FLUORINE-CONTAINING CALCIUM COMPOSITE PARTICLES, METHOD FOR PRODUCING THE SAME, AND SURFACE-TREATING AGENT COMPRISING THE SAME AS ACTIVE INGREDIENT

Information

  • Patent Application
  • 20160009922
  • Publication Number
    20160009922
  • Date Filed
    March 06, 2014
    10 years ago
  • Date Published
    January 14, 2016
    8 years ago
Abstract
Fluorine-containing calcium composite particles comprising an aggregate of a fluorine-containing alcohol represented by the general formula:
Description
TECHNICAL FIELD

The present invention relates to fluorine-containing calcium composite particles, a method for producing the particles, and a surface-treating agent comprising the particles as an active ingredient. More particularly, the present invention relates to fluorine-containing calcium composite particles capable of recovering fluorine sources as calcium fluoride and having water- and oil-repellency, a method for producing the particles, and a surface-treating agent comprising the particles as an active ingredient.


BACKGROUND ART

Fluorine sources required for the production of fluorine compounds are produced from fluorite (calcium fluoride). Fluorine compounds produced via various processes using the produced hydrogen fluoride and fluorine gas are applied and developed for various products because they have excellent resistance to chemical and physical changes, such as chemical resistance, heat resistance, and weather resistance, due to their chemical stability. However, the final disposal of fluorine compounds, which are difficult to dispose of, is mostly landfill disposal. This causes problems such as increases in waste and adverse effects on the environment.


Moreover, fluorine-containing organic compounds are known to have water- and oil-repellency derived from their fluorine atoms. For example, Patent Document 1 indicates that a fluorine-containing silane compound of the formula:


C8F17SO2R1(CH2)3SiX3 is applied to the surface of materials, such as metal, resin, paper, and glass, as a water- and oil-repellent. However, the contact angle of this water- and oil-repellent is suitable for water, but not suitable for liquid paraffin. That is, it is not sufficient as far as oil repellency is concerned.


Patent Document 2 discloses a polymer composition comprising a one-terminal hydrolyzable polymer represented by the general formula:





A-Rf-QZa[(CH2)cSi(R3-a)Xa]b

    • Rf: a group represented by —(CF2)d(OC2F4)e(OCF2)fO(CF2)d
    • A: a monovalent fluorine-containing group having terminal —CF2H
    • Q: a divalent organic group
    • Z: a divalent to octavalent organopolysiloxane moiety having a siloxane bond
    • R: a lower alkyl group or a phenyl group
    • X: a hydrolyzable group


      and a both-terminal hydrolyzable polymer represented by the general formula:





RfQZa[(CH2)cSi(R3-a)Xa]b)2


This polymer composition is described to have good adhesiveness to a substrate and to form a surface coating having excellent water- and oil-repellency, etc.


It is described that a surface-treating agent comprising the polymer composition can be applied to a substrate by any known method, such as brushing, dipping, spraying, or vapor deposition. A vacuum deposition method is used in the Examples of Patent Document 2. However, vacuum deposition requires large-scale processing facilities, and the surface-treating agent is not versatile in this respect. In addition, the oil repellency of the surface-treating agent is equal to or less than that of general fluororesin.


PRIOR ART DOCUMENTS
Patent Documents

Patent Document 1: JP-A-2-180984


Patent Document 2: JP-A-2012-233157


Patent Document 3: JP-B-4674604


Patent Document 4: WO 2007/080949 A1


Patent Document 5: JP-A-2008-38015


Patent Document 6: U.S. Pat. No. 3,574,770


OUTLINE OF THE INVENTION
Problem to be Solved by the Invention

An object of the present invention is to provide fluorine-containing calcium composite particles capable of recovering fluorine sources as calcium fluoride and having water- and oil-repellency, a method for producing the particles, and a surface-treating agent comprising the particles as an active ingredient.


Means for Solving the Problem

The present invention provides fluorine-containing calcium composite particles comprising an aggregate of a fluorine-containing alcohol represented by the general formula:





CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOH  [I]


wherein n is an integer of 1 to 6, a is an integer of 1 to 4, b is an integer of 0 to 3, and c is an integer of 1 to 3; and a calcium compound.


The fluorine-containing calcium composite particles are produced by aggregating a fluorine-containing alcohol represented by the above general formula [I] and a calcium compound using an alkaline or acid catalyst.


The present invention also provides fluorine-containing calcium composite particles comprising a condensate of a fluorine-containing alcohol represented by the general formula:





RF-A-OH  [Ia]





or the general formula:





HO-A-RF′-A-OH  [Ib]


wherein RF is a liner or branched perfluoroalkyl group that may contain an O, S, or N atom, or a polyfluoroalkyl group in which some of the fluorine atoms of the perfluoroalkyl group are replaced by hydrogen atoms; RF′ is a linear or branched perfluoroalkylene group containing an O, S, or N atom; and A is an alkylene group having 1 to 6 carbon atoms; alkoxysilane, and a calcium compound.


The fluorine-containing calcium composite particles are produced by subjecting a fluorine-containing alcohol represented by the above general formula [Ia] or [Ib] and alkoxysilane to a condensation reaction in the presence of a calcium compound using an alkaline or acid catalyst. The resulting product is used as an active ingredient of surface-treating agents.


Effect of the Invention

The fluorine-containing calcium composite particles of the present invention are novel composite particles. Due to their excellent dispersibility in water and various organic solvents, such as tetrahydrofuran, methanol, isopropanol, 1,2-dichloroethane, dimethylsulfoxide, and dimethylformamide, the fluorine-containing calcium composite particles of the present invention can be applied by a simple surface treatment method, such as dipping. Therefore, when the fluorine-containing calcium composite particles of the present invention are used as a surface-treating agent for glass, metal, stone, resin, and other various substrates, water- and oil-repellency, antifouling function, oil barrier, and other properties derived from their fluorine atoms can be effectively imparted to such substrates. Furthermore, after calcining up to 800° C., calcium fluoride can be detected from the ash content; thus, this calcium fluoride can be recovered and effectively reused as a fluorine source.







