Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant

Information

  • Patent Grant
  • 8598267
  • Patent Number
    8,598,267
  • Date Filed
    Friday, September 7, 2007
    17 years ago
  • Date Issued
    Tuesday, December 3, 2013
    11 years ago
Abstract
The present invention provides a fluoropolymer dispersion comprising fluoropolymer particles having an average particle size of 10 to 400 nm dispersed in water whereby the dispersion is free of fluorinated surfactant having a molecular weight of less than 1000 g/mol or contains the fluorinated surfactant having a molecular weight of less than 1000 g/mol in an amount of not more than 0.025% by weight based on the total weight of solids in the dispersion. The dispersion further comprises a non-ionic surfactant and an anionic surfactant selected from fluorinated anionic surfactants having a molecular weight of at least 1000 g/mol, non-fluorinated anionic surfactants and mixtures thereof.
Description
1. FIELD OF THE INVENTION

The present invention relates to aqueous fluoropolymer dispersions that are free of low molecular weight fluorinated surfactant or that contain the latter in low amounts. In particular, the present invention relates to reducing the viscosity of such fluoropolymer dispersions that are high in solids content and that contain non-ionic surfactants as a stabilizer.


2. BACKGROUND OF THE INVENTION

Fluoropolymers, i.e. polymers having a fluorinated backbone, have been long known and have been used in a variety of applications because of several desirable properties such as heat resistance, chemical resistance, weatherability, UV-stability etc. . . . . The various fluoropolymers are for example described in “Modern Fluoropolymers”, edited by John Scheirs, Wiley Science 1997. The fluoropolymers may have a partially fluorinated backbone, generally at least 40% by weight fluorinated, or a fully fluorinated backbone. Particular examples of fluoropolymers include polytetrafluoroethylene (PTFE), copolymers of tetrafluoroethylene (TFE) and hexafluoropropylene (HFP) (FEP polymers), perfluoroalkoxy copolymers (PFA), ethylene-tetrafluoroethylene (ETFE) copolymers, terpolymers of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride (THV) and polyvinylidene fluoride polymers (PVDF).


The fluoropolymers may be used to coat substrates to provide desirable properties thereto such as for example chemical resistance, weatherability, water- and oil repellency etc. . . . . For example aqueous dispersions of fluoropolymer may be used to coat kitchen ware, to impregnate fabric or textile e.g. glass fabric, to coat paper or polymeric substrates. For sake of economy and convenience, the fluoropolymer dispersions will typically have between 30% by weight and 70% by weight of fluoropolymer solids.


A frequently used method for producing aqueous dispersions of fluoropolymers involves aqueous emulsion polymerization of one or more fluorinated monomers usually followed by an upconcentration step to increase the solids content of the raw dispersion obtained after the emulsion polymerization. The aqueous emulsion polymerization of fluorinated monomers generally involves the use of a fluorinated surfactant. Frequently used fluorinated surfactants include perfluorooctanoic acids and salts thereof, in particular ammonium perfluorooctanoic acid. Further fluorinated surfactants used include perfluoropolyether surfactants such as disclosed in EP 1059342, EP 712882, EP 752432, EP 816397, U.S. Pat. No. 6,025,307, U.S. Pat. No. 6,103,843 and U.S. Pat. No. 6,126,849. Still further surfactants that have been used are disclosed in U.S. Pat. No. 5,229,480, U.S. Pat. No. 5,763,552, U.S. Pat. No. 5,688,884, U.S. Pat. No. 5,700,859, U.S. Pat. No. 5,804,650, U.S. Pat. No. 5,895,799, WO 00/22002 and WO 00/71590.


Most of these fluorinated surfactants have a low molecular weight, i.e. a molecular weight of less than 1000 g/mol. Recently, such low molecular weight fluorinated compounds have raised environmental concerns. Accordingly, measures have been taken to either completely eliminate the fluorinated low molecular weight surfactants from aqueous dispersion or at least to minimize the amount thereof in an aqueous dispersion. For example, WO 96/24622 and WO 97/17381 disclose an aqueous emulsion polymerization to produce fluoropolymers whereby the polymerization is carried out without the addition of fluorinated surfactant. U.S. Pat. No. 4,369,266 on the other hand discloses a method whereby part of fluorinated surfactant is removed through ultrafiltration. In the latter case, the amount of fluoropolymer solids in the dispersion is increased as well, i.e. the dispersion is upconcentrated while removing fluorinated surfactant. WO 00/35971 further discloses a method in which the amount of fluorinated surfactant is reduced by contacting the fluoropolymer dispersion with an anion exchanger.


