplified embodiments, the liquid hydrocarbon medium comprises hexane or cyclohexane.


In one example, the fluorescent nanoparticles are formed from polymers having a poly(alkyl-substituted styrene) block and a polymer block of fluorescent monomers having a structure represented by the formula shown below:




embedded image



in which L is a direct bond or a linker group, and F is any fluorescent moiety.


For example, the fluorescent moiety F may be selected from the group consisting of perylene, phenanthrene, anthracene, naphthalene, pyrene, chrysene, naphthacene, and combinations thereof.


In one example, the —F group has a structure represented by the formula as shown below (pyrene):




embedded image



such as:




embedded image


The -L- group may be just a direct bond or any suitable divalent group, for example, methylene, ethylene, and propylene group. Preferably, the -L- group has a structure represented by the formula as shown below:




embedded image



in which X comprises a heteroatom such as O, S, P(R2), Si(R2)2, Si(OR2)2 (where R2 is as defined below), and N (where N can be substituted such that the -L- group contains a tertiary amino group); and R1 is a straight or branched C1-C8 alkylene group.


In an example, the -L- group has a structure represented by the formula as shown below:




embedded image


The fluorescent monomer may have, for example, a structure represented by the formula as shown below:




embedded image


The fluorescent block may also optionally further comprise other monomers.


An example alkyl-substituted styrene block monomer of the example polymer may have a structure represented by the formula shown below:




embedded image



in which m is an integer and 1≦m≦5, preferably m is 1 or 2; and R2 may be selected from saturated or unsaturated, substituted or unsubstituted, straight or branched, cyclic or acyclic C3-C8 alkyl groups.


Another exemplary alkyl-substituted styrene monomer comprises tert-butyl styrene (TbST) such as t-butyl styrene as shown below:




embedded image


It is believed that the alkyl group in the alkyl-substituted styrene monomer lowers the overall solubility of the resulting living polymer in a selected liquid hydrocarbon medium thereby facilitating micelle self-assembly and nanoparticle formation.


In one example, the alkyl-substituted styrene monomer may be copolymerized with any suitable fluorescent comonomers; and as a result, the later formed nanoparticles will have a fluorescent intermediate later. Fluorescent comonomers for this purpose include, but are not limited to cinnamyl-O—CH2-pyrene. An exemplary polymerization of alkyl-substituted styrene monomers into a poly(alkyl-substituted styrene) block is initiated via addition of anionic initiators that are known in the art. For example, the anionic initiator can be selected from any known organolithium compounds. Suitable organolithium compounds are represented by the formula as shown below:

R(Li)x

wherein R is a hydrocarbyl group having 1 to x valence(s). R generally contains 1 to 20, preferably 2-8, carbon atoms per R group, and x is an integer of 1-4. Typically, x is 1, and the R group includes aliphatic groups and cycloaliphatic groups, such as alkyl, cycloalkyl, cycloalkylalkyl, alkylcycloalkyl, alkenyl, as well as aryl and alkylaryl groups.


Specific examples of R groups include, but are not limited to, alkyls such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, n-amyl, isoamyl, n-hexyl, n-octyl, n-decyl, and the like; cycloalkyls and alkylcycloalkyl such as cyclopentyl, cyclohexyl, 2,2,1-bicycloheptyl, methylcyclopentyl, dimethylcyclopentyl, ethylcyclopentyl, methylcyclohexyl, dimethylcyclohexyl, ethylcyclohexyl, isopropylcyclohexyl, 4-butylcyclohexyl, and the like; cycloalkylalkyls such as cyclopentyl-methyl, cyclohexyl-ethyl, cyclopentyl-ethyl, methyl-cyclopentylethyl, 4-cyclohexylbutyl, and the like.


In selected examples, n-butyllithium, sec-butyllithium, tert-butyllithium, or a mixture thereof are used to initiate the polymerization of alkyl-substituted styrene monomers into a poly(alkyl-substituted styrene) block.


In one example, a fluorescent initiator may be used to initiate the polymerization of alkyl-substituted styrene monomers; and as a result, the later formed nanoparticles will have a fluorescent surface.


Examples of suitable fluorescent initiator include, but are not limited to, the following lithium compound:




embedded image


Other examples of suitable fluorescent initiators may be obtained as taught in U.S. Published Application No. 2006/0036050, the entirety of which is incorporated herein by reference.


The polymerization of alkyl-substituted styrene monomers into a poly(alkyl-substituted styrene) block may last until a predetermined degree of polymerization is obtained. The degree of polymerization may be selected for particular applications. For example, a predetermined degree of polymerization of the poly(alkyl-substituted styrene) block may be broadly within the range of from about 1 to about 50, preferably within the range of from about 1 to about 25, more preferably within the range of from about 1 to about 10, and most preferably within the range of from about 1 to about 5.


The living polymer block that contains one or more fluorescent monomers may be copolymerized or crosslinked with a multiple vinyl-substituted aromatic hydrocarbon to form the desired fluorescent nanoparticles. The fluorescent nanoparticles preferably retain their discrete nature with little or no polymerization between each other. In an example embodiment, the fluorescent nanoparticles are substantially monodisperse and uniform in shape.


In another example, a mixture of multiple vinyl-substituted aromatic hydrocarbon and fluorescent monomer may be used to copolymerize with the poly(alkyl-substituted styrene) block, thus producing a crosslinked fluorescent core.


An exemplary multiple vinyl-substituted aromatic hydrocarbon has a formula as shown below:




embedded image



in which p is an integer and 2≦p≦6, preferably, p is 2 or 3, more preferably p is 2, i.e. divinylbenzene (DVB).


In certain examples, the divinylbenzene may be selected from any one of the following isomers or any combination thereof:




embedded image


Consequently, the fluorescent nanoparticles are formed from the micelles with a core including crosslinked alkyl-substituted styrene blocks and an intermediate layer including fluorescent blocks.


The polymerization reactions used to prepare the fluorescent nanoparticles may be terminated with a terminating agent. Suitable terminating agents are known to those skilled in the art and include, but are not limited to, alcohols such as methanol, ethanol, propanol, and isopropanol.


In embodiments, the molecular weight (grams/mole) of the fluorescent nanoparticles may be broadly within the range of from about 50,000 to about 100 million, preferably within the range of from about 100,000 to about 10 million.


Various rubber articles may be manufactured from the composition as described supra. References for this purpose may be made to, for example, U.S. Pat. No. 6,875,818, which is herein incorporated by reference.


In one example application, a composition including the fluorescent nanoparticles discussed herein may be sprayed or coated on a tire sidewall. The fluorescent property of the nanoparticles may function to improve traffic safety at night by increasing the visibility of the tires and the vehicle. Biological applications are also envisioned.


The following examples are included to provide additional guidance to those skilled in the art in practicing the claimed invention. The examples provided are merely representative of the work that contributes to the teaching of the present application. Accordingly, these examples are not intended to limit the invention, as defined in the appended claims, in any manner.


EXAMPLES
Example 1
Preparation of Cinnamyl-O—CH2-pyrene Fluorescent Monomer

To a solution of 1-pyrene methanol (5 g, 21.5 mmol) in THF (150 mL) was added NaH (2 g, 50 mmol). After stirring for 30 min., cinnamyl chloride (4.3 g, 28.7 mmol) was added drop wise. After 2.5 h of reflux, the reaction was quenched with water and the two layers separated. The organic solution was washed with water (2×100 mL) followed by washing with brine (2×100 mL), dried over MgSO4 and concentrated to an orange oil. The product was purified by column chromatography (1:1, CH2Cl2:hexanes) to yield 5 g (67% yield). The structure was confirmed by 1H NMR analysis.


Example 2
Preparation of Fluorescent Nano Micelle Particles (FNMPs) with t-Butylstyrene

To a 10 oz. nitrogen purged bottle, cyclohexane (20 mL), t-butylstyrene (1.2 mL), oligomeric oxolanyl propane (OOPs) (0.03 mL, 1.6M) and butyl lithium (0.1 mL, 1.54M) were added. The bottle was placed into 80° C. water bath for 10 minutes. After cooling to 23° C., a charge of cinnamyl-O—CH2-pyrene (10 mL, 0.14M in cyclohexane) was added into the bottle. After continual cooling for 5 minutes, a charge of DVB (0.5 mL) was added to the mixture. The reaction proceeded for 1 hour, and then was then terminated by adding isopropanol (0.1 mL).


Example 3
Preparation of FNMPs with t-Butylstyrene

To a 10 oz. nitrogen purged bottle, hexane (20 mL), t-butylstyrene (1.2 mL), and butyl lithium (0.1 mL, 1.54M) were added. Then, the bottle was placed into an 80° C. water bath for 30 minutes. The bottle was then cooled and maintained at a temperature of 23° C. A mixture of cinnamyl-O—CH2-pyrene (10 mL, 0.14M in cyclohexane), DVB (0.5 mL) and t-butylstyrene (1 mL) was added to the bottle. The reaction proceeded at 23° C. for 2 hours, and was then terminated by adding isopropanol (0.1 mL).


Example 4
Preparation of FNMPs with t-Butylstyrene

To a 10 oz. nitrogen purged bottle, hexane (20 mL), t-butylstyrene (1.2 mL), and butyl lithium (0.1 mL, 1.54M) were added. Then, the bottle was placed into 80° C. water bath for 30 minutes and then cooled to 25° C. A mixture of cinnamyl-O—CH2-pyrene (10 mL, 0.14M in cyclohexane), DVB (0.5 mL), and t-butylstyrene (1 mL) was added to the bottle. After the reaction proceeded at 23° C. for 1 hour, t-butylstyrene (1 mL) was added to the bottle. After an additional 60 minutes, the reaction was terminated by adding isopropanol (0.5 mL).


Example 5 (Prospective)
Preparation of FNMPs with Butadiene

To a 10 oz. nitrogen purged bottle, hexane (20 mL), butadiene (5 gr, 20% in hexane), oligomeric oxolanyl propane (OOPs) (0.03 mL, 1.6M solution) and butyl lithium (0.1 mL, 1.54M) would be added. The bottle would then be placed into 80° C. water bath for 10 minutes. After cooling to 23° C., a charge of cinnamyl-1-methylpyrene ether (10 mL, 0.14M in cyclohexane) would be added into the bottle. After continual cooling for 5 minutes, a charge of DVB (0.5 mL) would be added to the mixture. The reaction would proceed for 1 hour, and then would be terminated by adding isopropanol (0.1 mL).


Example 6 (Prospective)
Preparation of FNMPs with Styrene Butadiene

To a 10 oz. nitrogen purged bottle, hexane (20 mL), styrene (1 gr, 30% in hexane), butadiene (5 gr, 20% in hexane), oligomeric oxolanyl propane (OOPs) (0.03 mL, 1.6M solution) and butyl lithium (0.1 mL, 1.54M) would be added. The bottle would be placed into 80° C. water bath for 10 minutes. After cooling to 23° C., a charge of cinnamyl-1-methylpyrene ether (10 mL, 0.14M in cyclohexane) would be added into the bottle. After continual cooling for 5 minutes, a charge of DVB (0.5 mL) would be added to the mixture. The reaction would proceed for 1 hour, and then would be terminated by adding isopropanol 0.1 mL).