EMBODIMENTS FOR CARRYING OUT THE INVENTION

The polyfluoroalkyl alcohol represented by the general formula:





CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOH  [I]

    • n: 1 to 6, preferably 2 to 4
    • a: 1 to 4, preferably 1
    • b: 0 to 3, preferably 1 or 2
    • c: 1 to 3, preferably 1


      used in the first invention is disclosed in Patent Document 3, and synthesized through the following series of steps.


First of all, a polyfluoroalkyl iodide represented by the general formula:





CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cI


is reacted with N-methylformamide of the formula: HCONH(CH3) to form a mixture of polyfluoroalkyl alcohol and its formate. The mixture is then subjected to a hydrolysis reaction in the presence of an acid catalyst to form a fluorine-containing alcohol of the formula:





CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOH,


which is a polyfluoroalkyl alcohol. Examples of the polyfluoroalkyl iodide include the following:

  • CF3(CH2CF2)(CH2CH2)I
  • C2F5(CH2CF2)(CH2CH2)I
  • C2F5(CH2CF2)(CH2CH2)2I
  • C3F7(CH2CF2)(CH2CH2)I
  • C3F7(CH2CF2)(CH2CH2)2I
  • C4F9(CH2CF2)(CH2CH2)I
  • C4F9(CH2CF2)(CH2CH2)2I
  • C2F5(CH2CF2)(CF2CF2)(CH2CH2)I
  • C2F5(CH2CF2)(CF2CF2)(CH2CH2)2I
  • C2F5(CH2CF2)2(CF2CF2)(CH2CH2)I
  • C2F5(CH2CF2)2(CF2CF2)(CH2CH2)2I
  • C4F9(CH2CF2)(CF2CF2)(CH2CH2)I
  • C4F9(CH2CF2)2(CF2CF2)(CH2CH2)I
  • C4F9(CH2CF2)(CF2CF2)(CH2CH2)2I
  • C4F9(CH2CF2)2(CF2CF2)(CH2CH2)2I


An aggregate of such a fluorine-containing alcohol and a calcium compound forms fluorine-containing calcium composite particles.


The aggregation of these components is achieved by stirring them in the presence of a catalyst amount of an alkaline or acid catalyst, such as aqueous ammonia, an aqueous solution of a hydroxide of an alkali metal or alkaline earth metal (e.g., sodium hydroxide, potassium hydroxide, or magnesium hydroxide), hydrochloric acid, or sulfuric acid, at a temperature of about 0 to 100° C., preferably about 10 to 30° C., for about 0.5 to 48 hours, preferably about 1 to 10 hours.


Examples of calcium compounds include inorganic calcium salts, such as calcium hydroxide, calcium oxide, calcium carbonate, calcium chloride, calcium bromide, calcium iodide, calcium nitrate, calcium nitrite, calcium sulfate, calcium sulfite, calcium phosphate, calcium dihydrogen phosphate, calcium pyrophosphate, calcium silicate, calcium borate, and calcium hypochlorite; organic acid calcium salts, such as calcium methanesulfonate, calcium formate, calcium acetate, calcium propionate, calcium 2-ethylhexanoate, calcium stearate, calcium alginate, calcium gluconate, calcium ascorbate, calcium citrate, calcium oxalate, and calcium lactate. When an alkaline calcium compound, such as calcium hydroxide, is used, the compound itself also acts as an alkaline catalyst.


The ratio of these components is such that about 100 to 1,000 parts by weight, preferably about 250 to 500 parts by weight, of fluorine-containing alcohol is used based on 100 parts by weight of the calcium compound. When the ratio of the fluorine-containing alcohol is less than this range, water- and oil-repellency decreases. In contrast, when the ratio of the fluorine-containing alcohol is greater than this range, dispersibility in solvents becomes poor.


The resulting product, i.e., fluorine-containing calcium composite particles, is considered to be obtained by self-aggregation of a micellar aggregate formed by the fluorine-containing alcohol around the calcium compound, which serves as the core. Therefore, the fluorine-containing calcium composite particles effectively exhibit excellent water- and oil-repellency, antifouling properties, and other properties inherent in fluorine. In fact, a glass surface treated with the fluorine-containing calcium composite particles exhibits excellent water- and oil-repellency, and also has the effect of, for example, reducing the weight loss at 800° C. Moreover, the particle size of the fluorine-containing calcium composite particles as well as its variation show small values. The fluorine-containing calcium composite particles are formed as an aggregate of a fluorine-containing alcohol and a calcium compound; however, presence of any other component is allowed as long as the object of the present invention is not impaired.


When a condensation reaction is performed under coexistence of alkoxysilane in the reaction system during the production of such fluorine-containing calcium composite particles, fluorine-containing calcium composite particles can be produced as a condensate comprising three components, i.e., fluorine-containing alcohol, alkoxysilane, and calcium compound.


Examples of the fluorine-containing alcohol represented by the general formula:





RF-A-OH  [Ia]

    • RF: a liner or branched perfluoroalkyl group that may contain an O, S, or N atom, or a polyfluoroalkyl group in which some of the fluorine atoms of the perfluoroalkyl group are replaced by hydrogen atoms;
    • A: an alkylene group having 1 to 6 carbon atoms;


      used in the second invention include the following:





CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOH  [IIa]

    • n: 1 to 6, preferably 2 to 4
    • a: 1 to 4, preferably 1
    • b: 0 to 3, preferably 1 or 2
    • c: 1 to 3, preferably 1





CmF2m+1O[CF(CF3)CF2O]dCF(CF3)(CH2)eOH  [IIIa]

    • m: 1 to 3, preferably 3
    • d: 0 to 100, preferably 1 to 10
    • e: 1 to 3, preferably 1





CpF2p+1(CH2)qOH  [IVa]





CpF2pH(CH2)qOH  [IVa′]

    • p is 1 to 10, preferably 4 to 8
    • (with the proviso that p is 5 to 10 for surface-treating agent applications) q is 1 to 6, preferably 2


As the fluorine-containing alcohol represented by the general formula [IIa], the same compound as the fluorine-containing alcohol represented by the general formula [I] is used.