Since the solids content of the raw dispersions immediately after emulsion polymerization is usually in the range of up to 35% by weight, the raw dispersions are subjected to an upconcentration process so as to increase the solids content thereof. In order to preserve the stability of the dispersion, the upconcentration typically is carried out in the presence of a stabilizer, in particular a non-ionic surfactant that acts as a stabilizer.


However, when fluoropolymer dispersions that contain no or only a small amount of fluorinated low molecular weight surfactant are upconcentrated, it was found that a viscosity increase results which may be unacceptable. Moreover, the stability of the upconcentrated dispersions may under certain conditions be inferior to dispersions in which the amount of low molecular weight fluorinated surfactant is higher.


Accordingly, there exists a desire to remove one or more of the aforementioned disadvantages of the prior art.


3. SUMMARY OF THE INVENTION

According to one aspect of the present invention, there is provided a fluoropolymer dispersion comprising fluoropolymer particles having an average size of 10 nm to 400 nm dispersed in water whereby the dispersion is free of fluorinated surfactant having a molecular weight of less than 1000 g/mol or contains the fluorinated surfactant having a molecular weight of less than 1000 g/mol in an amount of not more than 0.025% by weight based on the total weight of solids in the dispersion. The dispersion further comprises a non-ionic surfactant and an anionic surfactant selected from fluorinated anionic surfactants having a molecular weight of at least 1000 g/mol, non-fluorinated anionic surfactants and mixtures thereof.


According to a further aspect, the invention also provides a method of providing a fluoropolymer particle dispersion comprising the steps of:

    • providing a fluoropolymer dispersion comprising fluoropolymer particles having an average size of 10 nm to 400 nm comprising fluorinated surfactant having a molecular weight of less than 1000 g/mol or being free thereof,
    • reducing the amount of the fluorinated surfactant in the dispersion if the amount thereof is more than 0.025% by weight based on the total weight of solids of the dispersion, preferably based on the total weight of fluoropolymer solids in the dispersion;
    • upconcentrating the fluoropolymer dispersion in the presence of a non-ionic surfactant so as to increase the amount of fluoropolymer solids in the dispersion; and
    • adding an anionic surfactant selected from fluorinated anionic surfactants having a molecular weight of at least 1000 g/mol, non-fluorinated anionic surfactants and mixtures thereof, to the fluoropolymer dispersion prior to or after upconcentrating the fluoropolymer dispersion.


Still further, the present invention provides a method of coating substrates with the aforementioned fluoropolymer dispersion of the invention.







4. DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention it was found that a viscosity increase of fluoropolymer dispersions that contain a non-ionic surfactant and that are free of low molecular weight fluorinated surfactant or that contain the latter in low amounts, e.g. less than 0.025% by weight (based on the total weight of solids, in particular on the total weight of fluoropolymer solids in the dispersion), preferably not more than 0.01% by weight and most preferably less than 0.005% by weight, can be reduced or avoided if the fluoropolymer dispersion contains an anionic non-fluorinated surfactant, an anionic fluorinated surfactant having a molecular weight of at least 1000 g/mol (hereinafter called high molecular weight fluorinated surfactant) or a mixture thereof. Furthermore, the stability of the fluoropolymer dispersion may also be improved by the addition of the anionic non-fluorinated surfactant or anionic high molecular weight fluorinated surfactant.


Preferred anionic non-fluorinated surfactants are surfactants that have an acid group that has a pKa of not more than 4, preferably not more than 3. It was found that such anionic surfactants in addition to controlling the viscosity, are generally also capable of increasing the stability of the fluoropolymer dispersion. Examples of non-fluorinated anionic surfactants include surfactants that have one or more anionic groups. Anionic non-fluorinated surfactants may include in addition to one or more anionic groups also other hydrophilic groups such as polyoxyalkylene groups having 2 to 4 carbons in the oxyalkylene group, such as polyoxyethylene groups, or groups such as such as an amino groups. Nevertheless, when amino groups are contained in the surfactant, the pH of the dispersion should be such that the amino groups are not in their protonated form. Typical non-fluorinated surfactants include anionic hydrocarbon surfactants. The term “anionic hydrocarbon surfactants” as used herein comprises surfactants that comprise one or more hydrocarbon moieties in the molecule and one or more anionic groups, in particular acid groups such as sulphonic, sulfuric, phosphoric and carboxylic acid groups and salts thereof. Examples of hydrocarbon moieties of the anionic hydrocarbon surfactants include saturated and unsaturated aliphatic groups having for example 6 to 40 carbon atoms, preferably 8 to 20 carbon atoms. Such aliphatic groups may be linear or branched and may contain cyclic structures. The hydrocarbon moiety may also be aromatic or contain aromatic groups. Additionally, the hydrocarbon moiety may contain one or more hetero atoms such as for example oxygen, nitrogen and sulfur.