Example 7
Characterization of Fluorescent Nano Micelle Particles (FNMPs)

A 1 mL portion of the Example 3 solution was diluted to about a 1×10−4 wt % solution in toluene. A drop of the diluted solution was then coated on a graphed copper micro-screen. After the solvent evaporated, the screen was exposed to RuO4 for about 5 minutes, and then examined by TEM. The image (see FIG. 2) shows that the FNMPs have a mean size of about 40 nm.


Example 8
Characterization of Fluorescent Nano Micelle Particles (FNMPs)

A 5 mL aliquot was taken from the Example 3 reaction and added to an aluminum pan. After the solvent evaporated, a film of about 0.1 mm thickness resulted. The characterization was performed using an Olympus-BH2 microscope equipped with a Polaroid camera. The polymer film was examined under a UV light. The film showed fluorescence under green light (˜450 to 510 nm). As shown in FIG. 2, the film was entirely glowing as compared to the background. The experiment indicated that the desired nano-sized materials with fluorescent properties were produced.


While the invention has been illustrated and described by way of examples, it is not intended to be limited to the details shown, since various modifications and substitutions can be made without departing in any way from the spirit of the present invention. As such, further modifications and equivalents of the invention herein disclosed may occur to persons skilled in the art using no more than routine experimentation, and all such modifications and equivalents are believed to be within the spirit and scope of the invention as defined by the following claims.

Claims
  • 1. A method for preparing a fluorescent nanoparticle, the method comprising: (i) preparing a living polymer with a fluorescent portion by a step selected from the group consisting of: (a) copolymerizing a fluorescent monomer with a non-fluorescent monomer; and(b) polymerizing a non-fluorescent monomer to produce a living polymer, and subsequently adding a fluorescent monomer to the living polymer;(ii) adding a crosslinking agent;(iii) quenching the living polymer chain ends with a proton source:wherein the living polymer with the fluorescent portion is prepared by polymerizing an alkenylbenzene to produce a polyalkenylbenzene, and subsequently adding a fluorescent monomer to the polyalkenylbenzene after or at the same time that the crosslinking agent is added.
  • 2. The method of claim 1, wherein after step (i) the living polymer with a fluorescent portion self-assembles into a micelle in a liquid hydrocarbon medium.
  • 3. The method of claim 2, in which the liquid hydrocarbon medium comprises pentane, isopentane, 2,2-dimethyl-butane, hexane, heptane, octane, nonane, decane, cyclopentane, methyl cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, or a combination thereof.
  • 4. The method of claim 1, further comprising the step of copolymerizing the living polymer with a monomer.
  • 5. The method of claim 1 wherein the fluorescent portion arises from the addition of a corresponding monomer contributed unit with a structure represented by the following formula:
  • 6. The method of claim 1 wherein the non-fluorescent monomer is selected from the group consisting of: styrene, butadiene, isoprene, derivatives thereof, and mixtures thereof.
  • 7. The method of claim 5 wherein the fluorescent moiety F is selected from the group consisting of pyrene, perylene, phenanthrene, anthracene, naphthalene, and combinations thereof.
  • 8. The method of claim 5 wherein the fluorescent moiety F has the formula
  • 9. The method of claim 5, in which the linker group L is:
  • 10. The method of claim 5, in which the linker group L is:
  • 11. The method of claim 1, in which the at least one alkenylbenzene monomer has a formula of:
  • 12. The method of claim 1, wherein the nanoparticle has a generally spherical shape with a mean average diameter of less than about 200 nm.
  • 13. A method for preparing a fluorescent nanoparticle, the method comprising: (i) preparing a living polymer with a fluorescent portion by a step selected from the group consisting of: (a) copolymerizing a fluorescent monomer with a non-fluorescent monomer;(b) polymerizing a monomer with a fluorescent initiator; and(c) polymerizing a monomer to produce a living polymer, and subsequently adding a fluorescent monomer to the living polymer;(ii) adding a crosslinking agent;(iii) quenching the living polymer chain ends with a proton source:wherein the fluorescent portion arises from the addition of a corresponding unit with a structure represented by the following formula:
  • 14. The method of claim 13, wherein after step (i) the living polymer with a fluorescent portion self-assembles into a micelle in a liquid hydrocarbon medium.
  • 15. The method of claim 13 wherein the fluorescent moiety F is selected from the group consisting of pyrene, perylene, phenanthrene, anthracene, naphthalene, and combinations thereof.
  • 16. The method of claim 13, in which the linker group L is:
  • 17. The method of claim 13, in which the linker group L is:
  • 18. The method of claim 13, wherein the monomer is polymerized with a fluorescent initiator and the fluorescent initiator has a formula of:
  • 19. The method of claim 13, wherein the nanoparticle has a generally spherical shape with a mean average diameter of less than about 200 nm.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority from and is a divisional of U.S. application Ser. No. 11/612,554, filed on Dec. 19, 2006 now U.S. Pat. No. 7,597,959, which is hereby incorporated by reference.