A hexafluoropropene oxide oligomer alcohol represented by the general formula [IIIa] wherein m=1 and e=1 is disclosed in Patent Document 4, and synthesized via the following steps.


A fluorine-containing ether carboxylic acid alkyl ester represented by the general formula: CF3O[CF(CF3)CF2O]nCF(CF3)COOR (R: an alkyl group, n: an integer of 0 to 12) is reduced by a reducing agent, such as sodium boron hydride.


Examples of the fluorine-containing alcohol represented by the general formula [IVa] include 2,2,2-trifluoroethanol (CF3CH2OH), 3,3,3-trifluoropropanol (CF3CH2CH2OH), 2,2,3,3,3-pentafluoropropanol (CF3CF2CH2OH), 3,3,4,4,4-pentafluorobutanol (CF3CF2CH2CH2OH), 2,2,3,3,4,4,5,5,5-nonafluoropentanol (CF3CF2CF2CF2CH2OH), 3,3,4,4,5,5,6,6,6-nonafluorohexanol (CF3CF2CF2CF2CH2CH2OH), 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctanol (CF3CF2CF2CF2CF2CF2CH2CH2OH), and the like.


Examples of the fluorine-containing alcohol represented by the general formula [IVa′] include 2,2,3,3-tetrafluoropropanol (HCF2CF2CH2OH), 2,2,3,4,4,4-hexafluorobutanol (CF3CHFCF2CH2OH), 2,2,3,3,4,4,5,5-octafluoropentanol (HCF2CF2CF2CF2CH2OH), and the like.


Moreover, an example of the fluorine-containing alcohol represented by the general formula [Ib] is a perfluoroalkylene ether diol represented by the general formula:





HO(CH2)fCF(CF3)[OCF2CF(CF3)]gO(CF2)hO[CF(CF3)CF2O]iCF(CF3)(CH2)fOH  [IIb]

    • f: 1 to 3, preferably 1
    • g+i: 0 to 50, preferably 2 to 50
      • (with the proviso that g+i is 2 to 50 for surface-treating agent applications)
    • h: 1 to 6, preferably 2


      Fluorine-containing alcohols of the above formula wherein f=1 are disclosed in Patent Documents 5 and 6, and synthesized via the following series of steps:
    • FOCRfCOF→H3COOCRfCOOCH3→HOCH2RfCH2OH
      • Rf: —C(CF3)[OCF2C(CF3)]aO(CF2)cO[CF(CF3)CF2O]bCF(CF3)—


As shown in the above cases, the alkylene group used is an alkylene group having 1 to 6 carbon atoms, preferably a —CH2— group having 1 carbon atom or a —CH2CH2— group having 2 carbon atoms.


A condensate of such a fluorine-containing alcohol, alkoxysilane, and a calcium compound forms fluorine-containing calcium composite particles. The calcium compound to be used may be any of the above-mentioned compounds.


The alkoxysilane to be reacted with a fluorine-containing alcohol forms fluorine-containing calcium composite particles by reaction in the presence of an alkaline or acid catalyst.


The alkoxysilane [III] is, for example, alkoxysilane represented by the general formula:





(R1O)pSi(OR2)q(R3)r  [III]

    • R1, R3: H, C1-C6 alkyl group, or aryl group;
    • R2: C1-C6 alkyl group or aryl group,
      • with the proviso that not all of R1, R2, and R3 are aryl groups;
    • p+q+r: 4, with the proviso that q is not 0


      Examples thereof include trimethoxysilane, triethoxysilane, trimethoxymethylsilane, triethoxymethylsilane, trimethoxyphenylsilane, triethoxyphenylsilane, tetramethoxysilane, tetraethoxysilane, and the like.


The reaction between these components is performed in the presence of a catalyst amount of an alkaline or acid catalyst, such as aqueous ammonia, an aqueous solution of a hydroxide of an alkali metal or alkaline earth metal (e.g., sodium hydroxide, potassium hydroxide, or magnesium hydroxide), hydrochloric acid, or sulfuric acid, at a temperature of about 0 to 100° C., preferably about 10 to 30° C., for about 0.5 to 48 hours, preferably about 1 to 10 hours.


The amount of fluorine-containing alcohol in the obtained fluorine-containing calcium composite particles is about 1 to 50 mol %, preferably about 5 to 30 mol %. The composite particle size is about 30 to 200 nm.


The ratio of these components is such that about 10 to 1,000 parts by weight, preferably about 250 to 500 parts by weight, of fluorine-containing alcohol, and about 10 to 500 parts by weight, preferably about 10 to 50 parts by weight, of alkoxysilane are used based on 100 parts by weight of the calcium compound. When the ratio of the fluorine-containing alcohol used is less than this range, water- and oil-repellency decreases. In contrast, when the ratio of the fluorine-containing alcohol is greater than this range, dispersibility in solvents becomes poor. In addition, depending on the type of fluorine-containing alcohol, for example, when about 500 parts by weight of fluorine-containing alcohol is used, neither water-nor oil-repellency may be exhibited. Moreover, when the ratio of alkoxysilane used is less than this range, dispersibility in solvents becomes poor. In contrast, when the ratio of alkoxysilane used is greater than this range, water- and oil-repellency decreases.