Particular examples of anionic hydrocarbon surfactants for use in this invention include alkyl sulfonates such as lauryl sulfonate, alkyl sulfates such as lauryl sulfate, alkylarylsulfonates and alkylarylsulfates, fatty (carboxylic) acids and salts thereof such as lauric acids and salts thereof and phosphoric acid alkyl or alkylaryl esters and salts thereof. Commercially available anionic hydrocarbon surfactants that can be used include Emulsogen™ LS (sodium lauryl sulfate) and Emulsogen™ EPA 1954 (mixture of C12 to C14 sodium alkyl sulfates) available from Clariant GmbH and TRITON™ X-200 (sodium alkylsulfonate) available from Union Carbide. Preferred are anionic hydrocarbon surfactants having a sulfonate group.


Other suitable anionic non-fluorinated surfactants include silicone based surfactants such as polydialkylsiloxanes having pending anionic groups such as phosphoric acid, groups, carboxylic acid groups, sulfonic acid groups and sulfuric acid groups and salts thereof.


Alternative to or in addition to the anionic non-fluorinated surfactant, a high molecular weight fluorinated surfactant can be used. The high molecular weight fluorinated surfactant has a molecular weight of at least 1000 g/mol, preferably at least 1200 g/mol. Examples of high molecular weight anionic and fluorinated surfactants comprise polymeric surfactants and include perfluoropolyethers having one or more anionic groups such as carboxylic acid groups or salts thereof. Examples of perfluoropolyether surfactants include those according to the following formulas (I) or (II):

Rfa—O—(CF2O)k(CF2CF2O)p(CF(CF3)CF2O)q-Q1-COOM  (I)
MOOC-Q1-O—(CF2O)k(CF2CF2O)p(CF(CF3)CF2O)q-Q2-COOZ  (II)

wherein k, p and q each represent a value of 0 to 15, typically 0 to 10 or 12 and the sum of k, p and q being such that the number average molecular weight is at least 1000 g/mol, Rfa represents a perfluoroalkyl group preferably of 2 to 4 carbon atoms, M and Z each independently represent hydrogen or a cation, preferably a monovalent cation such as ammonium or an alkali metal ion and Q1 and Q2 each independently represents —CF2— or —CF(CF3)—.


Examples of fluorinated surfactants of formula (II) include those corresponding to the formula:

Rfa—O—(CFXCF2O)r—CFX—COOM  (III)

wherein Rfa and M have the meaning as defined in formula (II), X is a hydrogen atom or a fluorine atom and r has a value such that the molecular weight of the surfactant is at least 1000 g/mol. Examples of such fluorinated surfactants are disclosed in EP 219065.


Still further fluorinated polymeric surfactants that can be used include the perfluoropolymers that comprise repeating units of the formula:




embedded image



wherein s is 0, 1 or 2, and t is an integer of 2 to 4, and G is a moiety containing one or more anionic groups. Examples of suitable anionic groups include: carboxyl groups, e.g., —CO2M where M may be hydrogen, a mono or divalent metal ion (e.g., sodium, potassium or magnesium), ammonium (e.g., simple ammonium, tetraalkylammonium, tetraarylammonium) or phosphonium (e.g., tetraalkylphosphonium); or sulfonate groups, e.g., —SO3M, where M is defined as above. Preferably, the fluorinated polymeric surfactant is a copolymer having units derived from tetrafluoroethylene and units according to formula (IV). Such copolymers and their method of making are disclosed in for example U.S. Pat. No. 5,608,022 and WO 00/52060. Suitable fluorinated polymeric surfactants are available as Nafion™ superacid catalysts from E. I duPont de Nemours & Co., Wilmington, Del. and are also available as Flemion™ superacid polymers from Asahi Chemical Co., Osaka, Japan and as Acipex™ superacid polymers from Asahi Glass Co., Tokyo, Japan.


The amount of anionic surfactant added to the fluoropolymer dispersion will generally depend on the nature of the fluorinated surfactant, nature and amount of the fluoropolymer, nature and amount of non-ionic surfactant present in the dispersion and nature and amount of low molecular weight fluorinated surfactant that may be present in the fluoropolymer dispersion. Typically, the amount of anionic surfactant will be between 10 ppm and 5000 ppm, preferably between 100 ppm and 3000 ppm, more preferably between 100 ppm and 2500 ppm based on the weight of the fluoropolymer solids in the dispersion. When too low amounts of the anionic surfactant are used, an undesirable viscosity increase may still be observed. On the other hand, when too large amounts of the anionic surfactant are added the viscosity may also raise. If it is further desired or needed to increase the stability of the dispersion, it may be necessary to use the anionic surfactant in an amount of at least 2000 ppm based on the weight of fluoropolymer solids. The optimal concentration of the anionic surfactant in the dispersion can be easily determined by one skilled in the art through routine experimentation.