US Referenced Citations (260)
Number Name Date Kind
2531396 Carter et al. Nov 1950 A
3177186 Miller Apr 1965 A
3598884 Wei et al. Aug 1971 A
3725505 O'Malley Apr 1973 A
3793402 Owens Feb 1974 A
3840620 Gallagher Oct 1974 A
3927143 Makowski et al. Dec 1975 A
3972963 Schwab et al. Aug 1976 A
4075186 Ambrose et al. Feb 1978 A
4233409 Bulkley Nov 1980 A
4247434 Vanderhoff et al. Jan 1981 A
4248986 Lai et al. Feb 1981 A
4326008 Rembaum Apr 1982 A
4386125 Shiraki et al. May 1983 A
4417029 Milkovich Nov 1983 A
4463129 Shinada et al. Jul 1984 A
4471093 Furukawa et al. Sep 1984 A
4543403 Isayama et al. Sep 1985 A
4598105 Weber et al. Jul 1986 A
4600749 Minekawa et al. Jul 1986 A
4602052 Weber et al. Jul 1986 A
4659782 Spinelli Apr 1987 A
4659790 Shimozato et al. Apr 1987 A
4717655 Fluwyler Jan 1988 A
4722770 Blottiere et al. Feb 1988 A
4725522 Breton et al. Feb 1988 A
4764572 Bean, Jr. Aug 1988 A
4773521 Chen Sep 1988 A
4774189 Schwartz Sep 1988 A
4788254 Kawakubo et al. Nov 1988 A
4829130 Licchelli et al. May 1989 A
4829135 Gunesin et al. May 1989 A
4837274 Kawakubo et al. Jun 1989 A
4837401 Hirose et al. Jun 1989 A
4861131 Bois et al. Aug 1989 A
4870144 Noda et al. Sep 1989 A
4871814 Gunesin et al. Oct 1989 A
4904730 Moore et al. Feb 1990 A
4904732 Iwahara et al. Feb 1990 A
4906695 Blizzard et al. Mar 1990 A
4920160 Chip et al. Apr 1990 A
4942209 Gunesin Jul 1990 A
4987202 Zeigler Jan 1991 A
5036138 Stamhuis et al. Jul 1991 A
5066729 Stayer, Jr. et al. Nov 1991 A
5073498 Schwartz et al. Dec 1991 A
5075377 Kawakubo et al. Dec 1991 A
5120379 Noda et al. Jun 1992 A
5130377 Trepka et al. Jul 1992 A
5169914 Kaszas et al. Dec 1992 A
5183851 Visani et al. Feb 1993 A
5194300 Cheung Mar 1993 A
5219945 Dicker et al. Jun 1993 A
5227419 Moczygemba et al. Jul 1993 A
5237015 Urban Aug 1993 A
5241008 Hall Aug 1993 A
5247021 Fujisawa et al. Sep 1993 A
5256736 Trepka et al. Oct 1993 A
5262502 Fujisawa et al. Nov 1993 A
5290873 Noda et al. Mar 1994 A
5290875 Moczygemba et al. Mar 1994 A
5290878 Yamamoto et al. Mar 1994 A
5296547 Nestegard et al. Mar 1994 A
5329005 Lawson et al. Jul 1994 A
5331035 Hall Jul 1994 A
5336712 Austgen, Jr. et al. Aug 1994 A
5362794 Inui et al. Nov 1994 A
5395891 Obrecht et al. Mar 1995 A
5395902 Hall Mar 1995 A
5399628 Moczygemba et al. Mar 1995 A
5399629 Coolbaugh et al. Mar 1995 A
5405903 Van Westrenen et al. Apr 1995 A
5421866 Stark-Kasley et al. Jun 1995 A
5436298 Moczygemba et al. Jul 1995 A
5438103 DePorter et al. Aug 1995 A
5447990 Noda et al. Sep 1995 A
5462994 Lo et al. Oct 1995 A
5514734 Maxfield et al. May 1996 A
5514753 Ozawa et al. May 1996 A
5521309 Antkowiak et al. May 1996 A
5525639 Keneko et al. Jun 1996 A
5527870 Maeda et al. Jun 1996 A
5530052 Takekoshi et al. Jun 1996 A
5534592 Halasa et al. Jul 1996 A
5580925 Iwahara et al. Dec 1996 A
5587423 Brandstetter et al. Dec 1996 A
5594072 Handlin, Jr. et al. Jan 1997 A
5614579 Roggeman et al. Mar 1997 A
5627252 De La Croi Habimana May 1997 A
5674592 Clark et al. Oct 1997 A
5686528 Wills et al. Nov 1997 A
5688856 Austgen, Jr. et al. Nov 1997 A
5700897 Klainer et al. Dec 1997 A
5707439 Takekoshi et al. Jan 1998 A
5728791 Tamai et al. Mar 1998 A
5733975 Aoyama et al. Mar 1998 A
5739267 Fujisawa et al. Apr 1998 A
5742118 Endo et al. Apr 1998 A
5747152 Oka et al. May 1998 A
5763551 Wunsch et al. Jun 1998 A
5773521 Hoxmeier et al. Jun 1998 A
5777037 Yamanaka et al. Jul 1998 A
5811501 Chiba et al. Sep 1998 A
5834563 Kimura et al. Nov 1998 A
5847054 McKee et al. Dec 1998 A
5849847 Quirk Dec 1998 A
5855972 Kaeding Jan 1999 A
5883173 Elspass et al. Mar 1999 A
5891947 Hall et al. Apr 1999 A
5897811 Lesko Apr 1999 A
5905116 Wang et al. May 1999 A
5910530 Wang et al. Jun 1999 A
5955537 Steininger et al. Sep 1999 A
5986010 Clites et al. Nov 1999 A
5994468 Wang et al. Nov 1999 A
6011116 Aoyama et al. Jan 2000 A
6020446 Okamoto et al. Feb 2000 A
6025416 Proebster et al. Feb 2000 A
6025445 Chiba et al. Feb 2000 A
6060549 Li et al. May 2000 A
6060559 Feng et al. May 2000 A
6087016 Feeney et al. Jul 2000 A
6087456 Sakaguchi et al. Jul 2000 A
6106953 Zimmermann et al. Aug 2000 A
6117932 Hasegawa et al. Sep 2000 A
6121379 Yamanaka et al. Sep 2000 A
6127488 Obrecht et al. Oct 2000 A
6147151 Fukumoto et al. Nov 2000 A
6166855 Ikeyama et al. Dec 2000 A
6180693 Tang et al. Jan 2001 B1
6191217 Wang et al. Feb 2001 B1
6197849 Zilg et al. Mar 2001 B1
6204354 Wang et al. Mar 2001 B1
6207263 Takematsu et al. Mar 2001 B1
6225394 Lan et al. May 2001 B1
6252014 Knauss Jun 2001 B1
6255372 Lin et al. Jul 2001 B1
6268451 Faust et al. Jul 2001 B1
6277304 Wei et al. Aug 2001 B1
6348546 Hiiro et al. Feb 2002 B2
6359075 Wollum et al. Mar 2002 B1
6379791 Cernohous et al. Apr 2002 B1
6383500 Wooley et al. May 2002 B1
6395829 Miyamoto et al. May 2002 B1
6420486 DePorter et al. Jul 2002 B1
6437050 Krom et al. Aug 2002 B1
6441090 Demirors et al. Aug 2002 B1
6448353 Nelson et al. Sep 2002 B1
6489378 Sosa et al. Dec 2002 B1
6506567 Makino et al. Jan 2003 B2
6524595 Perrier et al. Feb 2003 B1
6573313 Li et al. Jun 2003 B2
6573330 Fujikake et al. Jun 2003 B1
6598645 Larson Jul 2003 B1
6649702 Rapoport et al. Nov 2003 B1
6663960 Murakami et al. Dec 2003 B1
6689469 Wang et al. Feb 2004 B2
6693746 Nakamura et al. Feb 2004 B1
6706813 Chiba et al. Mar 2004 B2
6706823 Wang et al. Mar 2004 B2
6727311 Ajbani et al. Apr 2004 B2
6737486 Wang May 2004 B2
6750297 Yeu et al. Jun 2004 B2
6759464 Ajbani et al. Jul 2004 B2
6774185 Lin et al. Aug 2004 B2
6777500 Lean et al. Aug 2004 B2
6780937 Castner Aug 2004 B2
6835781 Kondou et al. Dec 2004 B2
6858665 Larson Feb 2005 B2
6861462 Parker et al. Mar 2005 B2
6872785 Wang et al. Mar 2005 B2
6875818 Wang Apr 2005 B2
6908958 Maruyama et al. Jun 2005 B2
6956084 Wang et al. Oct 2005 B2
7056840 Miller et al. Jun 2006 B2
7067199 Hattori et al. Jun 2006 B2
7071246 Xie et al. Jul 2006 B2
7112369 Wang et al. Sep 2006 B2
7179864 Wang Feb 2007 B2
7193004 Weydert et al. Mar 2007 B2
7205370 Wang et al. Apr 2007 B2
7217775 Castner May 2007 B2
7238751 Wang et al. Jul 2007 B2
7244783 Lean et al. Jul 2007 B2
7291394 Winkler et al. Nov 2007 B2
7347237 Xie et al. Mar 2008 B2
7408005 Zheng et al. Aug 2008 B2
7538159 Wang et al. May 2009 B2
7544740 Wang et al. Jun 2009 B2
7553909 Wang et al. Jun 2009 B2
7560510 Bohm et al. Jul 2009 B2
7597959 Wang et al. Oct 2009 B2
7649049 Kleckner et al. Jan 2010 B2
7659342 Wang et al. Feb 2010 B2
7695813 Schultes et al. Apr 2010 B2
7820771 Lapra et al. Oct 2010 B2
20010053813 Konno et al. Dec 2001 A1
20020007011 Konno et al. Jan 2002 A1
20020045714 Tomalia et al. Apr 2002 A1
20020095008 Heinrich et al. Jul 2002 A1
20020144401 Vines et al. Oct 2002 A1
20030004250 Ajbani et al. Jan 2003 A1
20030032710 Larson Feb 2003 A1
20030124353 Wang et al. Jul 2003 A1
20030130401 Lin et al. Jul 2003 A1
20030149185 Wang et al. Aug 2003 A1
20030198810 Wang et al. Oct 2003 A1
20030225190 Borbely et al. Dec 2003 A1
20040033345 Dubertret et al. Feb 2004 A1
20040059057 Swisher et al. Mar 2004 A1
20040091546 Johnson et al. May 2004 A1
20040127603 Lean et al. Jul 2004 A1
20040143064 Wang Jul 2004 A1
20040198917 Castner Oct 2004 A1
20040202881 Everaerts et al. Oct 2004 A1
20050101743 Stacy et al. May 2005 A1
20050122819 Park et al. Jun 2005 A1
20050182158 Ziser et al. Aug 2005 A1
20050192408 Lin et al. Sep 2005 A1
20050197462 Wang et al. Sep 2005 A1
20050203248 Zheng et al. Sep 2005 A1
20050215693 Wang et al. Sep 2005 A1
20050228072 Winkler et al. Oct 2005 A1
20050228074 Wang et al. Oct 2005 A1
20050282956 Bohm et al. Dec 2005 A1
20050288393 Lean et al. Dec 2005 A1
20060084722 Lin et al. Apr 2006 A1
20060116473 Castner et al. Jun 2006 A1
20060147714 Schultes et al. Jul 2006 A1
20060173115 Wang et al. Aug 2006 A1
20060173130 Wang et al. Aug 2006 A1
20060235128 Wang et al. Oct 2006 A1
20070027264 Wang et al. Feb 2007 A1
20070081830 Bender et al. Apr 2007 A1
20070135579 Obrecht et al. Jun 2007 A1
20070142550 Wang et al. Jun 2007 A1
20070142559 Wang et al. Jun 2007 A1
20070149649 Wang et al. Jun 2007 A1
20070161754 Bohm et al. Jul 2007 A1
20070185273 Hall et al. Aug 2007 A1
20070196653 Hall et al. Aug 2007 A1
20080001116 Fredrickson et al. Jan 2008 A1
20080145660 Wang et al. Jun 2008 A1
20080149238 Kleckner et al. Jun 2008 A1
20080160305 Wang et al. Jul 2008 A1
20080171272 Nakashima et al. Jul 2008 A1
20080188579 Wang et al. Aug 2008 A1
20080242813 Zheng et al. Oct 2008 A1
20080286374 Wang et al. Nov 2008 A1
20080305336 Wang et al. Dec 2008 A1
20090005491 Warren et al. Jan 2009 A1
20090048390 Wang et al. Feb 2009 A1
20090054554 Wang et al. Feb 2009 A1
20090270558 Gandon-pain et al. Oct 2009 A1
20090306246 Gervat et al. Dec 2009 A1
20100004398 Wang et al. Jan 2010 A1
20100016472 Wang et al. Jan 2010 A1
20100324167 Warren et al. Dec 2010 A1
20110021702 Gandon-Pain et al. Jan 2011 A1
20110024011 Castner et al. Feb 2011 A1
Foreign Referenced Citations (55)
Number Date Country
2127919 Mar 1995 CA
1560094 Jan 2005 CN
3434983 Apr 1986 DE
3735403 May 1989 DE
4241538 Jun 1994 DE
0143500 Jun 1985 EP
