Fluoropolymer aluminum laminate

Abstract
An aluminum fluoropolymer laminate and a method for making such a laminate which includes conversion coating the aluminum and bonding the fluoropolymer onto the conversion coated aluminum is described.
Description

This invention relates to aluminum bonded with fluoropolymer. More particularly this invention relates to bonding a conversion coated aluminum surface to a fluoropolymer structure such as a fluoropolymer film.
Fluoropolymers are well known to have superior thermal resistance, chemical resistance and electrical insulating properties. Moreover, they also are known to have superior low friction and "anti-stick" characteristics. Unfortunately the latter properties render it difficult to bond such fluoropolymers including fluoropolymer films to provide a protective layer for metal or to give enhanced mechanical and thermodynamic properties to a fluoropolymer structure.
Heretofore polymers have been applied to aluminum by cleaning the aluminum and thereafter coating it by exposing the aluminum to a polymeric dispersion as described in U.S. Pat. No. 2,811,471 to Homeyer, U.S. Pat. No. 3,563,785 to Kobe-shi et al. and U.S. Pat. No. 4,118,537 to Vary et al. Generally, using polymer dispersions, the thickness of the coatings deposited have been limited, have a thick metal substrate relative to the thickness of the coated metal substrate and have not provided polymer to aluminum bonds strong enough to readily admit the fluoropolymer/aluminum laminate to product fabrication and applications. U.S. Pat. No. 2,961,342 to Long describes products with similar disadvantages as that patent describes coating aluminum with polymeric dispersions and cobalt oxide.
Adhesives also have been suggested as a means to bond aluminum to polytetrafluoroethylene as described in U.S. Pat. No. 2,809,130 to Rappaport. Adhesives require careful cleaning and etching with potentially hazardous chemicals and pose serious handling and manufacturing problems.
U.S. Pat. No. 4,230,758 to Nagai et al. describes yet another method for bonding aluminum to a "fluorine resin" wherein the aluminum is etched and an aluminum oxide is formed on the surface of the aluminum which then is dispersion coated. This method is limited as other dispersion coating methods are limited, requires etching and results in handling problems as a result of multiple steps and etching.
Fluoropolymers bonded to aluminum will advantageously provide composite structures for fluid transfer products with a fluoropolymer inner layer bonded to an external aluminum jacket, or a fluid transfer product with an internal metal layer with an outer layer or external layer of fluoropolymer. Also, fluoropolymers bonded to aluminum may be used in printed circuit boards, electronic components such as capacitors, shielding for electronics, high temperature coaxial applications and corrosion resistant diaphragms and barriers.
An object of this invention is to provide a fluoropolymer/aluminum laminate.
Another object of this invention is to provide a method of bonding aluminum and a fluoropolymer structure to provide a laminate with increased bond strengths, which laminate is easily fabricated and allows great latitude for product design and poses no threat to the environment.
Yet another object of this invention is to provide a laminate of aluminum and fluoropolymer where the thickness of the fluoropolymer is greater than the aluminum.
Still further objects and advantages of the invention will be found by reference to the following description.
SUMMARY OF THE INVENTION
The invention provides an aluminum/fluoropolymer laminate and a method of bonding aluminum with a fluoropolymer to provide the laminate. According to the invention, the method of bonding aluminum with a preexisting fluoropolymer structure (as opposed to depositing a fluoropolymer onto a substrate with a dispersion of fluoropolymer) includes applying a chromate conversion coating to the aluminum to provide a conversion coated aluminum. Thereafter according to the invention, a preexisting fluoropolymer structure having a thickness is superposed on and contacted with the conversion coated aluminum to provide a superposed conversion coated fluoropolymer laminate. The aluminum and fluoropolymer structure are held together in intimate contact and are heated with pressure and temperature and for a time to effectively bond the fluoropolymer to the conversion coated aluminum such as to at least about 550.degree. F. for at least about one minute to provide the aluminum fluoropolymer laminate.
