Field of the Invention
This invention relates generally to anti-reflective coatings and methods of depositing AR coatings, and more particularly, to a fluorinated and hydrogenated “diamond-like carbon” (DLC-FH) coating material and method of depositing same, particularly on large substrates, such as vehicle or building windows.
Description of the Prior Art
Anti-reflection (AR) coatings are applied to the surfaces of optical devices to reduce reflection, and hence, to maximize transmission of light. However, due to limitations in material properties of presently available AR coatings and in coating deposition techniques, the use of AR coatings has been restricted mainly to niche applications involving objects having comparatively small spatial dimensions, such as eye glasses, cameras, binoculars, refractive telescopes, microscopes, and the like.
There is a need, however, for AR coating materials and deposition techniques for applying AR coatings to objects having larger dimensions, such as vehicle and building windows. Vehicle and building windows are exposed to harsh environmental conditions, and therefore, it is important that any AR coatings developed for these purposes must be mechanically durable, that is, scratch and abrasion resistant, and, of course, water insoluble. There is, thus, a need for mechanically durable and water insoluble AR coating materials, and a method of applying them to large scale objects.
It is well-known to use AR coatings to enhance human comfort, such as by reducing glare in eye glasses, or to enhance the optical performance of lenses. The performance of cameras, for example, is enhanced because the AR coating permits collection of a greater amount of light under dim conditions while reducing stray light for greater image contrast. However, there is also a need for AR coating technology to enhance public safety.
A recent study published by Flannagan, et al., “Effects of Automotive Interior Lighting on Driver Vision,” LEUKOS, Vol. 9, No. 1, page 9 (July 2012), demonstrated that “veiling” light during nighttime operation of automobiles can distract the driver and reduce his ability to detect the presence of pedestrians. This veiling light originates from light sources within the automotive cabin, which reflects off the front windshield back into the driver's eyes. AR technology could find widespread application for public safety purposes, if it could be accomplished on large scale platforms, such as on vehicle windows. Reducing the effect of veiling light would enable a driver to perceive dimly lit objects outside the vehicle more quickly, thereby increasing the time for reaction. Increasing the time for reaction is key to increasing transportation safety.
In passenger automobiles, where the principal source of veiling light derives from the dashboard, this safety factor is comparatively minor because the interior light sources are relatively weak. However, veiling light distraction is particularly problematic for municipal transit systems. By regulatory mandate, the interior cabin of a bus must be illuminated to significantly greater levels. Moreover, cabin geometry is another contributing factor that exacerbates the problem in a bus versus an automobile. While the sloping windshield of an automobile helps to direct reflected interior light down and away from the driver, the nearly vertical windshield of a typical bus is ideal for directing reflected light directly toward the driver.
Altering the interior light levels in public transportation would require regulatory action and changing the slope of the windshield would require a re-design of the vehicle and public acceptance of the new aesthetics. It would be easiest to find a technological solution to mitigate against the high native reflection of uncoated glass as presently used in the vehicle windshield. Unfortunately, while the need for AR treatment of the front windshield is eminently clear, the solution to addressing this need is not.
As indicated above, there are two fundamental shortcomings of traditional AR solutions for large area applications, involving: (i) limitations to required refractive index and durability of existing materials; and (ii) limitations with the deposition methods presently employed to apply the materials.
The traditional approach to AR coatings uses quarter-wave interference layers whereby the refractive index of the AR layer [nAR] must equal the square root of the refractive index of the glass [ηglass]. See, for example, Hecht, et al., OPTICS, (Addison-Wesley, Reading, Mass., 1974), p. 313. For high index substrates, like crystalline germanium used in infrared optics, where the refractive index of the substrate [nsub] is about 4.0, the [nAR] should be about 2.0. There are many materials (including the DLC materials discussed below) which have indices of around 2 which make them suitable for use as an AR coating on a high index substrate.
It has been a challenge, however, to find materials having a sufficiently low refractive index to pair with low index substrate materials, such as the soda lime glass (SLG), commonly used for automotive windows and commercially available windows for building, which has a [ηglass] of 1.525, or translucent polymers having indices between 1.55 and 1.65. This means that [nAR] should ideally be about 1.235. It is difficult to find materials having refractive indices lower than even about 1.34 as shown in Table 1.
Table 1 shows a list of the five materials currently known to have low refractive index, i.e., [n]<1.4.