The resulting reaction products, i.e., fluorine-containing calcium composite particles, are considered to have a structure in which the condensed alkoxysilane includes the calcium compound, and the fluorine-containing alcohol is further bonded via a siloxane bond, which serves as a spacer. Therefore, the fluorine-containing calcium composite particles effectively exhibit excellent water- and oil-repellency, antifouling properties, and other properties inherent in fluorine. In fact, a glass surface treated with the fluorine-containing calcium composite particles exhibits excellent water- and oil-repellency, and also has the effect of, for example, reducing the weight loss at 800° C. Moreover, the particle size of the fluorine-containing calcium composite particles, and the variation of the particle size show small values. The fluorine-containing calcium composite particles are formed as a reaction product of a fluorine-containing alcohol, alkoxysilane, and a calcium compound; however, other components are allowed to be mixed as long as the object of the present invention is not impaired.


The fluorine-containing calcium composite particles are dispersed in aqueous media mainly using water, or in various organic solvents, such as tetrahydrofuran, methanol, isopropanol, 1,2-dichloroethane, dimethylsulfoxide, or dimethylformamide, to a solid matters content of about 0.01 to 30 wt. %, preferably about 0.05 to 5 wt. %, thereby forming surface-treating agents, such as water- and oil-repellents and oil barriers.


The surface-treating agent dispersion may further contain other additives that are necessary for surface modification. Examples of such additives include crosslinking agents, such as melamine resin, urea resin, and blocked isocyanate; polymer extenders, silicone resin or oil, or other water repellents, such as wax; insecticides, antistatic agents, dye stabilizers, crease-preventing agents, stain blockers, and the like.


Such surface-treating agents can be effectively applied to metal, paper, film, fiber, cloth, fabric, carpet, or textile products made of filament, fiber, yarn, etc., as water- and oil-repellents; or to sliding parts of precision instruments (e.g., watches, motors, and lenses of single-lens reflex cameras) or parts adjacent to the sliding parts as surface-treating agents, such as oil barriers, for preventing leakage of lubricating oil from sliding surfaces to neighboring parts. As the application method, coating, dipping, spraying, padding, roll coating, or a combination of these methods is generally used. For example, the surface-treating agent is used as a pad bath having a solid matters content of about 0.1 to 10 wt. %. A material to be treated is padded in the pad bath, and the excessive liquid is removed by squeeze rolls, followed by drying, so that the amount of the polymer attached to the material is about 0.01 to 10 wt. %. Subsequently, drying is generally carried out at a temperature of about 100 to 200° C. for about 1 minute to about 2 hours, although it depends on the type of material to be treated. Thus, the water- and oil-repellent treatment is completed.


EXAMPLES

The following describes the present invention with reference to Examples.


Example 1

To a solution in which 500 mg of fluorine-containing alcohol of the formula: CF3(CF2)3CH2(CF2)5(CH2)2OH [DTFA-103; C4F9(CH2CF2)(CF2CF2)2(CH2CH2)OH] was dissolved in 5 ml of methanol, a dispersion of 222 mg of calcium chloride CaCl2 (produced by Wako Pure Chemical Industries, Ltd.) in 4 ml of methanol was added, and the mixture was stirred with a magnetic stirrer for 10 minutes.


To the resulting mixture, 5 ml of 25 wt. % aqueous ammonia was added and stirred at room temperature overnight. Then, the solvent was removed under reduced pressure, and the residue was redispersed in 5 ml of methanol and allowed to stand overnight. Thereafter, the solid product was separated by centrifugation and washed several times with methanol. The obtained powder was dried under reduced pressure at 50° C. for 24 hours, thereby obtaining 130.0 mg of white powdery fluorine-containing calcium composite particles (yield: 18%).


The yield is expressed as the amount of produced fluorine-containing calcium composite particles relative to the total amount of starting materials to be used (fluorine-containing alcohol+calcium compound).


The particle size of the obtained white powdery fluorine-containing calcium composite particles, and the variation of the particle size were measured in a methanol dispersion having a solid matters content of 1 g/L at 25° C. by a dynamic light scattering (DLS) method (using DLS-6000HL, produced by Otsuka Electronics Co., Ltd.). Further, thermogravimetric analysis (TGA) was performed before calcining and after calcining up to 800° C. The heating rate in this case was 10° C./min. In the fluorine-containing calcium composite particles after calcining, the crystal structure of calcium fluoride was confirmed by comparison with diffraction patterns for identification by X-ray diffraction measurement using 2 θ/deg as the horizontal axis.


Examples 2 and 3, and Comparative Example 1

In Example 1, the amount of 25 wt. % aqueous ammonia was changed in various amounts.


Examples 4 to 6 and Comparative Example 2

In Examples 1 to 3 and Comparative Example 1, 328 mg of calcium nitrate Ca(NO3)2 (produced by Wako Pure Chemical Industries, Ltd.) was used in place of calcium chloride.


Examples 7 to 9 and Comparative Example 3

In Examples 1 to 3 and Comparative Example 1, 461 mg of calcium methanesulfonate Ca(OSO3CH3)2 (produced by Tokyo Chemical Industry Co., Ltd.) was used in place of calcium chloride.


Examples 10 to 13

In Examples 1 to 3 and Comparative Example 1, 148 mg of calcium hydroxide Ca(OH)2 (produced by Wako Pure Chemical Industries, Ltd.) was used in place of calcium chloride.


Table 1 below shows the results obtained in the above Examples and Comparative Examples.











TABLE 1









Fluorine-containing calcium



composite particle size (nm)















25% aqueous


Recovery
Yield
Before
After calcining


Example
NH3 (ml)
Ca compound (mg)

amount (mg)
(%)
calcining
up to 800° C.

