In another important aspect of the invention, conversion coated aluminum metal having a thickness in the range of from about 0.5 to about 1,000 mils is bonded with a fluoropolymer structure generally having a thickness in the range of from about 0.5 to about 1,000 mils with the ratio of the thickness of fluoropolymer to conversion coated aluminum in the range of from about 0.01 to about 100 and preferably from about 0.05 to about 20. The fluoropolymer structure is bonded with the conversion coating on the surface of the aluminum. In this aspect of the invention, the fluoropolymer aluminum bond strength is in excess of about 6 pounds per inch of width and generally in the range of from about 7 pounds to about 23 pounds. In this aspect of the invention, the fluoropolymer is bonded onto the conversion coated aluminum according to the method of this invention and permits the bonding of thin sheets of aluminum onto a fluoropolymer substrate thicker than the aluminum. In this aspect of the invention the laminate may be made by holding the conversion coated aluminum and fluoropolymer in intimate contact with one another at a pressure of at least about 10 psi. Thereafter the laminate is heated at a temperature range of from about 550.degree. F. to about 850.degree. F. to bond the conversion coated aluminum and fluoropolymer. Heating ranges and fluoropolymer to aluminum bond strengths vary with the fluoropolymer used, but temperatures should not be so elevated to destroy the structure of the fluoropolymer film.
In yet another aspect of the invention, different fluoropolymers may be layered onto the surface of another fluoropolymer and bonded thereto by raising the temperature of the two or more layers of fluoropolymers in contact with each other above the melt or gel point of the most thermally stable fluoropolymer. Both sides of a sheet of aluminum also may be conversion coated according to the method of the invention which sides then are bonded to a fluoropolymer which bonding results in a fluoropolymer/conversion coated aluminum/fluoropolymer laminate.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
As used herein "chromate conversion coating" means the coating which results from exposing an aluminum metal surface to a coating composition which includes water and hexavalent chromium wherein the chromium reacts with the aluminum and forms a film (conversion coating) containing complex chromium compounds.
As used herein "fluoropolymer" means polymers of tetrafluoroethylene such as polytetrafluoroethylene, fluoroethylene copolymer, alkoxy fluoroethylene copolymer and ethylene tetrafluoroethylene copolymer.
Polytetrafluoroethylene has an initial melting point of 342.degree. C. (648.degree. F.), is commercially available from DuPont as Teflon and has the following structure: ##STR1##
Fluoroethylene copolymer has a melting point of about 270.degree. F..+-.20.degree. C. (518.degree. F..+-.36.degree. F.), is commercially available from DuPont as Teflon FEP Fluorocarbon Resin and has the following structure: ##STR2##
Alkoxy fluoroethylene copolymer has a melting point of about 300.degree. C. (572.degree. F.) minimum, is commercially available from DuPont as Teflon PFA Fluorocarbon Resin and has the following structure: ##STR3##
Ethylene tetrafluoroethylene copolymer has a melting point of about 255.degree. C. (491.degree. F.) minimum, is a copolymer of ethylene and tetrafluoroethylene, is commercially available from DuPont as "Tefzel" ETFE Fluoropolymer and has the following structure: ##STR4##
The above fluoropolymers have the following properties:
__________________________________________________________________________TYPICAL PROPERTIES - FLUOROPOLYMERS Polytetra- Fluoro- Alkoxy Fluoro- Ethylene Tetra- fluoro- ethylene ethylene fluoroethylene ethylene Copolymer Copolymer Copolymer__________________________________________________________________________Tensile Strength, 2500-4000 3000-4000 3500-4300 6000-7500psiElongation, % 200-400 300 275-300 100-300Tensile Modulus, 80,000 50,000 40,000 120,000psi, 73.degree. F.Flexural Modulus, 50,000-90,000 95,000 95,000-100,000 170,000-200,000psiHardness-Durometer 50-65 55 60 75Coefficient of 0.1 0.2 0.2 0.4Friction Dynamic(<10 ft/min)Flex Life (MIT) >1,000,000 5,000-80,000 2,500-200,000 5,500-12,000Melting Point, .degree.F. 635-650 500-530 575-590 490-535Continuous Service 500 400 500 302Temp., .degree.F.Specific Gravity 2.13-2.24 2.15 2.15 1.70__________________________________________________________________________
According to the invention, aluminum is preferably first cleaned, then conversion coated with a chromate conversion coating, then preferably rinsed and dried. Preferably the chromate conversion coating meets the specifications set forth in United States military specification MIL-C-5541D, 28 Feb. 1989, which is incorporated herein.
