Embodiments of the present invention will now be explained in more detail with reference to the drawings, in which:
A central cross-section through the arrangement of an X-ray source according to the invention is shown in
The foil 7 serves the purpose of separating the vacuum region of the X-ray tube from a liquid metal behind the foil 7. The liquid metal can be an alloy of e.g. Bi, Pb, In, Sn, etc., but should at least have a high atomic number, preferably between 40 and 80. The electrons 6 diffuse into the liquid metal, thereby loosing energy which is converted into heat. As the liquid metal is moving with a speed of many meters per second, the total power which can be dissipated in the liquid metal is much larger than that of a stationary anode X-ray tube.
The direction of motion of the liquid metal can be gauged from the arrows showing the flow direction in
Primary X-rays 9 are generated in the electron membrane 7 and in the liquid metal 8, providing this has a relatively high Z. As shown in
The primary target 2 serves several purposes. First, it absorbs all the other radiation generated in the X-ray tube by the electron beam, X-ray scatter events etc. To this end the end cap has an equivalent thickness of several mm Pb. Secondly, the primary target 2 has a circular channel (inlet) 13 at a comparatively small radius, through which liquid metal is fed into the anode, and a similar channel (outlet) 14 at a comparatively large radius, through which liquid metal is transported to a pump etc. Thirdly, the primary target 2 has a form which matches with the liquid metal circuit 8 (i.e. confusor, constriction and diffusor) and supports the electron window 7.
Finally, as is apparent from
According to the invention the liquid metal channel 8 shows a cross-sectional area (channel height x circumference) across which the liquid flow is held constant. As the radius increases (from the inlet 13 to the outlet 14) the channel height is reduced. Radial flow of the liquid metal is ensured by the fins 17. Further, the pressure on the electron window 7 can be minimised by ensuring that the viscous pressure drop across the window 7 is balanced by an increase in the Bernoulli pressure. In the radial embodiment of the liquid channel 8 the pressure drop across the window is not linear with the radius. To achieve a minimum pressure at the electron window 7, the liquid channel comprises a constriction 15 at an electron impact zone where most or all of the electrons 6 are incident.
The present invention provides a high-brightness quasi-monochromatic X-ray source for the generation of fluorescent X-rays. It employs a liquid metal target in a circularly-symmetric flow geometry to yield a primary beam of high intensity (factor ten improvement over known Fluorex design). When this beam irradiates the exchangeable secondary target, a high intensity beam of fluorescent photons results. The enhanced radiance of this arrangement enables practical realization of otherwise unrealistic radiological techniques such as molecular imaging, tissue characterization with coherent X-ray scatter, and baggage inspection.
Number | Date | Country | Kind |
---|---|---|---|
03101401.2 | May 2003 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/50653 | 5/12/2004 | WO | 00 | 11/15/2005 |