0255170 Feb 1988 EP
0265142 Apr 1988 EP
0322905 Jul 1989 EP
0352042 Jan 1990 EP
0472344 Feb 1992 EP
0540942 May 1993 EP
0590491 Apr 1994 EP
0742268 Nov 1996 EP
1031605 Aug 2000 EP
1099728 May 2001 EP
1134251 Sep 2001 EP
1273616 Jan 2003 EP
1321489 Jun 2003 EP
1783168 May 2007 EP
70002106 Jan 1970 JP
1279943 Jan 1989 JP
2191619 Jul 1990 JP
2196893 Aug 1990 JP
05132605 May 1993 JP
06248017 Sep 1994 JP
7011043 Jan 1995 JP
8199062 Aug 1996 JP
2000-514791 Nov 2000 JP
2003-095640 Apr 2003 JP
2006-072283 Mar 2006 JP
2006-106596 Apr 2006 JP
2007-304409 Nov 2007 JP
2184125 Jun 2002 RU
465010 Nov 1975 SU
9104992 Jul 1991 WO
9704029 Feb 1997 WO
9853000 Nov 1998 WO
0187999 Nov 2000 WO
0075226 Dec 2000 WO
0202472 Jan 2002 WO
0241987 May 2002 WO
0244290 Jun 2002 WO
02031002 Jul 2002 WO
02081233 Oct 2002 WO
02100936 Dec 2002 WO
03032061 Apr 2003 WO
03085040 Oct 2003 WO
03106557 Dec 2003 WO
2004058874 Jul 2004 WO
2006069793 Jul 2006 WO
2008014464 Jan 2008 WO
2008079276 Jul 2008 WO
2008079807 Jul 2008 WO
2009006434 Jan 2009 WO
Non-Patent Literature Citations (359)
Entry
Calderara et al. (“Synthesis of chromophore-labelled polystyrene/poly(ethylene oxide) diblock copolymers”, Makromol. Chem. 194, 1411-1420 (1993)).
Mensah, Laure, Sep. 20, 2010 Office Action from European Patent Application No. 07813483.0 [4 pp.].
Egwim, Kelechi Chidi, Sep. 30, 2010 Office Action from U.S. Appl. No. 12/047,896 [6 pp.].
Mullis, Jeffrey C., Oct. 8, 2010 Notice of Allowance from U.S. Appl. No. 11/641,514 [2 pp.].
Sykes, Altrev C., Oct. 29, 2010 Examiner's Answer from U.S. Appl. No. 11/818,023 [24 pp.].
Harlan, Robert D., Dec. 1, 2010 Notice of Allowance from U.S. Appl. No. 12/504,255 [6 pp.].
Chevalier, Alicia Ann, Nov. 23, 2010 Office Action from U.S. Appl. No. 10/886,283 [6 pp.].
Ducheneaux, Frank D., Dec. 28, 2010 Final Office Action from U.S. Appl. No. 10/817,995 [24 pp.].
Haider, Saira Bano, Feb. 9, 2011 Decision on Appeal from U.S. Appl. No. 11/104,759 [4 pp.].
Egwim, Kelechi Chidi, Mar. 21, 2011 Final Office Action from U.S. Appl. No. 12/047,896 [6 pp.].
Mullis, Jeffrey C., Mar. 30, 2011 Decision on Appeal from U.S. Appl. No. 10/791,049 [7 pp.].
Ducheneaux, Frank D., Apr. 4, 2011 Advisory Action from U.S. Appl. No. 10/817,995 [6 pp.].
Rosenberg, Nancy D., Apr. 12, 2011 Notice of Allowance from U.S. Appl. No. 10/886,283 [4 pp.].
Brovkina, T.A., English translation of May 4, 2011 Office Action from Russian Patent Application No. 2009107218 (7 pp.).
Mullis, Jeffrey C., May 23, 2011 Office Action from U.S. Appl. No. 12/288,174 (6 pp.).
Mullis, Jeffrey C., Jun. 3, 2011 Restriction/Election Office Action from U.S. Appl. No. 12/374,883 (7 pp.).
Egwim, Kelechi Chidi, Jun. 13, 2011 Advisory Action from U.S. Appl. No. 12/047,896 (2 pp.).
Xia, Lanying, Jul. 6, 2011 Office Action with English translation from Chinese Patent Application No. 200780047895.2 [8 pp.].
Mullis, Jeffrey C., Jul. 27, 2011 Office Action from U.S. Appl. No. 12/374,883 (13 pp.).
Akashi, Mitsuru et al., “Synthesis and Polymerization of a Styryl Terminated Oligovinylpyrrolidone Macromonomer”, Die Angewandte Makromolekulare Chemie, 132, pp. 81-89 (1985).
Alexandridis, Paschalis et al., “Amphiphilic Block Copolymers: Self-Assembly and Applications”, Elsevier Science B.V., pp. 1-435 (2000).
Allgaier, Jurgen et al., “Synthesis and Micellar Properties of PS-PI Block Copolymers of Different Architecture”, ACS Polym. Prepr. (Div Polym. Chem.), vol. 37, No. 2, pp. 670-671 (1996).
Antonietti, Markus et al., “Determination of the Micelle Architecture of Polystyrene/Poly(4-vinylpyridine) Block Copolymers in Dilute Solution”, Macromolecules, 27, pp. 3276-3281 (1994).
Antonietti, Markus et al., “Novel Amphiphilic Block Copolymers by Polymer Reactions and Their Use for Solubilization of Metal Salts and Metal Colloids”, Macromolecules, 29, pp. 3800-3806 (1996).
Bahadur, Pratap, “Block copolymers—Their microdomain formation (in solid state) and surfactant behaviour (in solution)”, Current Science, vol. 80, No. 8, pp. 1002-1007 (Apr. 25, 2001).
Batzilla, Thomas et al., “Formation of intra- and intermolecular crosslinks in the radical crosslinking of poly(4-vinylstyrene)”, Makromol. Chem., Rapid Commun. 8, pp. 261-268 (1987).
Bauer, B.J. et al., “Synthesis and Dilute-Solution Behavior of Model Star-Branched Polymers”, Rubber Chemistry and Technology, vol. 51, pp. 406-436 (1978).
Berger, G. et al., “Mutual Termination of Anionic and Cationic ‘Living’ Polymers”, Polymer Letters, vol. 4, pp. 183-186 (1966).
Bohm, Georg et al., “Emerging materials: technology for new tires and other rubber products”, Tire Technology International, 4 pp. (2006).
Borukhov, Itamar et al., “Enthalpic Stabilization of Brush-Coated Particles in a Polymer Melt”, Macromolecules, vol. 35, pp. 5171-5182 (2002).
Bradley, John S., “The Chemistry of Transition Metal Colloids”, Clusters and Colloids: From Theory to Applications, Chapter 6, Weinheim, VCH, pp. 459-544 (1994).
Braun, Hartmut et al., “Enthalpic interaction of diblock copolymers with immiscible polymer blend components”, Polymer Bulletin, vol. 32, pp. 241-248 (1994).
Bronstein, Lyudmila M. et al., “Synthesis of Pd-, Pt-, and Rh-containing polymers derived from polystyrene-polybutadiene block copolymers; micellization of diblock copolymers due to complexation”, Macromol. Chem. Phys., 199, pp. 1357-1363 (1998).
Brown, H.R. et al., “Communications to the Editor: Enthalpy-Driven Swelling of a Polymer Brush”, Macromolecules, vol. 23, pp. 3383-3385 (1990).
Cahn, John W., “Phase Separation by Spinodal Decomposition in Isotropic Systems”, The Journal of Chemical Physics, vol. 42, No. 1, pp. 93-99 (Jan. 1, 1965).
Calderara, Frederic et al., “Synthesis of chromophore-labelled polystyrene/poly(ethylene oxide) diblock copolymers”, Makromol. Chem., 194, pp. 1411-1420 (1993).
Canham et al., “Formation of Worm-like Micelles from a Polystyrene-Polybutadiene-Polystyrene Block Copolymer in Ethyl Acetate”, J.C.S. Faraday I, 76, pp. 1857-1867 (1980).
Chen, Ming-Qing et al., “Graft Copolymers Having Hydrophobic Backbone and Hydrophilic Branches. XXIII. Particle Size Control of Poly(ethylene glycol)-Coated Polystyrene Nanoparticles Prepared by Macromonomer Method”, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 37, pp. 2155-2166 (1999).
Chen, Ming-Qing et al., “Nanosphere Formation in Copolymerization of Methyl Methacrylate with Poly(ethylene glycol) Macromonomers”, Joumal of Polymer Science: Part A: Polymer Chemistry, vol. 38, pp. 1811-1817 (2000).
Chen, Wei et al., “Ultrahydrophobic and Ultrayophobic Surfaces: Some Comments and Examples”, The ACS Journal of Surfaces and Colloids, vol. 15, No. 10, pp. 3395-3399 (May 11, 1999).
Coleman, Lester E. et al., “Reaction of Primary Aliphatic Amines with Maleic Anhydride”, J. Org,. Chem., 24, 185, pp. 135-136 (1959).
Cosgrove, T . et al., “Adsorbed Block Copolymer of Poly(2-vinylpyridine) and Polystyrene Studied by Neutron Reflectivity and Surface Force Techniques”, Macromolecules, 26, pp. 4363-4367 (1993).
Coulson, S.R. et al., “Super-Repellent Composite Fluoropolymer Surfaces”, The Joumal of Physical Chemistry B, vol. 104, No. 37, pp. 8836-8840 (Sep. 21, 2000).
Cui, Honggang et al., “Block Copolymer Assembly via Kinetic Control”, Science, vol. 317, pp. 647-650 (Aug. 3, 2007).
Dieterich, W. et al., “Non-Debye Relaxations in Disordered Ionic Solids”, Chem. Chys., 284, pp. 439-467 (2002).
Edmonds, William F. et al., “Disk Micelles from Nonionic Coil-Coil Diblock Copolymers”, Macromolecules, vol. 39, pp. 4526-4530 (May 28, 2006).
Ege, Seyhan, Organic Chemistry Structure and Reactivity, 3rd Edition, p. 959 (1994).
Eisenberg, Adi, “Thermodynamics, Kinetics, and Mechanisms of the Formation of Multiple Block Copolymer Morphologies”, Polymer Preprints, vol. 41, No. 2, pp. 1515-1516 (2000).
Erbil, H. Yildirim et al., “Transformation of a Simple Plastic into a Superhydrophobic Surface”, Science, vol. 299, pp. 1377-1380 (Feb. 28, 2003).
Erhardt, Rainer et al., “Janus Micelles”, Macromolecules, vol. 34, No. 4, pp. 1069-1075 (2001).
Eschwey, Helmut et al., “Preparation and Some Properties of Star-Shaped Polymers with more than Hundred Side Chains”, Die Makromolekulare Chemie 173, pp. 235-239 (1973).
Eschwey, Helmut et al., “Star polymers from styrene and divinylbenzene”, Polymer, vol. 16, pp. 180-184 (Mar. 1975).
Fendler, Janos H., “Nanoparticles and Nanostructured Films: Preparation, Characterization and Applications”, Wiley-VCH, pp. 1-468 (1998).
Ferreira, Paula G. et al., “Scaling Law for Entropic Effects at Interfaces between Grafted Layers and Polymer Melts”, Macromolecules, vol. 31, pp. 3994-4003 (1998).
Garcia, Carlos B. et al., “Self-Assembly Approach toward Magnetic Silica-Type Nanoparticles of Different Shapes from Reverse Block Copolymer Mesophases”, J. Am. Chem. Soc., vol. 125, pp. 13310-13311 (2003).
Gay, C., “Wetting of a Polymer Brush by a Chemically Identical Polymer Melt”, Macromolecules, vol. 30, pp. 5939-5943 (1997).