All of the low refractive index materials shown on Table 1 are fluorides, and unfortunately, would not be suitable for large area applications, such as vehicle windshields or building windows. First, there are several material property issues that fundamentally preclude their consideration. These materials tend to be soft and, therefore, would be easily scratched. Moreover, the solubility of these ionic materials in water, while low, is not zero. Therefore, they would have poor long term durability (and stability) under exposure to wet environments (e.g., fogging on the interior and exposure to snow, ice and rain on the exterior) and under the typical expected physical abuse (e.g., windshield wipers, dirt and insect impacts, hands)
Second, fluoride cannot be sputtered easily. According to Macleod, id., “Many of the [optical] materials, with the principal exception of the fluorides, can be sputtered in their dielectric form by either radio frequency sputtering or neutral ion-beam sputtering.” Unfortunately, sputter deposition is a widely used method for accurately, and cost effectively, applying thin films on substrates ranging in size from small to quite large. This alone is a major impediment to applying these known low-index materials onto very large substrates to achieve AR functionality.
There is a need, therefor, for low refractive index materials for use as AR coatings on large substrates, such as windshields and windows, which are robust enough to endure use in a harsh environment, and which can be applied economically to a large scale substrate.
In order to overcome the shortcomings of known prior art AR materials, we investigated diamond-like carbon (DLC), and in particular, chemical modifications to known DLC material involving the addition of fluorine and hydrogen. As used herein, the terms “DLC-F” or “DLC-H” refer to DLC materials that have the addition of fluorine (F) or hydrogen (H). The term “DLC-FH” has been used herein for the composition of the present invention, which is a fluorinated and hydrogenated diamond-like carbon material having advantageous physical and optical properties. It is to be understood, however, that as used in the discussion herein, the term also encompasses DLC compounds, produced in accordance with the method of the present invention, that have the equivalent advantageous physical and optical properties. In the literature, DLC materials are also referred to as amorphous hydrogenated carbon (a-C:H). See, for example, Alterovitz, et al., “Amorphous Hydrogenated ‘Diamondlike’ Carbon Films and Arc-Evaporated Carbon Films”, in Handbook of Optical Constants of Solids II, Edited by E. D. Palik (Academic, New York, 1998), p. 837.
Regardless of the nomenclature, these materials are not to be confused with “diamond,” which is a crystalline form of carbon having purely sp3 hybridized atomic bonds between carbon atoms (C—C bonds) forming the most rigid network of three-dimensionally and tetrahedrally arranged carbon atoms. Instead, DLC or a-C:H materials are amorphous, with a mixture of sp3 and sp2 (two-dimensional trigonal arrangement of carbon atoms as found in graphene or monolayers of graphite) hybridized bonding, and which can have up to 25 atom % hydrogen (in the form of C—H bonds). Nor should these materials be confused with the many different forms of soft amorphous carbon (e.g., sputtered carbon, soot, etc.) which tend to be soft by having very low, and in indeed, zero sp3 bonding content. The DLC nomenclature is used to convey the fact that these materials incorporate sufficient sp3 hybridized C—C bonds to be very tough, stiff and hard, and with very low friction. In its unmodified pure carbon state, DLC materials are also commonly referred to as “tetrahedral amorphous carbon” (ta-C) to highlight the preponderance of sp3 hybridization. See, for example, Haubold, et al., “The influence of the surface texture of hydrogen-free tetrahedral amorphous carbon films on their wear performance”, Diamond Relat. Mater., Vol. 19, page 225 (2010); Yang, et al., “Electroanalytical Performance of Nitrogen-Containing Tetrahedral Amorphous Carbon Thin Film Electrodes,” Anal. Chem., Vol. 84, No. 14, page 6240 (2012).
While known DLC has excellent physical attributes, it is not normally considered to be an anti-reflective material. This is because its refractive index, [ηDLC], ranges from between about 1.7 and 2.2 which is too high to match with most glass and polymer substrates. Alterovitz, supra. However, DLCs have been used in anti-reflective optical stacks to provide abrasion resistance. One known use of DLCs for this purpose is as an AR coating for mobile electronic device displays. See, Madocks, et al., “Durable Neutral Color Anti-Reflective Coating for Mobile Displays,” SVC Bulletin, p. 32, Fall 2014.