The aluminum is cleaned at room temperature with an alkaline cleaner which cleaners are commercially available under the trademark Ridoline and Ridosol from Parker Amchem, Madison Heights, Mich. After cleaning the aluminum is rinsed with water at room temperature. Thereafter the conversion coating is applied at room temperature with an aqueous coating composition. The conversion coating composition includes hexavalent chromium. Chromic acid (CrO.sub.3) or chromium salts such as sodium or potassium chromate or dichromate are typical sources of hexavalent chromium. Generally, the aqueous coating compositions contain one or more of the following: fluoride ions, phosphate ions, cyanide ions, molybdenum ions, nitrate ions, sulfate ions and halogen ions other than fluoride ions. An important aspect of this invention is that the conversion coating composition includes a fluorine bearing compound containing either a simple or complex salt and also may contain a cyanide such as ferro and ferricyandes. These coating compositions are generally described in U.S. Pat. No. 2,988,465 to Newhard et al. and are commercially available under the name Alodine 1200 from Parker Amchem which product includes about 20 to about 50 weight percent chromic acid, about 5 to about 15 weight percent potassium fluozirconate, from about 30 to about 60 weight percent sodium fluoborate and from about 10 to about 30 weight percent potassium ferricyanide. From about 1 to about 2 oz. of Aldine 1200 in one gallon f water is used to conversion coat the aluminum for about 1 to about 5 minutes at room temperature.
After conversion coating the aluminum, the conversion coated surface is rinsed with running water at room temperature for about 1/2 to about one minute. Thereafter the conversion coated surface is rinsed with an acidulated rinse, which includes from about 1/2 to about 1 weight percent chromic acid in water, or alternatively, about 0.01 to about 0.05 oz. of Alodine per gallon of water, for about 1/2 minute at about 140.degree. to about 150.degree. F. The aluminum may be coated and rinsed by immersion, spray or brushing as is known.
After rinsing the conversion coated aluminum is dried at a temperature of at least about 70.degree. F., but not more than 150.degree. F. for about 10 minutes. It is important that drying be finished while the conversion coating is soft or gel-like. While not intending to be bound by any theory, it is believed that contacting the conversion coated aluminum with the fluoropolymer while the conversion coating is a gel or gel-like enhances the bonding strength of the aluminum fluoropolymer laminate.
After drying the fluoropolymer is superposed onto the surface of the conversion coating and held there under a pressure sufficient to keep the polymer conversion coating surfaces in intimate contact during subsequent heating to a temperature of at least about 550.degree. F. to about 850.degree. F. The temperature at which the fluoropolymer and the conversion coated aluminum are heated to bond the aluminum and fluoropolymer is a function of the type fluoropolymer used as well as the thicknesses of the aluminum and fluoropolymer. The pressure used may be only the pressure to keep the fluoropolymer structure in intimate contact with the conversion coated aluminum such as about 10 psi to about 20 psi.
The invention permits the bonding of an existing fluoropolymer structure having dimensions such as a thickness to an existing aluminum structure. Hence bonding conversion coated aluminum with thickness in the range of from about 0.5 to about 1,000 mils to a fluoropolymer structure with a thickness in the range of from about 0.5 to about 1,000 mils is effected according to the invention. Moreover, a particularly important aspect of this invention is that conversion coated aluminum is bonded with a fluoropolymer structure which is thicker than the aluminum.
In another particularly important aspect of the invention, fluoropolymer film is bonded with an aluminum foil. For fluoropolymer thicknesses in the range of from about 1 to about 125 mils and preferably from about 1 to about 10 mils and aluminum thicknesses of from about 1 to about 125 mils and preferably from about 1 to about 10 mils, a polytetrafluoroethylene/conversion coated aluminum combination preferably should be heated to about 700.degree. F. to about 750.degree. F. for at least about one minute to provide a fluoropolymer/aluminum bond strength of from about 6 to about 8 pounds/inch of width of laminate. The ratio of the thickness of the film to aluminum should be in the range of from about 0.01 to about 100. In this aspect of the invention, the aluminum foil and polymer film in superposed overlying relation are rolled onto a spindle to produce intimate contact and pressure between the foil and film such that when the rolled laminate is heated the conversion coated aluminum and film will bond.