Ex. 1
5
CaCl2
222
130.0
18
37.8 ± 8.5
 70.5 ± 14.2


Ex. 2
3
CaCl2
222
122.7
17
22.5 ± 2.7
51.2 ± 6.6


Ex. 3
1
CaCl2
222
72.2
10
28.9 ± 3.4
38.3 ± 7.2


Comp. Ex. 1

CaCl2
222
0
0




Ex. 4
5
Ca(NO3)2
328
157.4
19
109.0 ± 20.0
34.1 ± 6.0


Ex. 5
3
Ca(NO3)2
328
132.5
16
47.3 ± 8.5
58.6 ± 7.2


Ex. 6
1
Ca(NO3)2
328
66.3
8
 97.7 ± 18.9
26.6 ± 3.8


Comp. Ex. 2

Ca(NO3)2
328
0
0




Ex. 7
5
Ca(OSO3Me)2
461
57.6
6
33.7 ± 7.1
17.2 ± 3.2


Ex. 8
3
Ca(OSO3Me)2
461
57.6
6
37.8 ± 6.3
17.9 ± 4.1


Ex. 9
1
Ca(OSO3Me)2
461
9.6
1




Comp. Ex. 3

Ca(OSO3Me)2
461

0




Ex. 10
5
Ca(OH)2
148
103.7
16
31.2 ± 8.0
35.9 ± 8.4


Ex. 11
3
Ca(OH)2
148
90.7
14
29.5 ± 7.9
35.4 ± 8.6


Ex. 12
1
Ca(OH)2
148
77.8
12
31.4 ± 7.5
27.2 ± 6.1


Ex. 13

Ca(OH)2
148
129.6
20
34.1 ± 8.2
29.3 ± 5.9









Comparative Examples 4 to 11

When 116 mg of each following fluorine-containing alcohol was used as the fluorine-containing alcohol in Example 3, in which 1 ml of 25 wt. % aqueous ammonia and 222 mg of calcium chloride were used, no fluorine-containing calcium composite particle was obtained in any of the cases.

  • Comparative Example 4: CF3CF2CF2OCF(CF3)CF2OCF(CF3)CH2OH [PO-3-OH]
  • Comparative Example 5: CF3(CF2)2O[CF(CF3)CF2O]4CF(CF3)CH2OH [PO-6-OH]
  • Comparative Example 6: HOCH2[CF(CF3)OCF2]2CF2OCF(CF3)CH2OH [OXF3PO—OH]
  • Comparative Example 7: HOCH2CF(CF3)[OCF2CF(CF3)]nO(CF2)2O—[CF(CF3)CF2O]mCF(CF3)CH2OH [n+m=6; OXF8PO—OH]
  • Comparative Example 8: HOCH2CF(CF3)[OCF2CF(CF3)]nO(CF2)2O—[CF(CF3)CF2O]mCF(CF3)CH2OH [n+m=12; OXF14PO—OH]
  • Comparative Example 9: CF3(CF2)3(CH2)2OH [FA-4; C2F5(CF2CF2)(CH2CH2)OH]
  • Comparative Example 10: CF3(CF2)5(CH2)2OH [FA-6; C2F5(CF2CF2)2(CH2CH2)OH]
  • Comparative Example 11: CF3(CF2)7(CH2)2OH [FA-8; C2F5(CF2CF2)3(CH2CH2)OH]


Examples 14 to 17

Prepared glass slides were dipped in methanol dispersions (particle concentration: 5 g/L) of the fluorine-containing calcium composite particles before calcining obtained in Examples 2, 5, 8, and 11, and then dried at room temperature. Droplets (4 μl) were gently brought into contact with the obtained thin layer surfaces at room temperature, and the contact angle (unit: °) of the droplets adhering to n-dodecane or water was measured by the θ/2 method using a contact angle meter (DropMaster 300, produced by Kyowa Interface Science Co., Ltd.). The contact angle with water was measured with time. Table 2 below shows the obtained results.











TABLE 2









Water (elapsed time: min)
















Ex.
Composite
Dodecane
0
5
10
15
20
25
30



















14
Ex. 2
60
38
6
0






15
Ex. 5
63
46
0







16
Ex. 8
91
73
9
0






17
Ex. 11
80
111
22
17 
13
7
0










Example 18

To a solution in which 500 mg of fluorine-containing alcohol of the formula: CF3(CF2)3CH2(CF2)5(CH2)2OH [DTFA-103; C4F9(CH2CF2)(CF2CF2)2(CH2CH2)OH] was dissolved in 5 ml of methanol, 100 mg of particulate calcium carbonate (produced by Shiraishi Calcium Kaisha, Ltd.; average particle size: 80 nm) was added. While the mixture was stirred with a magnetic stirrer, 0.13 ml of tetraethoxysilane (produced by Tokyo Chemical Industry Co., Ltd.; density: 0.93 g/ml) was added and stirred for 10 minutes.


To the resulting mixture, 2 ml of 25 wt. % aqueous ammonia was added and reacted at room temperature for 3 hours. Then, the solvent was removed under reduced pressure, and the residue was redispersed in 5 ml of methanol and allowed to stand overnight. Thereafter, the solid product was separated by centrifugation and washed several times with methanol. The obtained powder was dried under reduced pressure at 50° C. for 24 hours, thereby obtaining 137 mg of white powdery fluorine-containing calcium composite particles (yield: 19%).


The yield was calculated by the following formula on the assumption that tetraalkoxysilane underwent a self-condensation reaction to form three-dimensional siloxane bonds Si—O and generate a —O—Si—O— [SiO2] skeleton.

    • Yield (%)=A/[B+C+(D×E)]×100
      • A: weight of produced composite (g)
      • B: weight of fluorine-containing alcohol (g)
      • C: weight of calcium compound (g)
      • D: volume of tetraalkoxysilane (ml)
      • E: density of tetraalkoxysilane (g/ml)


Examples 19 to 25

In Example 18, the amount of fluorine-containing alcohol DTFA-103 was changed in various amounts.