In order to demonstrate novelty of the present invention, specifically the DLC-FH composition of matter embodiment, as used for AR coatings, it is important to understand the restrictions of the use of DLC materials in an optical stack arrangement, and how multilayer optical AR stacks are designed.
Using a single thin film layer to achieve AR is the simplest case, where the refractive index of the AR layer must conform to a condition relative to the substrate, defined by equation (1), where nAR is the refractive index of the AR coating and ηsub is the refractive index of the substrate,
[nAR]=√{square root over (nsub×nair)}, Eqn. (1)
Since the refractive index of air [ηair] is very close to 1.0, Eqn. (1) becomes the more familiar Eqn. (2)
[nAR]=√{square root over (nsub)}, Eqn. (2)
Since, as indicated above, the AR coating must be a quarter-wavelength thick [1/4λ], the physical thickness of the AR layer [δAR] must be defined by Eqn. (3)
where λ0 is the design wavelength in the incident medium where the reflectance is minimized.
For high index substrates, like crystalline germanium used in infrared optics, where the [nsub] is about 4.0, the [nAR] should be about 2.0. There are many materials that have indices of around 2, including the DLCs. However, it has been a challenge to find materials having a sufficiently low refractive index to pair with low index substrate materials, such as the soda lime glass (SLG), commonly used in the commercial window industry, which has a refractive index of 1.525, or translucent polymers having indices between 1.55 and 1.65. This means that [nAR] should be about 1.235, and this represents an enormous materials challenge since it is difficult to find materials having refractive indices lower than even about 1.34 as shown in Table 1.
Another known way to produce AR coatings is through the use of two or more stacked layers of alternating low and high index materials. Basically, the refractive indices of the thin film stack configuration should be the following: [air/low/high/substrate/ . . . ]. The words “low” and “high” refer to the low index [ηlow] and high index [ηhigh] layers relative to the index of the substrate [ηsub], i.e., where [ηlow]<[nhigh] and [ηhigh]>[ηsub].
H. A. Macleod, supra., at page 111, shows that the physical thickness of each layer, [dlow] and [dhigh], depends on the refractive indices, where the phase thickness (δ1) for layer-1 (the low-index layer) is given by
and the phase thickness for layer-2 (the high-index layer) is given by
The phase thickness (δi) is given in terms of the physical layer thickness (d) according to Eqn. (5)
in terms of the refractive index of layer (i) and the design wavelength in the incident medium (Ia). The form of the expressions in Eqns. (4), i.e., the square of the tangent functions, shows that there are in fact two solutions for each di. In other words, Eqns. (4) can be expressed as
tan δ1=±√{square root over (A1)}, Eqn. (6a)
and
tan δ2=±√{square root over (A2)}, Eqn. (6b)
Therefore, the two solutions (for each layer) are
δ1±=±tan−1√{square root over (A1)}, Eqn. (7a)
and
δ2±=±tan−1√{square root over (A2)}. Eqn. (7b)
δip=δio=+tan−1√{square root over (Ai)} Eqn. (8a)
and the negative solutions are
δin=π−δio Eqn. (8b)
Once it is recognized that the solutions are in terms of cyclical radians, a natural consequence is that there must be many periodic solutions, i.e., solutions which repeat every 2π radians. Evidently, the solutions in Eqn. (8) represent the zeroth order (m=0), but there must also be infinite number of solutions for m=1, 2, 3, etc. It can, therefore be shown using Eqns. (5) and (8), that all positive-solution thickness values for layer (i) are, for order (m),
and the corresponding negative-solution thickness values are
The negative solution values, therefore, have a greater physical thickness compared to the related positive solution values. Using the appropriate spectral calculations, it has been found that the AR condition requires using the positive solution for one layer, and the negative solution for the adjacent layer. In other words, the two correct (d1, d2) sets are (dp1, dn2) and (dn1, dp2) and not (dp1, dp2) and (dn1, dn2) as previously thought.