For the same thickness ranges of polymer and aluminum as described with polytetrafluoroethylene and aluminum, a fluoroethylene copolymer/conversion coated aluminum combination preferably should be heated to about 600.degree. F. to about 650.degree. F. for at least about one minute to provide a fluoropolymer aluminum bond strength of from about 15 to about 19 pounds/inch of width of laminate.
At the same thickness ranges of polymer and aluminum as described with polytetrafluoroethylene and aluminum, an alkoxy fluoroethylene copolymer/conversion coated aluminum combination should be heated to about 650.degree. F. to from about 700.degree. F. for at least about one minute to provide a fluoropolymer/aluminum bond strength of from about 19 to about 21 pounds/inch of width of laminate.
When ethylene tetrafluoroethylene copolymer and aluminum are used at the thickness ranges of from about 1 to about 50 mils of polymer and from about 1 to about 125 mils for aluminum, the conversion coated aluminum and polymer should be held together and heated to from about 550.degree. F. to about 600.degree. F. for at least about one minute to provide a fluoropolymer/aluminum bond strength of from about 19 to about 21 pounds/inch of width of laminate.
A second fluoropolymer may be bonded to the fluoropolymer bonded onto the conversion coated aluminum. In this aspect of the invention the two polymers are held such that each surface is held into superposed intimate contact and heated to a temperature which is above the melt or gel point of the most thermally stable polymer. The two polymers bond to provide a three layered laminate. Additional polymers including fluoropolymers may be layered and bonded into a multiple layered structure.





The following examples set forth exemplary ways of practicing the invention.
EXAMPLE I
A 5 mil thick aluminum strip was cleaned in Ridolene, an alkaline cleaner, at room temperature for 15 seconds and then rinsed in room temperature water. The cleaned aluminum was then dipped in a chromate conversion coating, 1 oz. of Alodine 1200 in 1 gallon of water, for 1 minute at room temperature and then rinsed in room temperature water. The conversion coated strip was dried at room temperature for 30 minutes.
The conversion coated aluminum was then cut to a 1 inch width and wrapped around a 1 inch long tube of alkoxy fluoroethylene copolymer with an outer diameter of 0.300 inches and a wall thickness of 0.030 inches. The strip was wound leaving a 1 inch overlap. The wrapped combination was then wrapped in another aluminum strip to maintain intimate contact between the fluoropolymer and the conversion coated aluminum. This combination was then heated to 750.degree. F. and held stable at that temperature for one minute. The outermost layer of aluminum (which is not part of the structure) was removed to expose the fluoropolymer/conversion coated aluminum laminate. A mandral was placed through the inside of the tube and fitted into one jaw of a tensile tester, while the 1 inch overlap was clamped in the other jaw. The laminate was then subjected to tensile load at a strain rate of about 0.5 inches per minute and began to peel at a tensile load of 21 pounds.
EXAMPLE II
Using the 5 mil aluminum which was conversion coated as described in Example I, a laminate was constructed as in Example I, except that the tube was polytetrafluoroethylene and a 0.002 inch thick film of alkoxy fluoroethylene copolymer was wrapped around the tube before the conversion coated aluminum. The combination was thermally processed and peel tested as in Example I and exhibited a peel strength of 21 pounds.
EXAMPLE III
A laminate was constructed as in Example II, but was 12 inches long. After thermal processing as in Example I, the resultant tubular laminate could be bent to a desired radius and would stay in place.
EXAMPLE IV
Using the 5 mil aluminum which was conversion coated as described in Example I, a laminate was constructed of a layer of 0.002 inch thick alkoxy fluoroethylene copolymer between two layers of the 5 mil thick conversion coated aluminum strip. The combination was held in intimate contact and thermally processed as in Example I. The resultant conversion coated aluminum/fluoropolymer/conversion coated aluminum laminate was peel tested and found to have a peel strength of 19 pounds per inch of width. The resulting laminate included two pieces of aluminum held together with a fluoropolymer film.