The low molecular weight fluorinated surfactant, when present, may be any of the low molecular weight fluorinated surfactants that can be used in the emulsion polymerization of fluorinated monomers and include in particular those that have been mentioned above in respect of the discussion of the prior art. Commonly used low molecular weight fluorinated surfactants are telogenic and include those that correspond to the formula:

Y—Rf—Z-M  (V)

wherein Y represents hydrogen, Cl or F; Rf represents a linear or branched perfluorinated alkylene having 4 to 10 carbon atoms; Z represents COO or SO3 and M represents a monovalent cation such as an alkali metal ion or an ammonium ion.


The low molecular weight fluorinated surfactant, when present in the fluoropolymer dispersion, may be present in amounts of less than 0.025% by weight, preferably not more than 0.01% by weight and most preferably not more than 50 ppm based on the total amount of solids in the dispersion.


The fluoropolymer dispersion of the present invention also includes a non-ionic surfactant. The non-ionic surfactant is generally a non-fluorinated non-ionic surfactant. Typically, the non-ionic surfactant is a surfactant that contains one or more hydrocarbon moieties, e.g. as described above, linked to a non-ionic hydrophilic group. The non-ionic hydrophilic group generally comprises oxyalkylene groups in which the alkylene group has 2, 3 or 4 carbon atoms. For example, the non-ionic hydrophilic group may be a polyoxyethylene group, a polyoxypropylene group or a copolymer, including block-copolymers, comprising oxyethylene and oxypropylene groups. According to a particular embodiment in connection with the present invention, the non-ionic surfactant corresponds to the formula:

R1—O—[CH2CH2O]n—[R2O]m—R3  (VI)

wherein R1 represents an aromatic or aliphatic hydrocarbon group having at least 8 carbon atoms, R2 represents an alkylene having 3 carbon atoms, R3 represents hydrogen or a C1-C3 alkyl group, n has a value of 0 to 40, m has a value of 0 to 40 and the sum of n+m being at least 2.


It will be understood that in the above formula (VI), the units indexed by n and m may appear as blocks or they may be present in an alternating or random configuration.


Examples of non-ionic surfactants according to formula (VI) above include alkylphenol oxy ethylates of the formula:




embedded image



wherein R is an alkyl group of 4 to 20 carbon atoms and r represents a value of 4 to 20. Examples of surfactants according to formula (VII) include ethoxylated p-isooctylphenol commercially available under the brand name TRITON™ such as for example TRITON™ X 100 wherein the number of ethoxy units is about 10 or TRITON™ X 114 wherein the number of ethoxy units is about 7 to 8.


Still further examples include those in which R1 in the above formula (VI) represents an alkyl group of 4 to 20 carbon atoms, m is 0 and R3 is hydrogen. An example thereof includes isotridecanol ethoxylated with about 8 ethoxy groups and which is commercially available as GENAPOL® X 080 from Clariant GmbH. Non-ionic surfactants according to formula (VI) in which the hydrophilic part comprises a block-copolymer of ethoxy groups and propoxy groups may be used and well. Such non-ionic surfactants are commercially available from Clariant GmbH under the trade designation GENAPOL® PF 40 and GENAPOL® PF 80.


The non-ionic surfactant is generally present in the fluoropolymer dispersion in an amount of 1% by weight to 12% by weight relative to the total weight of solids in the fluoropolymer dispersion. Preferably the amount is between 3% by weight and 10% by weight.


The fluoropolymer contained in the fluoropolymer dispersion is a polymer that has a partially or fully fluorinated backbone. Typically the fluoropolymer is a polymer that has a backbone that is at least 40% by weight fluorinated, preferably at least 50% by weight, more preferably at least 60% by weight. The fluoropolymer may also have a fully fluorinated backbone such as for example in PTFE. The fluoropolymer may be a homo- or copolymer and the dispersion may contain a mixture of different fluoropolymers. Examples of fluoropolymers include copolymers of tetrafluoroethylene which can be processed from the melt, especially those of tetrafluoroethylene/hexafluoropropylene, tetrafluoroethylene/perfluoro(alkylvinyl)ethers with perfluoroalkyl radicals having 1 to 5 C atoms, in particular perfluoro(n-propyl-vinyl)ethers, tetrafluoroethylene/ethylene, tetrafluoroethylene/trifluorochloroethylene, trifluorochloroethylene/ethylene, tetrafluoroethylene/vinylidene fluoride and hexafluoropropylene/vinylidene fluoride, and terpolymers of tetrafluoroethylene/perfluoro(alkylvinyl)ether/hexafluoropropylene, tetrafluoroethylene/ethylene/hexafluoropropylene and tetrafluoroethylene/vinylidene fluoride/hexafluoropropylene, or of quaternary polymers of tetrafluoroethylene/vinylidene fluoride/hexafluoropropylene/perfluoro(alkylvinyl)ethers and tetrafluoroethylene/ethylene/hexafluoropropylene/perfluoro(alkylvinyl)ethers. Further fluoropolymers that can be used in the dispersion include polyvinyl fluoride, polyvinylidene fluoride and polytrifluorochloroethylene. The dispersion may also comprise polymers that cannot be processed from the melt such as polytetrafluoroethylene, that is to say of the homopolymer and which can optionally contain modifying comonomers, such as hexafluoropropylene or perfluoro(alkylvinyl)ethers or chlorotrifluoroethylene, in small proportions (0.1 to 3 mol %).