Giannelis, E.P. “Polymer Layered Silicate Nanocomposites”, Advanced Materials, vol. 8, No. 1, pp. 29-35 (Jan. 1, 1996).
Gilman, J.W. et al., “Recent Advances in Flame Retardant Polymer Nanocomposites”, pp. 273-283.
Greenwood, N.N. et al., “Chemistry of the Elements”, Pergaroen Press, New York, pp. 1126-1127 (1984).
Guo, Andrew et al., “Star Polymers and Nanospheres from Cross-Linkable Diblock Copolymers”, Macromolecules, vol. 29, pp. 2487-2493 (Jan. 17, 1996).
Halperin, A., “Polymeric Micelles: A Star Model”, Macromolecules, vol. 20, pp. 2943-2946 (1987).
Hamley, Ian W., “The Physics of Block Copolymers”, Oxford Science Publication: Oxford, Chapters 3 and 4, pp. 131-265, (1998).
Hardacre, C. et al., “Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction”, J. Chem. Physics, 118(1), pp. 273-278 (2003).
Hasegawa, Ryuichi et al., “Optimum Graft Density for Dispersing Particles in Polymer Melts”, Macromolecules, vol. 29, pp. 6656-6662 (1996).
Haeussler, L. et al., “Simultaneous TA and MS Analysis of Alternating Styrene-Malei Anhydride and Styrene-Maleimide Copolymers”, Thermochim. Acta, 277, 14 (1996).
Hay, J.N. et al., “A Review of Nanocomposites”, 15 pp. (2000).
Hoffman, B. et al., “Rheology of Nanocomposites Based on Layered Silicates and Polyamide-12”, Colloid Polm. Sci.., 278, pp. 629-636 (2000).
Ishizu, Koji et al., “Synthesis of Star Polymer with Nucleus of Microgel”, Polymer Journal, vol. 12, No. 6, pp. 399-404 (1980).
Ishizu, Koji et al., “Core-Shell Type Polymer Microspheres Prepared from Block Copolymers”, Joumal of Polymer Science: Part C: Polymer Letters, vol. 26, pp. 281-286 (1988).
Ishizu, Koji et al., “Core-Shell Type Polymer Microspheres Prepared by Domain Fixing of Block Copolymer Films”, Joumal of Polymer Science: Part A: Polymer Chemistry, vol. 27, pp. 3721-3731 (1989).
Ishizu, Koji et al., “Preparation of core-shell type polymer microspheres from anionic block copolymers”, Polymer, vol. 34, No. 18, pp. 3929-3933 (1993).
Ishizu, Koji, “Synthesis and Structural Ordering of Core-Shell Polymer Microspheres”, Prog. Polym. Sci., vol. 23, pp. 1383-1408 (1998).
Ishizu, Koji, “Star Polymers by Immobilizing Functional Block Copolymers”, Star and Hyperbranched Polymers, ISBN 0-8247, pp. 1986-1987 (1999).
Ishizu, Koji, “Structural Ordering of Core Crosslinked Nanoparticles and Architecture of Polymeric Superstructures”, ACS Polym. Prepr. (Div Polym Chem) vol. 40, No. 1, pp. 456-457 (1999).
Jensen, M. et al., “EXAFS Investigations of the Mechanism of Facilitated Ion Transfer into a Room-Temperature Ionic Liquid”, Jacs, 124, pp. 10664-10665 (2002).
Kim, Woo-Sik et al., “Synthesis and Photocrosslinking of Maleimide-Type Polymers”, Macromol. Rapid Commun., 17, 835, pp. 835-841 (1996).
Kralik, M. et al., “Catalysis by metal nanoparticles supported on functional organic polymers”, Journal of Molecular Catalysis A: Chemical, vol. 177, pp. 113-138 (2001).
Kraus, Gerard, “Mechanical Losses in Carbon-Black-Filled Rubbers”, Joumal of Applied Polymer Science: Applied Polymer Symposium, vol. 39, pp. 75-92 (1984).
Krishnamoorti, R. et al., “Rheology of End-Tethered Polymer Layered Silicate Nanocomposites”, Macromol., 30, pp. 4097-4102 (1997).
Lagaly, Gehard, “Kink-Block and Gauche-Block Structures of Bimolecular Films”, Chem. Int. Ed. Engl., vol. 15, No. 10, pp. 575-586 (1976).
Lawson, David F. et al., “Preparation and Characterization of Heterophase Blends of Polycaprolactam and Hydrogenated Polydienes”, Central Research Journal of Applied Polymer Science, vol. 39, pp. 2331-2351 (1990).
Lee, Wen-Fu et al., “Polysulfobetaines and Corresponding Cationic Polymers. IV. Synthesis and Aqueous Solution Properties of Cationic Poly (MIQSDMAPM)”, J. Appl. Pol. Sci., vol. 59, pp. 599-608 (1996).
Ligoure, Christian, “Adhesion between a Polymer Brush and an Elastomer: A Self-Consistent Mean Field Model”, Macromolecules, vol. 29, pp. 5459-5468 (1996).
Liu, Guojun et al., “Diblock Copolymer Nanofibers”, Macromolecules, 29, pp. 5508-5510 (1996).
Liu, T. et al., “Formation of Amphiphilic Block Copolymer Micelles in Nonaqueous Solution”, Amphiphilic Block Copolymers: Self-Assembly and Applications, Elsevier Science B.V., pp. 115-149 (2000).
Ma, Hongyang et al., “Reverse Atom Transfer Radical Polymerization of Methyl Methacrylate in Room-Temperature Inoic Liqquids”, J. Polym. Sci., A. Polym. Chem., 41, pp. 143-151 (2003).
Ma, Qinggao et al., “Entirely Hydrophilic Shell Cross-Linked Knedel-Like (SCK) Nanoparticles”, Polymer Preprints, vol. 41, No. 2, pp. 1571-1572 (2000).
Mandema et al., “Association of Block Copolymers in Selective Solvents, 1 Measurements on Hydrogenated Poly(styrene-isoprene) in Decane and in trans-Decalin”, Makromol. Chem. 180, pp. 1521-1538 (1979).
Matsen, M.W., “Phase Behavior of Block Copolymer/Homopolymer Blends”, Macromolecules, vol. 28, pp. 5765-5773 (1995).
Matsumoto, A. et al., “Synthesis, Thermal Properties and Gas Permeability of Poly (N-n-alkylmaleimide)s”, Polymer Journal, vol. 23, No. 3, pp. 201-209 (1991).
Mayer, A.B.R. et al., “Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems”, Colloid Polym. Sci., 275, pp. 333-340 (1997).
Mendizabal, E. et al., “Functionalized Core-Shell Polymers Prepared by Microemulsion Polymerization”, ANTEC 1997 Plastics: Plastics Saving Planet Earth, vol. 2: Materials Conference Proceedings, pp. 1733-1737.
Mi, Yongli et al., “Glass transition of nano-sized single chain globules”, Polymer 43, Elsevier Science Ltd., pp. 6701-6705 (2002).
Milner, S.T. et al., “Theory of the Grafted Polymer Brush”, Macromolecules, vol. 21, pp. 2610-2619 (1988).
Milner, S.T. et al., “End-Confined Polymers: Corrections to the Newtonian Limit”, Macromolecules, vol. 22, pp. 489-490 (1989).
Moller, Martin et al., “Mineralization of Gold in Block Copolymer Micelles”, Macromol. Symp., 117, pp. 207-218 (1997).
Mossmer, Stefan et al., “Solution Behavior of Poly(styrene)-block-poly(2-vinylpyridine) Micelles Containing Gold Nanoparticles”, Macromolecules, 33, pp. 4791-4798 (2000).
Nace, Vaughn M., “Nonionic Surfactants: Polyoxyalkylene Block Copolymers”, Surfactant Science Series, vol. 60, pp. 1-266 (1996).
Newkome G.R, “Dendrimers and Dendrons, Concept, Synthesis, Application”, pp. 45, 191-310 (2001).
Noolandi, Jaan et al., “Theory of Block Copolymer Micelles in Solution”, Macromolecules, vol. 16, pp. 1443-1448 (1983).
O'Reilly, Rachel K. et al., “Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry”, Chem. Mater., vol. 17, No. 24, pp. 5976-5988 (Nov. 24, 2005).
O'Reilly, Rachel K. et al., “Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility”, Chem. Soc. Rev., vol. 35, pp. 1068-1083 (Oct. 2, 2006).
Okay, Oguz et al., “Steric stabilization of reactive microgels from 1,4-divinylbenzene”, Makromol. Chem., Rapid Commun., vol. 11, pp. 583-587 (1990).
Okay, Oguz et al., “Anionic Dispersion Polymerization of 1,4-Divinylbenzene”, Macromolecules, 23, pp. 2623-2628 (1990).
Oranli, Levent et al., “Hydrodynamic studies on micellar solutions of styrene-butadiene block copolymers in selective solvents”, Can. J. Chem., vol. 63, pp. 2691-2696 (1985).
Piirma, Irja, “Polymeric Surfactants”, Surfactant Science Series, vol. 42, pp. 1-289 (1992).
Pispas, S. et al., “Effect of Architecture on the Micellization Properties of Block Copolymers: A2B Miktoarm Stars vs AB Diblocks”, Macromolecules, vol. 33, pp. 1741-1746 (Feb. 17, 2000).
Powers, P.O., “Solubility of Polystyrene Fractions in Hydrocarbons”, Industrial and Engineering Chemistry, vol. 42, No. 12, pp. 2558-2562 (Dec. 1950).
Price, Colin, “Colloidal Properties of Block Copolymers”, Applied Science Publishers Ltd., Chapter 2, pp. 39-80 (1982).
Quirk, Roderic P. et al., “Controlled Anionic Synthesis of Polyisoprene-Poly(2-vinylpyridine) Diblock Copolymers in Hydrocarbon Solution”, Macromolecules, 34, pp. 1192-1197 (2001).
Rager, Timo et al., “Micelle formation of poly(acrylic acid)-block-poly(methyl methacrylate) block copolymers in mixtures of water with organic solvents”, Macromol. Chem. Phys., 200, No. 7, pp. 1672-1680 (1999).
Rein, David H. et al., “Kinetics of arm-first star polymers formation in a non-polar solvent”, Macromol. Chem. Phys., vol. 199, pp. 569-574 (1998).
Rempp, Paul et al., “Grafting and Branching of Polymers”, Pure Appl. Chem., vol. 30, pp. 229-238 (1972).
Ren, Jiaxiang, “Linear Viscoelasticity of Disordered Polystyrene-Polyisoprene . . . Layered-Silicate Nanocomposites”, Macromol., pp. 3739-3746 (2000).
Riess, Gerard et al., “Block Copolymers”, Encyclopedia of Polymer Science and Engineering, vol. 2, pp. 324-434 (1985).
Riess, Gerard, “Micellization of block copolymers”, Prog. Polym. Sci., vol. 28, pp. 1107-1170 (Jan. 16, 2003).
Saito, Reiko et al., “Core-Shell Type Polymer Microspheres Prepared From Poly(Styrene-b-Methacrylic Acid)—1. Synthesis of Microgel”, Eur. Polym. J., vol. 27, No. 10, pp. 1153-1159 (1991).
Saito, Reiko et al., “Synthesis of microspheres with ‘hairy-ball’ structures from poly (styrene-b-2-vinyl pyridine) diblock copolymers”, Polymer, vol. 33, No. 5, pp. 1073-1077 (1992).