Although the invention has been described with regard to its preferred embodiments, it should be understood that various changes and modifications as would be obvious to one having the ordinary skill in this art may be made without departing from the scope of the invention which is set forth in the claims appended hereto.
The various features of this invention which are believed new are set forth in the following claims.
Claims
  • 1. A method for bonding a fluoropolymer structure to aluminum, the method comprising:
  • applying a chromate conversion coating to aluminum to provide a conversion coated aluminum surface, the chromate conversion coating provided by a coating composition which comprises hexavalent chromium and a compound which includes fluorine, the conversion coating have a consistency of a gel;
  • contacting a surface of the fluoropolymer structure with the conversion coated aluminum surface to provide a superposed fluoropolymer-conversion coated aluminum laminate, the fluoropolymer structure and conversion coated aluminum having thicknesses wherein the ratio of the thickness of the fluoropolymer structure to the conversion coated aluminum is in the range of from about 0.05 to about 20, the fluoropolymer structure selected from the group consisting of fluoroethylene copolymer and alkoxy fluoroethylene copolymer; and
  • heating the superposed conversion coated fluoropolymer laminate to at least about 600.degree. F. for at least one minute to provide a fluoropolymer-aluminum laminate when the fluoropolymer structure is fluoroethylene copolymer, or heating the type superposed conversion coated laminate to at least 650.degree. F. for at least one minute when the fluoropolymer structure is alkoxy fluoroethylene copolymer to provide a fluoropolymer aluminum laminate.
  • 2. A method as recited in claim 1 wherein the fluoropolymer structure is thicker than the conversion coated aluminum.
  • 3. A method as recited in claim 1, the method further comprising drying the conversion coating for at least about 10 minutes at at least about 70.degree. F.
  • 4. A method as recited in claims 1, 2 or 3 wherein the fluoropolymer structure comprises an alkoxy fluoroethylene copolymer.
  • 5. A method of bonding an aluminum foil to a fluoropolymer film, the foil having a thickness in the range of from about 1 mil to about 125 mils, the fluoropolymer film having the thickness in the range of from about 1 mil to about 125 mils and selected from the group consisting of fluoroethylene copolymer and alkoxy fluoroethylene copolymer, the method comprising:
  • applying a chromate conversion coating to at least one surface of the aluminum foil with a conversion coating composition to provide a conversion coated aluminum foil, the conversion coating on the aluminum having a consistency of a gel and including fluoride ions;
  • superposing the fluoropolymer film onto the conversion coated aluminum foil to contact the fluoropolymer with the conversion coating on the aluminum foil to provide a superposed conversion coated aluminum foil fluoropolymer laminate; and
  • heating the superposed conversion coated aluminum foil fluoropolymer laminate to at least about 600.degree. F. for a time and at a pressure to effectively bond the fluoropolymer to the conversion coated aluminum foil when the fluoropolymer film is fluoroethylene copolymer to provide an aluminum foil fluoropolymer laminate, or heating the superposed conversion coated aluminum foil fluoropolymer laminate to at least 650.degree. F. for a time and a pressure to effectively bond the fluoropolymer to the conversion coated aluminum foil when the fluoropolymer film is alkoxy fluoroethylene copolymer to provide an aluminum foil fluoropolymer laminate.
  • 6. A method as recited in claim 5 wherein the ratio of the thickness of the fluoropolymer to the thickness of aluminum foil is in the range of from about 0.01 to about 100 and the conversion coating composition comprising hexavalent chromium and a compound which includes fluorine.
  • 7. A method as recited in claims 5 or 6 wherein the fluoropolymer film comprises fluoroethylene copolymer and the superposed fluoropolymer-conversion coated aluminum laminate is heated to at least about 600.degree. F. for at least one minute to provide a fluoropolymer/aluminum bond strength of from about 15 to about 19 pounds/inch of width of laminate.