The average particle size (average particle diameter) of the fluoropolymer in the dispersion is generally in the range of 10 nm to 400 nm, preferably between 25 nm and 400 nm. The average particle diameter is generally determined through dynamic light scattering and a number average particle diameter may thereby be determined. The dispersion may be mono-modal as well as multi-modal such as bimodal. The amount of fluoropolymer in the dispersion is typically at least 30% by weight, for example between 35% by weight and 70% by weight.


The fluoropolymer dispersions can be used to coat a substrate. For example the fluoropolymer dispersions may be used to coat a metal substrate, polymeric substrates such as polyester and polypropylene substrates or to coat paper. The fluoropolymer dispersions may also be used to coat or impregnate textile or fabrics, in particular glass fiber substrates. Before coating, the fluoropolymer dispersion may be mixed with further ingredients to prepare a coating composition as may be desired for the particular coating application. For example, the fluoropolymer dispersion may be combined with polyamide imide and polyphenylene sulfone resins as disclosed in for example WO 94/14904 to provide anti-stick coatings on a substrate. Further coating ingredients include inorganic fillers such as colloidal silica, aluminium oxide, and inorganic pigments as disclosed in for example EP 22257 and U.S. Pat. No. 3,489,595.


The fluoropolymer dispersions are generally obtained by starting from a so-called raw dispersion, which may result from an emulsion polymerization of fluorinated monomer. Such dispersion may be free of low molecular weight fluorinated surfactant if the polymerization has been conducted in the absence of a low molecular weight fluorinated surfactant but will generally contain substantial amounts of low molecular weight fluorinated surfactant. If the concentration of low molecular weight fluorinated surfactant in the dispersion is more than a desired level, e.g. above 0.025% by weight, at least part thereof should be removed.


According to one embodiment to reduce the amount of low molecular weight of fluorinated surfactant, a non-ionic surfactant, e.g. as disclosed above is added to the fluoropolymer dispersion and the fluoropolymer dispersion is then contacted with an anion exchanger. Such a method is disclosed in detail in WO 00/35971. Suitable anion exchangers include those that have a counterion corresponding to an acid having a pKa value of at least 3.


The anion exchange process is preferably carried out in essentially basic conditions. Accordingly, the ion exchange resin will preferably be in the OH form although anions like fluoride or oxalate corresponding to weak acids may be used as well. The specific basicity of the ion exchange resin is not very critical. Strongly basic resins are preferred because of their higher efficiency in removing the low molecular weight fluorinated surfactant. The process may be carried out by feeding the fluoropolymer dispersion through a column that contains the ion exchange resin or alternatively, the fluoropolymer dispersion may be stirred with the ion exchange resin and the fluoropolymer dispersion may thereafter be isolated by filtration. With this method, the amount of low molecular weight fluorinated surfactant can be reduced to levels below 150 ppm or even below 10 ppm. Accordingly, dispersions substantially free of low molecular weight fluorinated surfactant may thereby be obtained.


In case the low molecular weight fluorinated surfactant is in its free acid form is steam-volatile, the following method may be used to reduce the amount of low molecular weight fluorinated surfactant. A steam-volatile fluorinated surfactant in its free acid form may be removed from aqueous fluoropolymer dispersions, by adding a nonionic surfactant to the aqueous fluoropolymer dispersion and, at a pH-value of the aqueous fluoropolymer dispersion below 5, removing the steam-volatile fluorinated surfactant by distillation until the concentration of steam-volatile fluorinated surfactant in the dispersion reaches the desired value. Low molecular weight fluorinated surfactant that can be removed with this process include for example the surfactants according to formula (V) above.


It will generally be desirable to increase the amount of fluoropolymer solids in the dispersion. To increase the amount of fluoropolymer solids, any of the upconcentration techniques may be used. These upconcentration techniques are typically carried out in the presence of a non-ionic surfactant which is added to stabilize the dispersion in the upconcentration process. The amount of non-ionic surfactant that should generally be present in the dispersion for upconcentration is typically between 1% by weight and 12% by weight, preferably between 3% by weight and 10% by weight. Suitable methods for upconcentration include ultrafiltration, thermal upconcentration, thermal decantation and electrodecantation as disclosed in GB 642,025.