Examples 26 to 33

In Examples 18 to 25, the same amount of CF3(CF2)3(CH2)2OH [FA-4; C2F5(CF2CF2)(CH2CH2)OH] was used as the fluorine-containing alcohol.


Examples 34 to 41

In Examples 18 to 25, the same amount of CF3(CF2)5(CH2)2OH [FA-6; C2F5(CF2CF2)2(CH2CH2)OH] was used as the fluorine-containing alcohol.


Examples 42 to 49

In Examples 18 to 25, the same amount of CF3(CF2)7(CH2)2OH [FA-8; C2F5(CF2CF2)3(CH2CH2)OH] was used as the fluorine-containing alcohol.


Examples 50 to 57

In Examples 18 to 25, the same amount of CF3CF2CF2OCF(CF3)CF2OCF(CF3)CH2OH [PO-3-OH] was used as the fluorine-containing alcohol.


Examples 58 to 65

In Examples 18 to 25, the same amount of CF3(CF2)2O[CF(CF3)CF2O]4CF(CF3)CH2OH [PO-6-OH] was used as the fluorine-containing alcohol.


Examples 66 to 71

In Examples 18 and 21 to 25, the same amount of HOCH2[CF(CF3)OCF2]2CF2OCF(CF3)CH2OH [OXF3PO—OH] was used as the fluorine-containing alcohol.


Examples 72 to 77

In Examples 18 and 21 to 25, the same amount of HOCH2CF(CF3)[OCF2CF(CF3)]nO(CF2)2O[CF(CF3)CF2O]mCF(CF3)CH2OH [n+m=6; OXF8PO—OH] was used as the fluorine-containing alcohol.


Examples 78 to 82

In Examples 18 and 22 to 25, the same amount of HOCH2CF(CF3)[OCF2CF(CF3)]nO(CF2)2O[CF(CF3)CF2O]mCF(CF3)CH2OH [n+m=12; OXF14PO—OH] was used as the fluorine-containing alcohol.


Table 3 below shows the measurement results obtained in the above Examples. In some of the Examples in which 500 mg or 300 mg of fluorine-containing alcohol was used, the amount of calcium carbonate was changed to 200 mg or 30 mg. In the table, the amount of fluorine-containing alcohol expressed by [500] indicates that the amount of calcium carbonate used in that case was changed to 200 mg. Further, the amount of fluorine-containing alcohol expressed by (300) indicates that the amount of calcium carbonate used in that case was changed to 30 mg.















TABLE 3












Fluorine-containing calcium




Alcohol
Composite
Yield
composite particle size (nm)
Weight loss













Ex.
(mg)
(mg)
(%)
Before calcining
After calcining up to 800° C.
(%)










[DTFA-103]













18
500
137
19
79.1 ± 13.5
61.4 ± 4.0 
15


19
[500]
246
30
80.3 ± 17.6
90.5 ± 15.2
32


20
400
155
25
55.8 ± 15.8
63.9 ± 5.9 
29


21
(300)
81
18
84.6 ± 17.6
90.5 ± 15.2
26


22
200
169
40
93.9 ± 16.4
141.4 ± 27.1 
24


23
150
182
49
82.1 ± 14.8
80.6 ± 15.8
27


24
100
180
56
58.8 ± 20.0
46.6 ± 9.6 
30


25
 70
205
70
80.6 ± 15.6
73.8 ± 14.9
30







[FA-4]













26
500
166
23
69.8 ± 15.6
41.8 ± 10.4
36


27
[500]
263
32
83.0 ± 15.1
55.6 ± 5.7 
38


28
400
161
26
148.8 ± 28.4 
123.6 ± 23.0 
28


29
(300)
90
20
77.6 ± 15.8
46.6 ± 10.8
28


30
200
186
44
148.8 ± 28.4 
123.6 ± 23.0 
36


31
150
190
51
84.3 ± 13.4
85.5 ± 17.0
38


32
100
200
62
155.0 ± 24.3 
145.1 ± 30.0 
35


33
 70
205
70
70.2 ± 11.4
52.7 ± 10.6
31







[FA-6]













34
500
152
21
82.4 ± 18.9
57.3 ± 13.1
38


35
[500]
254
31
68.8 ± 13.6
62.9 ± 10.4
39


36
400
155
25
50.7 ± 11.3
39.0 ± 8.2 
36


37
(300)
90
20
54.6 ± 12.1
47.3 ± 10.3
27


38
200
177
42
103.9 ± 14.9 
73.8 ± 13.0
34


39
150
186
50
182.8 ± 34.4 
126.1 ± 24.2 
36


40
100
180
56
137.6 ± 14.5 
137.6 ± 24.6 
34


41
 70
202
69
69.8 ± 14.3
51.0 ± 10.6
32







[FA-8]













42
500
159
22
51.3 ± 11.6
35.6 ± 8.3 
35


43
[500]
271
33
68.6 ± 13.0
57.7 ± 7.7 
39


44
400
168
27
93.5 ± 17.3
99.0 ± 18.8
34


45
(300)
86
19
80.7 ± 16.4
54.4 ± 12.3
28


46
200
173
41
88.4 ± 13.9
54.7 ± 11.8
33


47
150
190
51
88.1 ± 11.8
64.4 ± 10.8
35


48
100
203
63
53.6 ± 7.8 
47.5 ± 12.3
31


49
 70
207
71
85.1 ± 15.4
56.6 ± 10.4
35







[PO-3-OH]