Saito, Reiko et al., “Arm-number effect of core-shell type polymer microsphere: 1. Control of arm-number of microsphere”, Polymer, vol. 35, No. 4, pp. 866-871 (1994).
Saito, Reiko et al., “Synthesis of Microspheres with Microphase-Separated Shells”, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 38, pp. 2091-2097 (2000).
Sakurai, Ryo et al., “68.2: Color and Flexible Electronic Paper Display using QR-LPD Technology”, SID 06 Digest, pp. 1922-1925 (2006).
Semenov, A.N., “Theory of Diblock-Copolymer Segregation to the Interface and Free Surface of a Homopolymer Layer”, Macromolecules, vol. 25, pp. 4967-4977 (1992).
Semenov, A.N., “Phase Equilibria in Block Copolymer-Homopolymer Mixtures”, Macromolecules, vol. 26, pp. 2273-2281 (1993).
Serizawa, Takeshi et al., “Transmission Electron Microscopic Study of Cross-Sectional Morphologies of Core-Corona Polymeric Nanospheres”, Macromolecules, 33, pp. 1759-1764 (2000).
Shull, Kenneth R., “End-Adsorbed Polymer Brushes in High- and Low-Molecular-Weight Matrices”, Macromolecules, vol. 29, pp. 2659-2666 (1996).
Simmons, Blake et al., “Templating Nanostructure trhough the Self-Assembly of Surfactants”, Synthesis, Functionalization and Surface Treatment of Nanoparticles, ASP (Am.Sci.Pub.), pp. 51-52, 174-208 (2003).
Stepanek, Miroslav et al. “Time-Dependent Behavior of Block Polyelectrolyte Micelles in Aqueous Media Studied by Potentiometric Titrations, QELS and Fluoroetry”, Langmuir, Vo. 16, No. 6, pp. 2502-2507 (2000).
Thurmond II, K. Bruce et al., “Water-Soluble Knedel-like Structures: The Preparation of Shell-Cross-Linked Small Particles”, J. Am. Chem. Soc., vol. 118, pp. 7239-7240 (1996).
Thurmond II, K. Bruce et al., “The Study of Shell Cross-Linked Knedels (SCK), Formation and Application”, ACS Polym. Prepr. (Div Polym. Chem.), vol. 38, No. 1, pp. 62-63 (1997).
Thurmond, K. Bruce et al., “Shell cross-linked polymer micelles: stabilized assemblies with great versatility and potential”, Colloids and Surfaces B: Biointerfaces, vol. 16, pp. 45-54 (1999).
Tiyapiboonchaiya, Churat et al., “Polymer-m-lonic-Liquid Electrolytes”, Micromol. Chem. Phys., 203, pp. 1906-1911 (2002).
Tomalia, Donald A. et al., Dendritic Macromolecules: Synthesis of Starburst Dendrimers, , Macromolecules, vol. 19, No. 9, pp. 2466-2468 (1986).
Tsitsilianis, Constantinos et al., “Synthesis and characterization of hetero-arm star copolymers”, Makromol. Chem. 191, pp. 2319-2328 (1990).
Tuzar, Zdenek et al ., “Anomalous Behaviour of Solutions of Styrene-Butadiene Block Copolymers in Some Solvents”, Makromol. Chem. 178, pp. 22743-22746 (1977).
Tuzar, Zdenek et al., “Micelles of Block and Graft Copolymers in Solutions”, Surface and Colloid Science, vol. 15, Chapter 1, pp. 1-83 (1993).
Utiyama et al., “Light-Scattering Studies of a Polystyrene-Poly(methyl methacrylate) Two-Blcok Copolymer in Mixed Solvents”, Macromolecules, vol. 7, No. 4, pp. 515-520 (Jul.-Aug. 1974).
Vamvakaki, M. et al., “Synthesis of novel block and statistical methacrylate-based ionomers containing acidic, basic or betaine residues”, Polymer, vol. 39, No. 11, pp. 2331-2337 (1998).
van der Maarel, J.R.C. et al., “Salt-Induced Contraction of Polyelectrolyte Diblock Copolymer Micelles”, Langmuir, vol. 16, No. 19, pp. 7510-7519 (2000).
Vermeesch, I. et al., “Chemical Modification of Poly (styrene-co-maleic anhydride) with Primary N-Alkylamines by Reactive Extrusion”, J. Applied Polym. Sci., vol. 53, pp. 1365-1373 (1994).
Wang, Xiaorong et al., “Chain conformation in two-dimensional dense state”, Journal of Chemical Physics, vol. 121, No. 16, pp. 8158-8162 (Oct. 22, 2004).
Wang, Xiaorong et al., “Strain-induced nonlinearity of filled rubbers”, Physical Review E 72, 031406, pp. 1-9 (Sep. 20, 2005).
Pre-print article, Wang, Xiaorong et al., “PMSE 392—Manufacture and Commercial Uses of Polymeric Nanoparticles”, Division of Polymeric Materials: Science and Engineering (Mar. 2006).
Wang, Xiaorong et al., “Manufacture and Commercial Uses of Polymeric Nanoparticles”, Polymeric Materials: Science and Engineering, vol. 94, p. 659 (2006).
Wang, Xr. et al., “Fluctuations and critical phenomena of a filled elastomer under deformation”, Europhysics Letters, vol. 75, No. 4, pp. 590-596 (Aug. 15, 2006).
Wang, Xiaorong et al., “Under microscopes the poly(styrene/butadiene) nanoparticles”, Journal of Electron Microscopy, vol. 56, No. 6, pp. 209-216 (2007).
Wang, Xiaorong et al., “Synthesis, Characterization, and Application of Novel Polymeric Nanoparticles”, Macromolecules, 40, pp. 499-508 (2007).
Wang, Xiaorong et al., “Heterogeneity of structural relaxation in a particle-suspension system”, EPL, 79, 18001, pp. 1-5 (Jul. 2007).
Wang, Xiaorong et al., “Dispersing hairy nanoparticles in polymer melts”, Polmer, vol. 49, pp. 5683-5691 (Nov. 1, 2008).
Webber, Stephen E. et al., “Solvents and Self-Organization of Polymers”, NATO ASI Series, Series E: Applied Sciences, vol. 327, pp. 1-509 (1996).
Whitmore, Mark Douglas et al., “Theory of Micelle Formation in Block Copolymer-Homopolymer Blends”, Macromolecules, vol. 18, pp. 657-665 (1985).
Wijmans, C.M. et al., “Effect of Free Polymer on the Structure of a Polymer Brush and Interaction between Two Polymer Brushes”, Macromolecules, vol. 27, pp. 3238-3248 (1994).
Wilkes, J.S. et al., “Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-Temperature Ionic Liquids for Electrochemistry, Spectroscopy, and Synthesis”, Inorg. Chem., 21, pp. 1263-1264 (1982).
Wilson, D.J. et al., “Photochemical Stabilization of Block Copolymer Micelles”, Eur. Polym. J., vol. 24, No. 7, pp. 617-621 (1988).
Witten, T.A. et al., “Stress Relaxation in the Lamellar Copolymer Mesophase”, Macromolecules, vol. 23, pp. 824-829 (1990).
Wooley, Karen L, “From Dendrimers to Knedel-like Structures”, Chem. Eur. J., 3, No. 9, pp. 1397-1399 (1997).
Wooley, Karen L, “Shell Crosslinked Polymer Assemblies: Nanoscale Constructs Inspired from Biological Systems”, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 38, pp. 1397-1407 (2000).
Worsfold, Denis J. et al., “Preparation et caracterisation de polymeres-modele a structure en etoile, par copolymerisation sequencee anionique”, Canadian Journal of Chemistry, vol. 47, pp. 3379-3385 (Mar. 20, 1969).
Worsfold, D.J., “Anionic Copolymerization of Styrene with p-Divinylbenzene”, Macromolecules, vol. 3, No. 5, pp. 514-517 (Sep.-Oct. 1970).
Zheng, Lei et al., “Polystyrene Nanoparticles with Anionically Polymerized Polybutadiene Brushes”, Macromolecules, 37, pp. 9954-9962 (2004).
Zilliox, Jean-Georges et al., “Preparation de Macromolecules a Structure en Etoile, par Copolymerisation Anionique”, J. Polymer Sci.: Part C, No. 22, pp. 145-156 (1968).
“Quaternary Ammonium Compounds”, Encyclopedia of Chem Tech., 4th Ed., vol. 20, pp. 739-767 (1996).
Vulcanization Agents and Auxiliary Materials, Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Ed., Wiley Interscience, NY, 1982, vol. 22, pp. 390-403.
Bridgestone Americas 2006 Presentation (14 pp.).
Lipman, Bernard, Mar. 26, 2002 Notice of Allowance from U.S. Appl. No. 09/970,830 (4 pp.).
Kiliman, Leszek B., Feb. 13, 2003 Office from U.S. Appl. No. 10/038,748 (3 pp.).
Kiliman, Leszak B., Aug. 25, 2003 Notice of Allowance from U.S. Appl. No. 10/038,748 (5 pp.).
Harlan, Robert D., Mar. 17, 2004 Restriction/Election Office Action from U.S. Appl. No. 10/223,393 (6 pp.).
Harlan, Robert D., Jun. 22, 2004 Office Action from U.S. Appl. No. 10/223,393 (6 pp.).
Harlan, Robert D., Jan. 3, 2005 Notice of Allowance from U.S. Appl. No. 10/223,393 (6 pp.).
Lipman, Bernard, Mar. 25, 2004 Restriction/Election Office Action from U.S. Appl. No. 10/331,841 (6 pp.).
Lipman, Bernard, Nov. 18, 2004 Notice of Allowance from U.S. Appl. No. 10/331,841 (5 pp.).
Lipman, Bernard, Mar. 24, 2004 Restriction/Election Office Action from U.S. Appl. No. 10/345,498 (5 pp.).
Lipman, Bernard, Nov. 23, 2004 Notice of Allowance from U.S. Appl. No. 10/345,498 (5 pp.).
Choi, Ling Siu, Mar. 24, 2006 Office Action from U.S. Patent Appl. No. 10/755,648 (11 pp.).
Choi, Ling Siu, Dec. 4, 2006 Notice of Allowance from U.S. Appl. No. 10/755,648 (9 pp.).
Asinovsky, Olga, Jun. 20, 2006 Office Action from U.S. Appl. No. 10/791,049 (11 pp.).
Asinovsky, Olga, Dec. 22, 2006 Office Action from U.S. Appl. No. 10/791,049 (11 pp.).
Asinovsky, Olga, Jun. 7, 2007 Office Action from U.S. Appl. No. 10/791,049 (11 pp.).
Asinovsky, Olga, Aug. 16, 2007 Advisory Action from U.S. Appl. No. 10/791,049 (2 pp.).
Asinovsky, Olga, Nov. 28, 2007 Office Action from U.S. Appl. No. 10/791,049 (9 pp.).
Asinovsky, Olga, May 21, 2008 Office Action from U.S. Appl. No. 10/791,049 (11 pp.).
Asinovsky, Olga, Jul. 29, 2008 Advisory Action from U.S. Appl. No. 10/791,049 (3 pp.).
Asinovsky, Olga, Sep. 11, 2008 Office Action from U.S. Appl. No. 10/791,049 (12 pp.).
Mullis, Jeffrey C., Mar. 11, 2009 Office Action from U.S. Appl. No. 10/791,049 (9 pp.).
Mullis, Jeffrey C., May 19, 2009 Advisory Action from U.S. Appl. No. 10/791,049 (5 pp.).