The known multi-layer AR stack arrangement described Madocks, supra., serves as an example. Madocks used a plasma-enhanced chemical vapor deposition (PECVD) method to form SiO2 as the [ηlow] layer (˜1.45), and SiN as the [nhigh] layer (˜1.95 to 2.1) in a stacked configuration having a total of six layers in three consecutive pairs of the high/low design. While one high/low pair can achieve AR at one specified wavelength, the more high/low pairs that are used, the greater the “band width” at which the AR is achieved. Madocks capped off the sixth layer (SiO2) with a very thin seventh layer consisting of a DLC. Since the refractive index of the DLC used by Madocks was about 2.0, the DLC layer is actually a “high” index layer so that [nDLC]>[nlow]. This means that the optical stack of Madocks ends with a high index layer, not with a low index layer as strictly required in the high/low AR design strategy outlined above.
Model calculations for the Madocks AR design are shown in
In a composition of matter embodiment, the diamond-like carbon (DLC) material, of the present invention (DLC-FH) contains fluorine and/or hydrogen. The material of the present invention has tetrahedral (sp3) atom arrangements typically associated with the bonding hybridization found in diamond, and are not polymer-like (e.g., soft polytetrafluoroethylene).
The DLC-FH materials of the present invention have advantageous optical properties, specifically a “low” refractive index [η] that, in a preferred embodiments is less than about 1.7, and preferably less than about 1.5 to 1.3, or even lower. With refractive indices this low, the DLC-FH materials of the present invention can now fully participate as the nlow layer in a stacked structure with no intrinsic restriction in the AR design (such as the limitation on thickness observed in
Moreover, the DLC-FH material has a “low” extinction coefficient [k] that, in preferred embodiments, is less than about 0.06, and preferably less than 0.04 to less than 0.01, and even lower. It should be noted that the foregoing values for q and K are measured at a wavelength of 550 nm, representing the middle of the Visible band. Another significant and unique optical property of the material of the present invention is that it has optical bandgap (Eg), as determined by the method of Tauc (described more completely hereinbelow), which is greater than 1.3 electron-volt (eV), and preferably greater than about 1.5 eV.
As a result of fluorine content, one of the advantageous physical properties of the DLC-FH material of the present invention is a hydrophobicity, as quantified by the contact angle of a bead of water, that ranges from about 100° to 140°, and preferably from about 120° to 140°. Hydrophobicity makes the material resistant to the effects of water, such as rain and fog that might be encountered in the environment. Moreover, its diamond-like structure renders it scratch and abrasion resistant.
The foregoing advantageous optical properties, and in particular, the low refractive index and extinction coefficient [η,κ], result in a material that is well-suited for use as an AR coating on a substrate, such as glass or translucent polymer. Illustrative examples, of substrates include fused-silica glass, SLG, polyethylene terepthalate (PTE) and polycarbonate. In a preferred practical embodiment, however, the substrate is glass, and preferably soda lime glass of the type typically used for windshields and windows. It is a particular advantage of the present invention that the method of making is scalable so that the AR coating can be deposited on large scale objects. Thus, the AP coating of the present invention would be particularly suited for use in the transportation and building industries.
In accordance with a method of making embodiment of the invention, the diamond-like carbon material containing fluorine and/or hydrogen is produced in a deposition or reaction chamber by a high energy source which may be a pulsed cathodic arc (PCA) and/or pulsed laser (PL) evaporation system. Typical, energy-per-carbon atom from the pulsed energy laser beam and/or cathodic vacuum arc discharge is from about 10 ectron-volt (Ev) to 500 eV. The high energy source contacts a carbonaceous target, which may be graphite, to produce a plasma of highly energized carbon atoms, ions, and electrons that travel in the chamber in the direction of a distally spaced apart substrate having a growth surface. The chamber also has an inlet for the reactant gas(es) which are a the source of fluorine and hydrogen species the chamber. Illustrative reaction gases include CF4, CH4, and H2. The inlet is arranged in the chamber between the target and the substrate so that there is a reaction zone where the fluorine and hydrogen species in the reactant gas(es) are excited by contact with electrons in the plasma to create low-energy, but highly chemically-reactive, precursor species.
The growth surface of the substrate is contacted with the low-energy, but highly chemically-reactive, precursor species as well as the highly energized carbon atoms, ions, and electrons in the plasma to deposit layers of carbon material containing fluorine and/or hydrogen on the growth surface of the substrate, so that the highly energized carbon atoms subplant beneath the top layer(s) of the carbon material to promote the formation of tetrahedral (sp3) atom arrangements of the type typically associated with the bonding hybridization found in diamond.