50
500
166
23
70.1 ± 14.1
47.1 ± 10.3
33


51
[500]
271
33
24.9 ± 5.8 
25.8 ± 5.6 
39


52
400
161
26
54.6 ± 12.1
75.0 ± 13.1
36


53
(300)
86
19
70.9 ± 15.7
60.8 ± 13.5
25


54
200
177
42
77.2 ± 11.1
45.9 ± 10.5
34


55
150
175
47
54.0 ± 17.6
20.7 ± 2.9 
32


56
100
190
59
59.3 ± 11.5
47.5 ± 12.3
37


57
 70
240
82
84.6 ± 15.5
42.5 ± 6.8 
34







[PO-6-OH]













58
500
144
20
80.3 ± 19.1
31.4 ± 7.4 
41


59
[500]
263
32
36.6 ± 9.1 
48.6 ± 4.9 
38


60
400
168
27
55.0 ± 14.3
42.7 ± 10.5
26


61
(300)
95
21
55.6 ± 13.8
48.7 ± 11.3
25


62
200
182
43
53.6 ± 12.6
33.3 ± 3.8 
33


63
150
190
51
57.3 ± 12.4
24.6 ± 2.4 
33


64
100
200
62
80.3 ± 11.5
63.0 ± 5.9 
35


65
 70
237
81
72.5 ± 7.1 
58.1 ± 14.8
33







[OXF3PO-OH]













66
500
166
23
53.1 ± 12.6
38.7 ± 10.2
36


67
(300)
95
21
52.8 ± 11.6
38.4 ± 10.6
27


68
200
190
45
108.5 ± 16.4 
82.4 ± 13.8
34


69
150
197
53
53.8 ± 3.5 
34.1 ± 3.4 
36


70
100
209
65
108.4 ± 17.7 
82.2 ± 7.6 
32


71
 70
207
71
84.2 ± 12.2
72.7 ± 7.2 
32







[OXF8PO-OH]













72
500
166
23
40.2 ± 13.5
108.4 ± 20.0 
39


73
(300)
95
21
52.7 ± 11.4
71.2 ± 15.7
25


74
200
194
46
82.1 ± 14.5
64.8 ± 16.6
37


75
150
201
54
50.8 ± 10.8
44.9 ± 5.2 
35


76
100
184
57
73.4 ± 17.0
37.6 ± 5.5 
34


77
 70
210
72
114.4 ± 21.2 
115.3 ± 21.4 
34







[OXF14PO-OH]













78
500
281
39
104.7 ± 18.7 
89.0 ± 13.1
71


79
200
274
65
75.3 ± 15.8
71.0 ± 14.5
59


80
150
208
56
73.4 ± 13.1
55.1 ± 12.7
40


81
100
213
66
84.4 ± 15.2
54.7 ± 12.4
34


82
 70
234
80
51.2 ± 4.4 
42.5 ± 4.3 
38









Examples 83 to 100 and Comparative Examples 12 to 16

Using methanol dispersions (particle concentration: 5 g/L) of the fluorine-containing calcium composite particles before calcining obtained in some of the above Examples, the contact angle (unit: °) of droplets adhering to n-dodecane or water was measured by the above-mentioned measurement method. Table 4 below shows the obtained results. In Comparative Example 15, only particulate calcium carbonate was used. The measured values of Comparative Example 16 were obtained from calcium composite particles (weight loss: 29%) produced without using a fluorine-containing alcohol in Example 18.












TABLE 4









Contact angle












Example
Composite
Dodecane
Water
Evaluation














Ex. 83
Ex. 18
128
118



Ex. 84
Ex. 19
47
121



Ex. 85
Ex. 20
59
102



Ex. 86
Ex. 25
38
31



Ex. 87
Ex. 34
29
26
Δ


Ex. 88
Ex. 35
114
79



Ex. 89
Ex. 36
22
83
Δ


Ex. 90
Ex. 42
123
136



Ex. 91
Ex. 43
128
127



Ex. 92
Ex. 44
130
124



Ex. 93
Ex. 50
33
21



Ex. 94
Ex. 51
117
51



Ex. 95
Ex. 52
97
51



Ex. 96
Ex. 58
52
21
Δ


Ex. 97
Ex. 59
61
54



Ex. 98
Ex. 60
55
48



Ex. 99
Ex. 72
53
83



Ex. 100
Ex. 78
52
97



Comp. Ex. 12
Ex. 26
28
13
X


Comp. Ex. 13
Ex. 28
14
0
X


Comp. Ex. 14
Ex. 66
28
15
X


Comp. Ex. 15
CaCO3
30
18
X


Comp. Ex. 16
CaCO3—Si(OC2H5)4
30
18
X





Notes)


Evaluation


⊚: Contact angle with dodecane is 80° or more, and contact angle with water is 100° or more


◯: Contact angle with dodecane is 80° or more, or contact angle with water is 100° or more


Δ: Contact angle with dodecane is less than 80°, and contact angle with water is 100° or less


X: Both contact angle with dodecane and contact angle with water are lower than those of untreated product






The above results indicate that the surface tension of prepared glass slides is reduced by treating the surface of the prepared glass slides with methanol dispersions of fluorine-containing calcium composite particles.