  • 8. A method as recited in claims 5 or 6 wherein the fluoropolymer structure comprises alkoxy fluoroethylene copolymer and the superposed fluoropolymer-conversion coated aluminum laminate is heated to at least about 650.degree. F. for at least one minute to provide a fluoropolymer/aluminum bond strength of from about 19 to about 21 pounds/inch of width of laminate.
  • 9. A method for bonding aluminum together, the method comprising:
  • applying a chromate conversion coating to at least two aluminum surfaces, with a conversion coating composition, to provide conversion coated aluminum surfaces, said conversion coated surfaces having a consistency of a gel;
  • superposing a fluoropolymer film selected from the group consisting of fluoroethylene copolymer and alkoxy fluoroethylene copolymer, the film having a thickness in the range of from about 1 to 10 mile between the conversion coated aluminum surfaces such that the fluoropolymer film is in about contact with both conversion coated aluminum surfaces to provide a superposed conversion coated aluminum/fluoropolymer aluminum laminate, the conversion coating including fluoride ion; and
  • heating the superposed conversion coated aluminum/fluoropolymer laminate to at least about 600.degree. F. for a time sufficient to effectively bond the conversion coated aluminum surfaces to the fluoropolymer to provide a laminate having at least two aluminum surfaces bonded with the fluoropolymer film when the fluoropolymer film is fluoroethylene copolymer, or heating the superposed conversion coated aluminum/fluoropolymer laminate to at least about 650.degree. F. for a time sufficient to effectively bond the conversion coated aluminum surfaces to the fluoropolymer to provide a laminate having at least two aluminum surfaces bonded with the fluoropolymer film when the fluoropolymer film is alkoxy fluoroethylene copolymer.
  • 10. A method for bonding aluminum to a preexisting fluoropolymer structure, the method comprising:
  • applying a chromate conversion coating composition to an aluminum surface to provide a conversion coating on the aluminum;
  • superposing the fluoropolymer structure onto the conversion coated aluminum to contact the fluoropolymer structure with the conversion coating on the aluminum surface to provide a superposed conversion coated aluminum fluoropolymer laminate, the fluoropolymer structure selected from the group consisting of fluoroethylene copolymer and alkoxy fluoroethylene copolymer, the conversion coating on the aluminum having a consistency of a gel and including fluoride ions; and
  • heating the superposed fluoropolymer-conversion coated aluminum laminate to at least about 600.degree. F. when the structure is fluoroethylene copolymer and to at least about 650.degree. F. when the structure is alkoxy fluoroethylene copolymer for a time and pressure to effectively bond the conversion coated aluminum to the preexisting fluoropolymer structure to provide a fluoropolymer aluminum laminate.
  • 11. A method as recited in claim 10, the method further comprising drying the conversion coating for at least about 10 minutes at least about 70.degree. F.
  • 12. A method as recited in claim 11, the method further comprising cleaning the surface of the aluminum prior to applying the chromate conversion coating thereon.
  • 13. A method as recited in claim 10 wherein the ratio of the thickness of the fluoropolymer structure to aluminum is in the range of from about 0.01 to about 100.
  • 14. A method as recited in claim 13 wherein the fluoropolymer structure is thicker than the conversion coated aluminum.
  • 15. A method as recited in claims 10, 13 or 14 wherein the fluoropolymer structure comprises a fluoroethylene copolymer.
  • 16. A method as recited in claims 10, 13 or 14 wherein the fluoropolymer structure comprises an alkoxy fluoroethylene copolymer and wherein the superposed fluoropolymer-conversion coated aluminum laminate is heated to at least 650.degree. F.
  • 17. A method as recited in claims 10, 13 or 14 wherein the fluoropolymer structure comprises alkoxy fluoroethylene copolymer and the superposed fluoropolymer-conversion coated aluminum laminate is heated to at least about 600.degree. F.
Parent Case Info

This is a continuation of application Ser. No. 08/057,213, filed May 4, 1993, now U.S. Pat. No. 5,401,334 which is a Continuation of Ser. No. 07/613,267, filed Nov. 14, 1990 now abandoned.