The method of ultrafiltration comprises the steps of (a) adding non-ionic surfactant to a dispersion that desirably is to be upconcentrated and (b) circulating the dispersion over a semi-permeable ultra-filtration membrane to separate the dispersion into a fluorinated polymer dispersion concentrate and an aqueous permeate. The circulation is typically at a conveying rate of 2 to 7 meters per second and effected by pumps which keep the fluorinated polymer free from contact with components which cause frictional forces. The method of ultrafiltration further has the advantage that during upconcentration also some low molecular weight fluorinated surfactant is removed. Accordingly, the method of ultrafiltration may be used to simultaneously reduce the level of low molecular weight fluorinated surfactant and upconcentrate the dispersion.


To increase the fluoropolymer solids in the aqueous dispersion, thermal decantation may also be employed. In this method, a non-ionic surfactant is added to the fluoropolymer dispersion that is desirably upconcentrated and the dispersion is then heated so as to form a supernatant layer that can be decanted and that typically contains water and some non-ionic surfactant while the other layer will contain the concentrated dispersion. This method is for example disclosed in U.S. Pat. No. 3,037,953 and EP 818506.


Thermal upconcentration involves heating of the dispersion and removal of water under a reduced pressure until the desired concentration is obtained.


In accordance with the present invention, the anionic surfactant to control viscosity is added prior to or after the upconcentration depending on the method of upconcentration used. For example, if ultrafiltration is used, it will generally be preferred to add the anionic surfactant subsequent to the upconcentration to avoid loss thereof in the ultrafiltration. If the thermal upconcentration method is used, the anionic surfactant can be added prior to the upconcentration as well as subsequent to the upconcentration.


EXAMPLES
Abbreviations



  • PTFE=polytetrafluoroethylene

  • APFOA=ammonium salt of perfluorooctanoic acid

  • TRITON™ X-100=ethoxylated p-isooctylphenol non-ionic surfactant

  • EMULSOGEN™ LS=sodium lauryl sulfate

  • TRITON™ X-200=sodium alkylarylpolyether sulfonate


    Test Methods:


    The viscosity of the dispersions was measured using a Brookfield Rheometer DV-III, spindel 86 at 20° C. and 20 D/1/s.


    Stability Test:


    The fluoropolymer dispersion was mixed and agitated with additional components to formulate a coating composition as disclosed in EP 894541. To this end, the fluoropolymer dispersion was mixed with an aqueous composition containing a polyamideimide resin (PAI) such that the weight ratio of fluoropolymer solids to PAI solids was 1:1.


    Mixing was carried out with a blade agitator at 800 rpm. The time until coagulation occurred was noted.



Comparative Example 1

A fluoropolymer dispersion of PTFE of a particle size of about 220 nm and having a solids content between 23% by weight was obtained from an emulsion polymerization. To the dispersion were added 6% by weight of TRITON™ X-100. The dispersion contained about 0.1% by weight of APFOA based on total weight of the dispersion (=4350 ppm based on polymer solids). The dispersion was upconcentrated through ultrafiltration to an amount of PTFE solids of 60% by weight. The resulting dispersion had a viscosity of 20 mPa.


Comparative Example 2

The procedure of comparative example 1 was repeated except that the dispersion obtained after the emulsion polymerization was contacted with an anion exchange resin so as to reduce the amount of APFOA in the dispersion to 7 ppm based on total weight of the dispersion (=30 ppm based on polymer solids). This dispersion was then upconcentrated as described in comparative example 1. It was found that the viscosity of the dispersion was increased to 101 mPa. The dispersion had a too high viscosity for coating substrates such as metal substrates or glass cloth because of bubble building.


Example 1

To the dispersion obtained in comparative example 2 after upconcentration, there was added 2000 ppm based on the solids amount of EMULSOGEN™ LS. The viscosity of the dispersion thereby decreased to 16.7 mPa. The dispersion thus obtained is suitable for coating for example metal substrates.


Example 2

To the dispersion obtained in comparative example 2 after upconcentration, there was added 1500 ppm based on the solids amount of TRITON™ X-200. The viscosity of the dispersion thereby decreased to 18 mPa. The dispersion thus obtained is suitable for coating for example metal substrates.


Comparative Example 3

A PTFE dispersion having 7 ppm APFOA was upconcentrated to 58% solids in the presence of 5% of TRITON™ X-100. The obtained dispersion was tested for stability. Immediately coagulation occurred.


Example 3

A dispersion was produced as in example 1 but with the difference that only 1500 ppm of EMULSOGEN™ LS was used. Coagulation occurred after about 1 hour.