The method of the present invention enables control over the material content, as well as the optical and physical characteristics of the deposited DLC-FH material. In the preferred method embodiments, carbon is energized to “high” levels by pulsed cathodic arc (PCA) and/or pulsed laser (PL) evaporation of carbon from a solid graphite target. These high-energy processes are physical vapor deposition (PVD) processes, which, if used in unmodified form, produces DLCs with high refractive indices [η] above 1.7. When the high energy PVD process is combined with the a low energy component that involves the “down-stream” plasma activation of the fluorine and hydrogen precursor gases (e.g., CF4, CH4, H2, etc.). This low energy component forms a growing film of carbon layers on the substrate, which incorporate C—Fx (x from 1 to 3), and C—Hy (y from 1 to 3) fragments, in a mechanism that closely resembles plasma enhanced chemical vapor deposition (PECVD). This low energy PECVD-like channel by itself would produce soft polymer-like materials. However, by concurrently exposing the growing PECVD-like low energy film to the high energy carbon atoms from the PL and PCA processes, the energetic carbon atoms “subplant” below the top surface of the growing film, creating on an atomic scale, subsurface conditions to form a substantial fraction of sp3 bonded carbon atoms while also incorporating sp2 and sp bonded C—C, as well as C—F and C—H, fragments into the film structure. See, Lifshitz, et al., “Subplantation Model for Film Growth From Hyperthermal Species: Application to Diamond,” Phys. Rev. Lett., Vol. 62, p. 1290 (1989); Robertson, et al., “Deposition of Diamond-Like Carbon,” Phil. Transac.: Physical Sciences and Engineering, Vol. 342, No. 1664, Thin Film Diamond (Feb. 15, 1993), pp. 277-286; and Robertson, “Mechanism of sp3 bond formation in the growth of diamond-like carbon,” Diamond & Related Materials, Vol. 14, p. 942 (2005). Such spatial separation in the energetics of different atomic and molecular constituents of the depositing precursor species is generally related to “Remote PECVD” developed by Tsu, Deposition of Silicon Based Dielectrics by Remote Plasma Enhanced Chemical Vapor Deposition”, Ph.D. Thesis, North Carolina State University, Dept. Phys., Raleigh, N.C. (1989).
Comprehension of the invention is facilitated by reading the following detailed description, in conjunction with the annexed drawing, in which:
A spatially distinct inlet 4 introduces low-energy reactant gases containing the fluorine and hydrogen species 6d, illustratively CF4, CH4, and H2, into the reaction chamber (not specifically shown). As the reactant gas(es) expands into the reaction chamber, it interacts with plasma 3 in region 5 of the reaction chamber. In region 5, the electrons (e) of plasma 3 excite chemical species 6d, to create low-energy, but highly chemically-reactive, precursor species 6b, which in this illustrative embodiment, may be CFx, CHy, H. This excitation is similar to the chemical activation that occurs in a PECVD process. As these chemically-active precursors condense on the substrate, they begin to form a deposited thin film 6.
Since the delivery of the high kinetic energy carbon atoms (and ions) to the growing surface of film 6 proceeds simultaneously with the delivery of the low kinetic energy, but highly-chemically reactive species, the high energy carbon species 6c subplant beneath the top few layers, as shown in
Referring to
In order to demonstrate the uniqueness of the DLC-FH material of the present invention, as compared to existing DLC materials, the relationship between the measured [η, κ] data and their optical bandgaps (Eg), was determined by Tauc plots. Smith, “Optical constants of a hydrogenated amorphous carbon film,” J. Appl. Phys., Vol. 55, page 764 (1984); Mott, et al., Electronic Processes in Non-Crystalline Materials, 2nd ed. (Clarendon, Oxford, 1979), p. 289; and Tauc, “Optical Properties of Amorphous Semiconductors,” Amorphous and Liquid Semiconductors, Edited by J. Tauc, (Plenum, New York, 1974), Chap. 4. As will become evident from the following discussion, the Tauc plots demonstrate that the DLC-FH materials of the present invention, as a class, have distinctive behavior relative to [η, κ] versus Eg as compared to the class of materials defined by the existing DLC art. Tauc originally plotted (α hv)0.5 versus hv, where α is the absorption constant, and hv is the photon energy, and where a linear extrapolation to the ordinate value of zero defines the bandgap energy (Eg). Since α only depends on [κ] (α=4πκ/λo), Smith, supra., makes better use of the full [η,κ] data set, that is, [η] is also used, by plotting an equivalent (∈2 E2)0.5 vs. ∈2 where £2 is the imaginary part (=2ηκ) of the complex dielectric function, and E=hv, is the photon energy. The Tauc plots for the [n,k] data for the materials shown in
In the Tauc plots shown in
Referring again to
The materials for the other points shown on
Although the trend, indicated by the line designated “B” on the figure, appears to be the same as the A-line, the B-line is below the DLC threshold (i.e., horizontal dashed line). None of the conventional DLC samples exist below this threshold. The fact that the A- and B-lines appear to be parallel and lie on the same line, may simply be a result of the empirical Moss rule, where the index and bandgaps of different semiconducting materials appear to be simply related, as η4Eg=constant. (See, Pancove, Optical Processes in Semiconductors, (Dover, New York, 1971), p. 89)
Nevertheless, simply using fluorine does not automatically guarantee that the DLC-FH state can be produced. As will be discussed hereinbelow, producing this state depends on how the fluorine is energized.