Ronesi, Vickey M., Jan. 8, 2007 Office Action from U.S. Appl. No. 10/791,177 (5 pp.).
Harlan, Robert D., May 3, 2007 Office Action from U.S. Appl. No. 10/791,177 (6 pp.).
Harlan, Robert D., Oct. 18, 2007 Office Action from U.S. Appl. No. 10/791,177 (6 pp.).
Harlan, Robert D., Jan. 9, 2008 Advisory Action from U.S. Appl. No. 10/791,177 (3 pp.).
Harlan, Robert D., Mar. 7, 2008 Advisory Action from U.S. Appl. No. 10/791,177 (3 pp.).
Harlan, Robert D., May 28, 2008 Office Action from U.S. Appl. No. 10/791,177 (8 pp.).
Harlan, Robert D., Dec. 10, 2008 Final Office Action from U.S. Appl. No. 10/791,177 (8 pp.).
Harlan, Robert D., Mar. 11, 2009 Notice of Allowance from U.S. Appl. No. 10/791,177 (8 pp.).
Harlan, Robert D., Dec. 29, 2009 Notice of Allowance from U.S. Appl. No. 10/791,177 (6 pp.).
Le, Hoa T., Dec. 14, 2004 Office Action from U.S. Appl. No. 10/791,491 (5 pp.).
Le, Hoa T., Jul. 5, 2005 Office Action from U.S. Appl. No. 10/791,491 (9 pp.).
Le, Hoa T., Apr. 10, 2006 Notice of Allowance from U.S. Appl. No. 10/791,491 (5 pp.).
Kiliman, Leszek B., Sep. 9, 2005 Office Action from U.S. Appl. No. 10/817,995 (7 pp.).
Kiliman, Leszek B., Mar. 23, 2006 Office Action from U.S. Appl. No. 10/817,995 (7 pp.).
Kiliman, Leszek B., Dec. 13, 2006 Office Action from U.S. Appl. No. 10/817,995 (6 pp.).
Kiliman, Leszak B., May 15, 2007 Advisory Action from U.S. Appl. No. 10/817,995 (2 pp.).
Kiliman, Leszak B., Apr. 2, 2008 Notice of Allowance from U.S. Appl. No. 10/817,995 (5 pp.).
Kiliman, Leszek B., Sep. 5, 2008 Office Action from U.S. Appl. No. 10/817,995 (5 pp.).
Kiliman, Leszek B., Mar. 19, 2009 Office Action from U.S. Appl. No. 10/817,995 (5 pp.).
Kiliman, Leszek B., Nov. 13, 2009 Office Action from U.S. Appl. No. 10/817,995 (6 pp.).
Ducheneaux, Frank D., Jun. 8, 2010 Office Action from U.S. Appl. No. 10/817,995 [19 pp.].
Wyrozebski Lee, Katarzyna I., Dec. 19, 2006 Office Action from U.S. Appl. No. 10/872,731 (6 pp.).
Wyrozebski Lee, Katarzyna I., Mar. 7, 2007 Office Action from U.S. Appl. No. 10/872,731 (13 pp.).
Wyrozebski Lee, Katarzyna I., Sep. 14, 2007 Office Action from U.S. Appl. No. 10/872,731 (9 pp.).
Chevalier, Alicia Ann, Sep. 6, 2006 Office Action from U.S. Appl. No. 10/886,283 (5 pp.).
Chevalier, Alicia Ann, Jan. 4, 2007 Office Action from U.S. Appl. No. 10/886,283 (8 pp.).
Chevalier, Alicia Ann, Jul. 2, 2007 Office Action from U.S. Appl. No. 10/886,283 (8 pp.).
Chevalier, Alicia Ann, Jan. 4, 2008 Office Action from U.S. Appl. No. 10/886,283 (8 pp.).
Chevalier, Alicia Ann, Nov. 25, 2009 Office Action from U.S. Appl. No. 10/886,283 (7 pp.).
Chevalier, Alicia Ann, Jul. 8, 2010 Advisory Action from U.S. Appl. No. 10/886,283 [3 pp.].
Mullis, Jeffrey C., Oct. 31, 2006 Office Action from U.S. Appl. No. 11/050,115 (6 pp.).
Mullis, Jeffrey C., Mar. 24, 2008 Office Action from U.S. Appl. No. 11/050,115 (10 pp.).
Mullis, Jeffrey C., Aug. 21, 2008 Office Action from U.S. Appl. No. 11/050,115 (7 pp.).
Mullis, Jeffrey C., Nov. 5, 2008 Advisory Action from U.S. Appl. No. 11/050,115 (4 pp.).
Mullis, Jeffrey C., Feb. 25, 2009 Office Action from U.S. Appl. No. 11/050,115 (8 pp.).
Mullis, Jeffrey C., Sep. 21, 2009 Notice of Allowance from U.S. Appl. No. 11/050,115 (4 pp.).
Mullis, Jeffrey C., Dec. 18, 2009 Supplemental Notice of Allowability from U.S. Appl. No. 11/050,115 (2 pp.).
Lipman, Bernard., Sep. 29, 2006 Office Action from U.S. Appl. No. 11/058,156 (5 pp.).
Lipman, Bernard, May 21, 2007 Notice of Allowance from U.S. Appl. No. 11/058,156 (3 pp.).
Lipman, Bernard, Aug. 28, 2007 Notice of Allowance from U.S. Appl. No. 11/058,156 (5 pp.).
Lipman, Bernard, Feb. 28, 2008 Notice of Allowance from U.S. Appl. No. 11/058,156 (5 pp.).
Lipman, Bernard, May 29, 2008 Notice of Allowance from U.S. Appl. No. 11/058,156 (5 pp.).
Lipman, Bernard, Jan. 14, 2009 Notice of Allowance from U.S. Appl. No. 11/058,156 (5 pp.).
Lipman, Bernard, Oct. 3, 2006 Notice of Allowance from U.S. Appl. No. 11/064,234 (5 pp.).
Raza, Saira B., Oct. 20, 2005 Office Action from U.S. Appl. No. 11/104,759 (12 pp.).
Raza, Saira B., Aug. 21, 2006 Final Office Action from U.S. Appl. No. 11/104,759 (14 pp.).
Haider, Saira Bano, Dec. 22, 2006 Advisory Action from U.S. Appl. No. 11/104,759 (3 pp.).
Haider, Saira Bano, May 16, 2007 Office Action from U.S. Appl. No. 11/104,759 (9 pp.).
Haider, Saira Bano, Oct. 30, 2007 Final Office Action from U.S. Appl. No. 11/104,759 (11 pp.).
Haider, Saira Bano, Mar. 19, 2008 Advisory Action from U.S. Appl. No. 11/104,759 (3 pp.).
Haider, Saira Bano, Jun. 12, 2008 Office Action from U.S. Appl. No. 11/104,759 (10 pp.).
Haider, Saira Bano, Dec. 2, 2008 Office Action from U.S. Appl. No. 11/104,759 (10 pp.).
Haider, Saira Bano, Mar. 3, 2009 Advisory Action from U.S. Appl. No. 11/104,759 (3 pp.).
Haider, Saira Bano, Sep. 11, 2009 Examiner's Answer from U.S. Appl. No. 11/104,759 (9 pp.).
Harlan, Robert D., Nov. 7, 2005 Office Action from U.S. Appl. No. 11/117,981 (7 pp.).
Harlan, Robert D., Jul. 20, 2006 Office Action from U.S. Appl. No. 11/117,981 (6 pp.).
Harlan, Robert D., Jan. 26, 2007 Office Action from U.S. Appl. No. 11/117,981 (8 pp.).
Harlan, Robert D., Jul. 12, 2007 Office Action from U.S. Appl. No. 11/117,981 (6 pp.).
Harlan, Robert D., Jan. 2, 2008 Office Action from U.S. Appl. No. 11/117,981 (6 pp.).
Harlan, Robert D., Jul. 25, 2008 Office Action from U.S. Appl. No. 11/117,981 (8 pp.).
Harlan, Robert D., Jan. 9, 2009 Office Action from U.S. Appl. No. 11/117,981 (6 pp.).
Harlan, Robert D., Apr. 30, 2009 Office Action from U.S. Appl. No. 11/117,981 (7 pp.).
Harlan, Robert D., Sep. 29, 2009 Final Office Action from U.S. Appl. No. 11/117,981 (6 pp.).
Harlan, Robert D., Dec. 4, 2009 Notice of Allowance from U.S. Appl. No. 11/117,981 (5 pp.).
Lipman, Bernard, Sep. 14, 2006 Office Action from U.S. Appl. No. 11/168,297 (4 pp.).
Lipman, Bernard, Mar. 2, 2007 Notice of Allowance from U.S. Appl. No. 11/168,297 (3 pp.).
Lipman, Bernard, Apr. 18, 2007 Supplemental Notice of Allowability from U.S. Appl. No. 11/168,297 (3 pp.).
Maksymonko, John M., Feb. 20, 2008 Office Action from U.S. Appl. No. 11/305,279 (14 pp.).
Maksymonko, John M., Aug. 6, 2008 Office Action from U.S. Appl. No. 11/305,279 (11 pp.).
Zemel, Irina Sopja, Jan. 22, 2009 Advisory Action from U.S. Appl. No. 11/305,279 (2 pp.).
Zemel, Irina Sopja, May 28, 2009 Office Action from U.S. Appl. No. 11/305,279 (7 pp.).
Zemel, Irina Sopja, Dec. 3, 2009 Final Office Action from U.S. Appl. No. 11/305,279 (10 pp.).
Maksymonko, John M., Jul. 17, 2008 Office Action from U.S. Appl. No. 11/305,281 (13 pp.).
Lipman, Bernard, Jan. 28, 2009 Notice of Allowance from U.S. Appl. No. 11/305,281 (5 pp.).
Le, Hoa T., Sep. 25, 2008 Office Action from U.S. Appl. No. 11/612,554 (8 pp.).
Le, Hoa T., May 14, 2009 Notice of Allowance from U.S. Appl. No. 11/612,554 (4 pp.).
Maksymonko, John M., Jun. 13, 2008 Office Action from U.S. Appl. No. 11/641,514 (7 pp.).
Mullis, Jeffrey C., Oct. 31, 2008 Office Action from U.S. Appl. No. 11/641,514 (10 pp.).
Mullis, Jeffrey C., Apr. 30, 2009 Final Office Action from U.S. Appl. No. 11/641,514 (11 pp.).
Mullis, Jeffrey C., Jul. 15, 2009 Advisory Action from U.S. Appl. No. 11/641,514 (4 pp.).
Mullis, Jeffrey C., Nov. 9, 2009 Office Action from U.S. Appl. No. 11/641,514 (9 pp.).
Mullis, Jeffrey C., May 26, 2010 Final Office Action from U.S. Appl. No. 11/641,514 [8 pp.].
Mullis, Jeffrey C., Aug. 12, 2010 Advisory Action from U.S. Appl. No. 11/641,514 [4 pp.].
Maksymonko, John M., Jun. 11, 2008 Office Action from U.S. Appl. No. 11/642,124 (16 pp.).
Cain, Edward J., Dec. 31, 2008 Notice of Allowance from U.S. Appl. No. 11/642,124 (5 pp.).
Cain, Edward J., Mar. 31, 2009 Notice of Allowance from U.S. Appl. No. 11/642,124 (5 pp.).
Maksymonko, John M., May 30, 2008 Office Action from U.S. Appl. No. 11/642,795 (12 pp.).
Cain, Edward J., Dec. 9, 2008 Final Office Action from U.S. Appl. No. 11/642,795 (6 pp.).
Cain, Edward J., Feb. 23, 2009 Notice of Allowance from U.S. Appl. No. 11/642,795 (5 pp.).
Wheeler, Thurman Michael, Oct. 14, 2009 Restriction/Election Office Action from U.S. Appl. No. 11/642,796 (8 pp.).
Wheeler, Thurman Michael, Feb. 8, 2010 Office Action from U.S. Apppl. No. 11/642,796 (13 pp.).
Wheeler, Thurman Michael, Jul. 30, 2010 Final Office Action from U.S. Appl. No. 11/642,796 [15 pp.].
Maksymonko, John M., May 28, 2008 Office Action from U.S. Appl. No. 11/642,802 (10 pp.).
Mulcahy, Peter D., Dec. 11, 2008 Restriction/Election Office Action from U.S. Appl. No. 11/642,802 (7 pp.).
Mulcahy, Peter D., May 13, 2009 Office Action from U.S. Appl. No. 11/642,802 (7 pp.).
Mulcahy, Peter D., Nov. 9, 2009 Final Office Action from U.S. Appl. No. 11/642,802 (6 pp.).
Peets, Monique R., May 11, 2009 Restriction/Election Office Action from U.S. Appl. No. 11/697,801 (6 pp.).
Peets, Monique R., Jul. 20, 2009 Office Action from U.S. Appl. No. 11/697,801 (9 pp.).
Peets, Monique R., Jan. 5, 2010 Final Office Action from U.S. Appl. No. 11/697,801 (9 pp.).
Peets, Monique R., Apr. 15, 2010 Notice of Allowance from U.S. Appl. No. 11/697,801 (5 pp.).