Example 4

A dispersion was produced as in example 1 but with the difference that only 3000 ppm of EMULSOGEN™ LS was used. No coagulation occurred during at least 20 hours of agitation.


Comparative Example 4

A dispersion of PTFE containing 7 ppm of APFOA (based on total weight of the dispersion) and 8.5% by weight based on total weight of solids, of non-ionic surfactant was prepared. The dispersion had a solids amount of 59% by weight based on the total weight of the dispersion. The viscosity of this dispersion was 275 mPas and as a result, coating of glass cloth was not possible because of air entrapment.


Example 5

A PTFE dispersion as in comparative example 4 was prepared and 3000 ppm (based on total solids) of EMULSOGEN™ LS were added. The viscosity of this dispersion was only 37 mPas allowing the coating of glass cloth without air entrapment.

Claims
  • 1. Fluoropolymer dispersion comprising fluoropolymer particles having an average particle size of 10 to 400 nm dispersed in water, said dispersion being free of fluorinated surfactant having a molecular weight of less than 1000 g/mol or containing said fluorinated surfactant having a molecular weight of less than 1000 g/mol in an amount of not more than 0.025% by weight based on the total weight solids of said dispersion, said dispersion further comprising a non-ionic surfactant characterized in that said dispersion contains an anionic surfactant selected from fluorinated anionic surfactants having a molecular weight of at least 1000 g/mol, non-fluorinated anionic surfactants and mixtures thereof, wherein said dispersion comprises at least 30% by weight of the fluoropolymer particles based on the total weight of said dispersion because said dispersion is upconcentrated using ultrafiltration or thermal concentration, wherein the anionic surfactant is present in an amount of 100 to 3000 ppm based on the total weight of solids in the dispersion.
  • 2. Fluoropolymer dispersion according to claim 1 wherein the anionic surfactant comprises a non-fluorinated anionic surfactant comprising an acid group having a pKa of less than 4.
  • 3. Fluoropolymer dispersion according to claim 1 wherein the amount of fluoropolymer particles is between 35% by weight and 70% by weight.
  • 4. Fluoropolymer dispersion according to claim 1 wherein the non-ionic emulsifier corresponds to the formula: R1—O—[CH2CH2O]n—[R2O]m—R3 wherein R1 represents an aromatic or aliphatic hydrocarbon group having at least 8 carbon atoms, R2 represents an alkylene having 3 carbon atoms, R3 represents hydrogen or a C1-C3 alkyl group, n has a value of 0 to 40, m has a value of 0 to 40 and the sum of n+m being at least 2.
  • 5. Fluoropolymer dispersion according to claim 1 wherein the amount of non-ionic emulsifier is between 1% and 12% by weight relative to the total weight of solids in the dispersion.
  • 6. Fluoropolymer dispersion according to claim 1 wherein the fluoropolymer particles comprise polytetrafluoroethylene and/or a melt processible fluoropolymer.
  • 7. Fluoropolymer dispersion according to claim 1 wherein the fluoropolymer dispersion is polymerized in the presence of a fluorinated surfactant having a molecular weight of less than 1000 g/mol.
Priority Claims (1)
Number Date Country Kind
01203351 Sep 2001 EP regional
Parent Case Info

This application is a divisional of U.S. Ser. No. 10/486,860, filed Feb. 13, 2004 now U.S. Pat. No. 7,279,522, the disclosure of which is incorporated by reference in its entirety herein.