US Referenced Citations (89)
Number Name Date Kind
2294334 Filbert Aug 1942
2392378 Hanford Jan 1946
2471909 Spruance, Jr. May 1949
2493934 Waring Jan 1950
2539329 Sanders Jan 1951
2563431 Spruance, Jr. Aug 1951
2678291 Spruance, Jr. et al. May 1954
2798829 Newhard et al. Jul 1957
2808342 Nickerson Oct 1957
2809130 Rappaport Oct 1957
2811471 Homeyer, Jr. Oct 1957
2843513 Stricklen Jul 1958
2844496 Newell et al. Jul 1958
2850419 Melse et al. Sep 1958
2851385 Spruance, Jr. et al. Sep 1958
2936254 Newhard, Jr. et al. May 1960
2961341 Long Nov 1960
2961358 Heller Nov 1960
2976193 Pimbley Mar 1961
2988465 Newhard, Jr. et al. Jun 1961
3009842 Steinbrecher Nov 1961
3025185 Schmidt Mar 1962
3130085 Otto Apr 1964
3130086 Otto Apr 1964
3136680 Hochberg Jun 1964
3329536 Lodeesen et al. Jul 1967
3364080 Hall Jan 1968
3371076 Ragazzini et al. Feb 1968
3380858 Champaneria et al. Apr 1968
3404046 Russell et al. Oct 1968
3405014 Kuwabara et al. Oct 1968
3421972 Cromwell et al. Jan 1969
3447972 Wilde, Jr. et al. Jun 1969
3528954 Carlson Sep 1970
3535168 Thompson Oct 1970
3542605 Harvey, Jr. Nov 1970
3563785 Oga et al. Feb 1971
3567521 Toy et al. Mar 1971
3579370 Punderson et al. Oct 1971
3676566 McBride Jul 1972
3781185 Takamatsu et al. Dec 1973
3837895 Pryor et al. Sep 1974
3840619 Aronoff et al. Oct 1974
3847881 Mueller et al. Nov 1974
3876435 Dollman Apr 1975
3895969 Miller Jul 1975
3900684 Edwards et al. Aug 1975
3907610 Yamagishi et al. Sep 1975
3936569 Miller et al. Feb 1976
3947525 Robertson et al. Mar 1976
3967018 Jansta et al. Jun 1976
3981945 Attwood et al. Sep 1976
3995091 Dhami Nov 1976
4024316 Loris May 1977
4035565 Apotheker et al. Jul 1977
4070341 Schulze Jan 1978
4070525 Vassiliou et al. Jan 1978
4075288 Graverson et al. Feb 1978
4104416 Parthasarathy et al. Aug 1978
4107356 Ukihashi et al. Aug 1978
4118537 Vary et al. Oct 1978
4146410 Reinhold Mar 1979
4196256 Eddy et al. Apr 1980
4226646 Vassiliou Oct 1980
4226896 Coburn et al. Oct 1980
4230758 Nagai et al. Oct 1980
4237177 Slama et al. Dec 1980
4248924 Okita Feb 1981
4250215 Mayer Feb 1981
4252859 Concannon et al. Feb 1981
4264650 Schulze et al. Apr 1981
4313996 Newman et al. Feb 1982
4339506 Martin, Jr. Jul 1982
4505971 Martin, Jr. Mar 1985
4513055 Liebowitz Apr 1985
4600651 Aufdermarsh et al. Jul 1986
4605695 Sakamaki et al. Aug 1986
4628003 Katz Dec 1986
4656083 Hoffman et al. Apr 1987
4666762 Yamamoto May 1987
4689254 Arndt et al. Aug 1987
4725504 Knudsen et al. Feb 1988
4791012 d'Agostino et al. Dec 1988
4800661 Yamamoto et al. Jan 1989
4818618 Okazaki et al. Apr 1989
4826731 Wagner et al. May 1989
4833022 Bridges et al. May 1989
4895752 McEwen Jan 1990
4916017 Nomi et al. Apr 1990
Foreign Referenced Citations (6)
Number Date Country
0159942 Apr 1985 EPX
1574105 Apr 1968 FRX
2655677 Jul 1977 JPX
27384687 Nov 1987 JPX
808115 Jun 1957 GBX
9003267 Apr 1990 WOX
Continuations (2)
Number Date Country
Parent 57213 May 1993
Parent 613267 Nov 1990