Lipman, Bernard, Mar. 20, 2008 Office Action from U.S. Appl. No. 11/764,607 (4 pp.).
Lipman, Bernard, Sep. 25, 2008 Notice of Allowance from U.S. Appl. No. 11/764,607 (3 pp.).
Lipman, Bernard, Jan. 27, 2009 Notice of Allowance from U.S. Appl. No. 11/764,607 (4 pp.).
Mullis, Jeffrey C., Mar. 3, 2010 Restriction/Election Office Action from U.S. Appl. No. 11/771,659 [7 pp.].
Sykes, Altrev C., Mar. 20, 2009 Office Action from U.S. Appl. No. 11/818,023 (27 pp.).
Sykes, Altrev C., Oct. 16, 2009 Office Action from U.S. Appl. No. 11/818,023 (20 pp.).
Sykes, Altrev C., Apr. 5, 2010 Final Office Action from U.S. Appl. No. 11/818,023 (24 pp.).
Pak, Hannah J., Apr. 2, 2009 Office Action from U.S. Appl. No. 11/941,128 (9 pp.).
Pak, Hannah J., Jan. 6, 2010 Final Office Action from U.S. Appl. No. 11/941,128 (10 pp.).
Pak, Hannah J., Apr. 30, 2010 Notice of Allowance from U.S. Appl. No. 11/941,128 (11 pp.).
Harlan, Robert D., Dec. 28, 2009 Office Action from U.S. Appl. No. 12/504,255 [6 pp.].
Harlan, Robert D., May 13, 2010 Final Office Action from U.S. Appl. No. 12/504,255 [7 pp.].
Harlan, Robert D., Jun. 9, 2010 Office Action from U.S. Appl. No. 12/504,255 [6 pp.].
Chen, Jizhuang, Dec. 30, 2005 Office Action from Chinese Patent Application No. 02819527.2 (9 pp.).
Chen, Jizhuang, Dec. 21, 2007 Office Action from Chinese Patent Application No. 02819527.2 (12 pp.).
Chen, Jizhuang, Sep. 26, 2008 Office Action from Chinese Patent Application No. 02819527.2 (4 pp.).
Schutte, M., Aug. 8, 2006 Office Action from European Patent Application No. 02807196.7 (5 pp.).
Schutte, Maya, Sep. 3, 2007 Office Action from European Patent Application No. 02807196.7 (2 pp.).
Russell, Graham, Nov. 4, 2008 Office Action from European Patent Application No. 05742316.2 (2 pp.).
Watanabe, Y., May 7, 2008 Office Action from Japanese Patent Application No. 582224/2003 (5 pp.).
Watanabe, Y., Jul. 29, 2008 Office Action from Japanese Patent Application No. 582224/2003 (17 pp.).
Schutte, M., Nov. 13, 2003 International Search Report from PCT Patent Application No. PCT/US02/31817 (3 pp.).
Schutte, M., May 28, 2004 International Search Report from PCT Patent Application No. PCT/US03/40375 (3 pp.).
Iraegui Retolaza, E., Jul. 9, 2004 International Search Report from PCT Patent Application No. PCT/US2004/001000 (3 pp.).
Russell, G., Aug. 1, 2005 International Search Report from PCT Patent Application No. PCT/US2005/010352 (3 pp.).
Johnson, Edward M., Dec. 12, 2008 International Search Report from PCT Application No. PCT/US07/74611 (5 pp.).
Iraegui Retolaza, E., May 30, 2008 International Search Report from PCT Patent Application No. PCT/US2007/026031 (4 pp.).
Cussac, Yolaine, Jun. 24, 2009 International Preliminary Report on Patentability from PCT Patent Application No. PCT/US2007/026031 (7 pages).
Mettler, Rolf-Martin, May 27, 2008 International Search Report from PCT Patent Application No. PCT/US2007/087869 (4 pages).
Hammon, Andrew, Aug. 25, 2008 International Search Report from PCT Patent Application No. PCT/US2008/068838 (4 pages).
Wang, Xiaorong et al., U.S. Appl. No. 10/791,049, filed Mar. 2, 2004 entitled “Method of Making Nano-Particles of Selected Size Distribution”.
Wang, Xiaorong et al., U.S. Appl. No. 10/791,177, filed Mar. 2, 2004 entitled “Rubber Composition Containing Functionalized Polymer Nanoparticles”.
Wang, Xiaorong et al., U.S. Appl. No. 10/872,731, filed Jun. 21, 2004 entitled “Reversible Polymer/Metal Nano-Composites and Method for Manufacturing Same”.
Wang, Xiaorong et al., U.S. Appl. No. 10/886,283, filed Jul. 6, 2004 entitled “Hydropobic Surfaces with Nanoparticles”.
Wang, Xiaorong et al., U.S. Appl. No. 11/058,156, filed Feb. 15, 2005 entitled “Multi-Layer Nano-Particle Preparation and Applications”.
Wang, Xiaorong et al., U.S. Appl. No. 11/104,759, filed Apr. 13, 2005 entitled “Nano-Particle Preparation and Applications”.
Bohm, Georg G.A. et al., U.S. Appl. No. 11/117,981, filed Apr. 29, 2005 entitled “Self Assembly of Molecules to Form Nano-Particle”.
Wang, Xiaorong et al., U.S. Appl. No. 11/305,279, filed Dec. 16, 2005 entitled “Combined Use of Liquid Polymer and Polymeric Nanoparticles for Rubber Applications”.
Wang, Xiaorong et al., U.S. Appl. No. 11/344,861, filed Feb. 1, 2006 entitled “Nano-Composite and Compositions Therefrom”.
Wang, Xiaorong et al., U.S. Appl. No. 11/642,796, filed Dec. 20, 2006 entitled “Hollow Nano-Particles and Method Thereof”.
Wang, Xiaorong et al., U.S. Appl. No. 11/764,607, filed Jun. 18, 2007 entitled “Multi-Layer Nano-Particle Preparation and Applications”.
Warren, Sandra, U.S. Appl. No. 11/771,659, filed Jun. 29, 2007 entitled “One-Pot Synthesis of Nanoparticles and Liquid Polymer for Rubber Applications”.
Wang, Xiaorong et al., U.S. Appl. No. 11/941,128, filed Nov. 16, 2007 entitled “Nano-Particle Preparation and Applications”.
Wang, Xiaorong et al., U.S. Appl. No. 11/954,268, filed Dec. 12, 2007 entitled “Nanoporous Polymeric Material and Preparation Method”.
Wang, Xiaorong et al., U.S. Appl. No. 12/047,896, filed Mar. 13, 2008 entitled “Reversible Polymer/Metal Nano-Composites and Method for Manufacturing Same”.
Wang, Xiaorong et al., U.S. Appl. No. 12/184,895, filed Aug. 1, 2008 entitled “Disk-Like Nanoparticles”.
Wang, Xiaorong et al., U.S. Appl. No. 12/374,883, international filing date Jul. 27, 2007, entitled “Polymeric Core-Shell Nanoparticles with Interphase Region”.
Wang, Xiaorong et al., U.S. Appl. No. 12/754,367, filed Apr. 5, 2010 entitled “Hairy Polymeric Nanoparticles With First and Second Shell Block Polymer Arms”.
Berger, Sebastian et al., “Stimuli-Responsive Bicomponent Polymer Janus Particles by ‘Grafting from’/ ‘Grafting to’ Approaches,” Macromolecules, 41, pp. 9669-9676 (2008).
Cheng, Lin et al., “Efficient Synthesis of Unimolecular Polymeric Janus Nanoparticles and Their Unique Self-Assembly Behavior in a Common Solvent,” Macromolecules, 41, pp. 8159-8166 (2008).
Dendukuri, Dhananjay et al., “Synthesis and Self-Assembly of Amphiphilic Polymeric Microparticles,” Langmuir, 23, pp. 4669-4674 (2007).
The Dow Chemical Company, “DVB Cross-link a variety of materials for improved thermal, physical, and chemical properties,” 44 pp. (Jan. 2003).
Robertson, C.G. et al., “Effect of structural arrest on Poisson's ratio in nanoreinforced elastomers,” Physical Review E, vol. 75, pp. 051403-1 thru 051403-7 (2007).
Schacher, Felix et al., “Multicompartment Core Micelles of Triblock Terpolymers in Organic Media,” Macromolecules, 42, pp. 3540-3548 (2009).
Tsitsilianis, Constantinos, “Phase Behavior of Heteroarm Star Copolymers by Differential Scanning Calorimetry,” Macromolecules, 26, pp. 2977-2980 (1993).
Walther, Andreas et al., “Engineering Nanostructured Polymer Blends with Controlled Nanoparticle Location using Janus Particles,” ACS Nano., 2(6), pp. 1167-1178 (2008).
Walther, Andreas et al., “Janus Particles,” Soft Matter, 4, pp. 663-668 (2008).
Wang, Y. et al., “Janus-Like Polymer Particles Prepared Via Internal Phase Separation from Emulsified Polymer/Oil Droplets,” Polymer, vol. 50, No. 14, pp. 3361-3369 (2009).
Zhang, Jian et al., “Bioconjugated Janus Particles Prepared by in Situ Click Chemistry,” Chemistry of Materials, 21, pp. 4012-4018 (2009).
Zhao, Bin et al., “Mixed Polymer Brush-Grafted Particles: A New Class of Environmentally Responsive Nanostructured Materials,” Macromolecules, 42, pp. 9369-9383 (2009).
Wheeler, Thurman Michael, May 31, 2011 Office Action from U.S. Appl. No. 11/642,796 (12 pp.).
Brovkina, T.A., Oct. 12, 2011 Office Action from Russian Patent Application No. 2009107218 with English translation (8 pp.).
Nov. 3, 2011 Office Action with English translation from Chinese Patent Application No. 200780036040.X (12 pp.).
Mulcahy, Peter D., Nov. 9, 2011 Office Action from U.S. Appl. No. 11/642,802 (6 pp.).
Mullis, Jeffrey C., Nov. 14, 2011 Office Action from U.S. Appl. No. 12/666,146 (6 pp.).
Fink, Brieann R., Dec. 1, 2011 Office Action from U.S. Appl. No. 12/754,367 (15 pp.).
Egwim, Kelechi Chidi, Dec. 2, 2011 Office Action from U.S. Appl. No. 12/047,896 (5 pp.).
Mullis, Jeffrey C., Feb. 1, 2012 Office Action from U.S. Appl. No. 12/374,883 (9 pp.).
Zemei, Irina Sopja, Apr. 30, 2012 Decision on Appeal from U.S. Appl. No. 11/305,279 (12 pp.).
Hofler, Thomas, May 22, 2012 Supplementary European Search Report with Search Opinion from European Patent Application No. 09837105.7 (5 pp.).
Watanabe, Yoko, May 22, 2012 Office Action with English translation from Japanese Patent Application No. 2008-248866 (5 pp.).
Malashkova, E.S., Jun. 1, 2012 Office Action with English translation from Russian Patent Application No. 2010102943 (10 pp.).
Fink, Brieann R., Jun. 6, 2012 Final Office Action from U.S. Appl. No. 12/754,367 (13 pp.).
Adams, Donald E. et al., Jun. 18, 2012 Decision on Appeal from U.S. Appl. No. 11/818,023 (13 pp.).
Related Publications (1)
Number Date Country
20100016512 A1 Jan 2010 US
Divisions (1)
Number Date Country
Parent 11612554 Dec 2006 US
Child 12555183 US