For example, a number of DLC samples were made by another high-energy method called Anode Layer Ion Source (ALIS). For additional information on ALIS, see, for example, Madocks, supra.; Veerasamy, et al., “Large Area Ion-Beam Deposition of Hydrogenated Tetrahedral Amorphous Carbon on Soda-Lime Glass,” Soc. Vac. Coaters, 45th Annual Technical Conference Proceedings (2002), p. 127; Dudnikova, et al., “Ion source with closed drift anode layer plasma acceleration,” Rev. Sci. Inst., Vol. 73, No. 2, p. 729 (2002); and Madocks, et al., “Plasma Enhanced Chemical Vapor Deposition (PECVD) for Large Area Applications,” Soc. Vac. Coaters, 53rd Annual Technical Conference Proceedings, Orlando, Fla. April 17-22 (2010), p. 247. Referring to
Even though the ALIS process is capable of delivering high energies, e.g., 100's of eV, the resulting fluorinated and/or hydrogenated DLC samples did not have the desirable low-index properties of the DLC-FH material of the present invention (that is, they did not fall below the horizontal dashed threshold line). Referring to
All of the DLC samples made by ALIS are solidly on, or near, the A-line and have indices well above the lower 1.7 index threshold (horizontal dashed line) of DLCs despite the use of fluorine ion some of the samples. Thus, it is clear that introducing fluorine and/or hydrogen with high energy sources alone does not produce the low-index DLC-FH material of the present invention. Production of the low-index material of the present invention requires, in addition to a high energy mechanism, a low energy mechanism in which to simultaneously chemically excite the reactive species, which may be, in preferred embodiments, CFx containing species. The CFx active radicals react on the surface of the growing film, while energetic carbon species (ions and atoms) from the high energy mechanism (which may be LA) subplants through these CF layers to create the highly advantageous DLC-FH state.
In the [n550] vs. Eg plot of
In
A number of samples have been made in accordance with the dual energy process of the present invention. Table 2 identifies a number of samples having [C—H] and [C—F] content ranging from zero and up. As used in Table 2, samples made with only hydrogen in the low energy component are designated “DLC-H”, whereas sample made with fluorine only are designated “DLC-F.” Of course, samples made with both fluorine and hydrogen are referred to as “DLC-FH.” It should be understood, however, that the term “DLC-FH” as used herein refers generally to the class of carbon-based material made in accordance with the dual energy process of the present invention. The deposition conditions, or process parameters, used to grow the identified samples are provided in the table, along with the measured optical properties and bandgap energy (Eg).
Although the invention has been described in terms of specific embodiments and applications, persons skilled in the art can, in light of this teaching, generate additional embodiments without exceeding the scope or departing from the spirit of the claimed invention. Accordingly, it is to be understood that the drawing and description in this disclosure are proffered to facilitate comprehension of the invention, and should not be construed to limit the scope thereof. Moreover, the technical effects and technical problems in the specification are exemplary and are not limiting. The embodiments described in the specification may have other technical effects and can solve other technical problems.
This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/938,668 filed on Feb. 11, 2014, Conf. No. 4697 (Foreign Filing License Granted) in the names of the same inventors as herein. The disclosure in the identified U.S. Provisional Patent Application is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US15/15517 | 2/12/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61938668 | Feb 2014 | US |