Claims
  • 1. Fluorine-containing calcium composite particles comprising an aggregate of a fluorine-containing alcohol represented by the general formula: CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOH  [I]wherein n is an integer of 1 to 6, a is an integer of 1 to 4, b is an integer of 0 to 3, and c is an integer of 1 to 3; and a calcium compound.
  • 2. The fluorine-containing calcium composite particles according to claim 1, wherein the calcium compound is an inorganic calcium salt or an organic acid calcium salt.
  • 3. A method for producing fluorine-containing calcium composite particles, comprising aggregating the fluorine-containing alcohol [I] according to claim 1 and a calcium compound using an alkaline or acid catalyst.
  • 4. The method for producing fluorine-containing calcium composite particles according to claim 3, wherein aqueous ammonia is used as the alkaline catalyst.
  • 5. The method for producing fluorine-containing calcium composite particles according to claim 3, wherein calcium hydroxide is used as the calcium compound and the alkaline catalyst.
  • 6. Fluorine-containing calcium composite particles comprising a condensate of a fluorine-containing alcohol represented by the general formula: RF-A-OH  [Ia]or the general formula:HO-A-RF′-A-OH  [Ib]wherein RF is a liner or branched perfluoroalkyl group that may contain an O, S, or N atom, or a polyfluoroalkyl group in which some of the fluorine atoms of the perfluoroalkyl group are replaced by hydrogen atoms; RF′ is a linear or branched perfluoroalkylene group containing an O, S, or N atom; and A is an alkylene group having 1 to 6 carbon atoms; alkoxysilane, and a calcium compound.
  • 7. The fluorine-containing calcium composite particles according to claim 6, wherein the fluorine-containing alcohol represented by the general formula [Ia] is a polyfluoroalkyl alcohol represented by the general formula: CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CH2)cOH  [IIa]wherein n is an integer of 1 to 6, a is an integer of 1 to 4, b is an integer of 0 to 3, and c is an integer of 1 to 3.
  • 8. The fluorine-containing calcium composite particles according to claim 6, wherein the fluorine-containing alcohol represented by the general formula [Ia] is a hexafluoropropene oxide oligomer alcohol represented by the general formula: CmF2m+1O[CF(CF3)CF2O]dCF(CF3)(CF2)eOH  [IIIa]wherein m is an integer of 1 to 3, d is an integer of 0 to 100, and e is an integer of 1 to 3.
  • 9. The fluorine-containing calcium composite particles according to claim 6, wherein the fluorine-containing alcohol represented by the general formula [Ia] is a polyfluoroalkyl alcohol represented by the general formula: CpF2p+1(CH2)qOH  [IVa] orCpF2pH(CH2)qOH  [IVa′]wherein p is an integer of 1 to 10, and q is an integer of 1 to 6.
  • 10. The fluorine-containing calcium composite particles according to claim 6, wherein the fluorine-containing alcohol represented by the general formula [Ib] is a perfluoroalkylene ether diol represented by the general formula: HO(CH2)fCF(CF3)[OCF2CF(CF3)]gO(CF2)hO[CF(CF3)CF2O]iCF(CF3)(CH2)fOH  [IIb]
  • 11. The fluorine-containing calcium composite particles according to claim 6, wherein the alkoxysilane is a silane derivative represented by the general formula: (R1O)pSi(OR2)q(R3)r  [III]wherein R1 and R3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group; R2 is an alkyl group having 1 to 6 carbon atoms or an aryl group, with the proviso that not all of R1, R2, and R3 are aryl groups; and p+q+r is 4, with the proviso that q is not 0.
  • 12. The fluorine-containing calcium composite particles according to claim 6, wherein the calcium compound is an inorganic calcium salt or an organic acid calcium salt.
  • 13. A method for producing fluorine-containing calcium composite particles, comprising subjecting the fluorine-containing alcohol [Ia] or [Ib] according to claim 6 and alkoxysilane to a condensation reaction in the presence of a calcium compound using an alkaline or acid catalyst.
  • 14. The method for producing fluorine-containing calcium composite particles according to claim 13, wherein the alkoxysilane is a silane derivative represented by the general formula: (R1O)pSi(OR2)q(R3)r  [III]wherein R1 and R3 are each a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group; R2 is an alkyl group having 1 to 6 carbon atoms or an aryl group, with the proviso that not all of R1, R2, and R3 are aryl groups; and p+q+r is 4, with the proviso that q is not 0.
  • 15. A surface-treating agent comprising the fluorine-containing calcium composite particles according to claim 6 as an active ingredient.
  • 16. The surface-treating agent comprising fluorine-containing calcium composite particles as an active ingredient according to claim 15, wherein the fluorine-containing alcohol represented by the general formula [Ia] is a polyfluoroalkyl alcohol represented by the general formula: CnF2n+1(CH2CF2)a(CF2CF2)b(CH2CF2)cOH  [IIa]wherein n is an integer of 1 to 6, a is an integer of 1 to 4, b is an integer of 0 to 3, and c is an integer of 1 to 3.
  • 17. The surface-treating agent comprising fluorine-containing calcium composite particles as an active ingredient according to claim 15, wherein the fluorine-containing alcohol represented by the general formula [Ia] is a hexafluoropropene oxide oligomer alcohol represented by the general formula: CmF2m+1O[CF(CF3)CF2O]dCF(CF3)(CH2)eOH  [IIIa]wherein m is an integer of 1 to 3, d is an integer of 0 to 100, and e is an integer of 1 to 3.
  • 18. The surface-treating agent comprising fluorine-containing calcium composite particles as an active ingredient according to claim 15, wherein the fluorine-containing alcohol represented by the general formula [Ia] is a polyfluoroalkyl alcohol represented by the general formula: CpF2p+1(CH2)qOH  [IVa] orCpF2pH(CH2)qOH  [IVa′]wherein p is an integer of 5 to 10, and q is an integer of 1 to 6.
  • 19. The surface-treating agent comprising fluorine-containing calcium composite particles as an active ingredient according to claim 15, wherein the fluorine-containing alcohol represented by the general formula [Ib] is a perfluoroalkylene ether diol represented by the general formula: HO(CH2)fCF(CF3)[OCF2CF(CF3)]gO(CF2)hO[CF(CF3)CF2O]iCF(CF3)(CH2)fOH  [IIb]
  • 20. The surface-treating agent comprising fluorine-containing calcium composite particles as an active ingredient according to claim 16, which is used as a water- and oil-repellent.
Priority Claims (3)
Number Date Country Kind
2013-044087 Mar 2013 JP national
2013-044088 Mar 2013 JP national
2013-044089 Mar 2013 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2014/055821 3/6/2014 WO 00