US Referenced Citations (191)
Number Name Date Kind
2534058 Renfrew Dec 1950 A
2559749 Benning Jul 1951 A
2713593 Brice et al. Jul 1955 A
3037953 Marks et at Jun 1962 A
3142665 Cardinal et al. Jul 1964 A
3179614 Edwards Apr 1965 A
3260691 Lavin et al. Jul 1966 A
3271341 Garrison Sep 1966 A
3315201 Werme Apr 1967 A
3316201 Ulmschneider et al. Apr 1967 A
3345317 Hoashi Oct 1967 A
3391099 Punderson Jul 1968 A
3451908 Sianesi et al. Jun 1969 A
3489595 Brown, Jr. Jan 1970 A
3555100 Garth et al. Jan 1971 A
3635926 Gresham Jan 1972 A
3642742 Carlson Feb 1972 A
3721696 Sianesi et al. Mar 1973 A
3790403 Ribbans, III Feb 1974 A
3855191 Doughty, Jr. et al. Dec 1974 A
3882153 Seki et al. May 1975 A
3981945 Attwood et al. Sep 1976 A
4016345 Holmes Apr 1977 A
4025709 Blaise et al. May 1977 A
4049863 Vassiliou Sep 1977 A
4089804 Falk May 1978 A
4123401 Berghmans et al. Oct 1978 A
4131711 Attwood Dec 1978 A
4180609 Vassiliou Dec 1979 A
4252859 Concannon et al. Feb 1981 A
4262101 Hartwimmer et al. Apr 1981 A
4282162 Kuhls Aug 1981 A
4287112 Berghmans Sep 1981 A
4292402 Pollet et al. Sep 1981 A
4342825 Van Poucke et al. Aug 1982 A
4353950 Vassiliou Oct 1982 A
4369266 Kuhls et al. Jan 1983 A
4380618 Khan et al. Apr 1983 A
4381384 Khan Apr 1983 A
4391940 Kuhls et al. Jul 1983 A
4425448 Concannon et al. Jan 1984 A
4439385 Kuhls et al. Mar 1984 A
4544458 Grot et al. Oct 1985 A
4548986 Suzuki et al. Oct 1985 A
4552925 Nakagawa et al. Nov 1985 A
4588796 Wheland May 1986 A
4618641 Hengel Oct 1986 A
4621116 Morgan Nov 1986 A
4623487 Cope Nov 1986 A
4766190 Morita et al. Aug 1988 A
4789717 Giannetti et al. Dec 1988 A
4832879 Hamprecht May 1989 A
4861845 Slocum et al. Aug 1989 A
4864006 Giannetti et al. Sep 1989 A
4987254 Schwertfeger et al. Jan 1991 A
5075397 Tonelli et al. Dec 1991 A
5153322 Flynn Oct 1992 A
5160791 Tannenbaum Nov 1992 A
5168107 Tannenbaum Dec 1992 A
5182342 Feiring et al. Jan 1993 A
5198491 Honda et al. Mar 1993 A
5219910 Stahl et al. Jun 1993 A
5223343 Tannenbaum Jun 1993 A
5229480 Uschold Jul 1993 A
5230961 Tannenbaum Jul 1993 A
5272186 Jones Dec 1993 A
5285002 Grootaert Feb 1994 A
5312935 Mayer et al. May 1994 A
5442097 Obermeier et al. Aug 1995 A
5447982 Kamba et al. Sep 1995 A
5453477 Oxenrider et al. Sep 1995 A
5463021 Beyer et al. Oct 1995 A
5478651 Tannenbaum Dec 1995 A
5488142 Fall et al. Jan 1996 A
5498680 Abusleme et al. Mar 1996 A
5530078 Felix et al. Jun 1996 A
5532310 Grenfell et al. Jul 1996 A
5562991 Tannenbaum Oct 1996 A
5576381 Bladel et al. Nov 1996 A
5591877 Obermeier et al. Jan 1997 A
5608022 Nakayama et al. Mar 1997 A
5656201 Visca et al. Aug 1997 A
5663255 Anolick et al. Sep 1997 A
5667846 Thomas Sep 1997 A
5688884 Baker et al. Nov 1997 A
5700859 Ogura et al. Dec 1997 A
5710345 Navarrini Jan 1998 A
5721053 Thomas Feb 1998 A
5763552 Feiring et al. Jun 1998 A
5789083 Thomas Aug 1998 A
5789508 Baker et al. Aug 1998 A
5804650 Tsuda et al. Sep 1998 A
5895799 Wu et al. Apr 1999 A
5955556 McCarthy et al. Sep 1999 A
5959026 Abusleme et al. Sep 1999 A
5969063 Parker et al. Oct 1999 A
5990330 Sulzbach et al. Nov 1999 A
6013795 Manzara et al. Jan 2000 A
6025307 Chittofrati et al. Feb 2000 A
6037399 Wu et al. Mar 2000 A
6103843 Abusleme et al. Aug 2000 A
6103844 Brothers Aug 2000 A
6126849 Yamana et al. Oct 2000 A
6136893 Yamashita et al. Oct 2000 A
6153688 Miura et al. Nov 2000 A
6218464 Parker et al. Apr 2001 B1
6245923 Sulzbach et al. Jun 2001 B1
6255384 McCarthy et al. Jul 2001 B1
6255536 Worm et al. Jul 2001 B1
6267865 Polson et al. Jul 2001 B1
6365684 McCarthy et al. Apr 2002 B1
6376710 Matsumoto et al. Apr 2002 B2
6391182 Smeltzer et al. May 2002 B2
6395848 Morgan et al. May 2002 B1
6410626 Wada et al. Jun 2002 B1
6429258 Morgan et al. Aug 2002 B1
6436244 Fuhrer et al. Aug 2002 B1
6482979 Hintzer et al. Nov 2002 B1
6512063 Tang Jan 2003 B2
6518442 Felix et al. Feb 2003 B1
6576703 Kapeliouchko et al. Jun 2003 B2
6593416 Grootaert et al. Jul 2003 B2
6602968 Bekiarian et al. Aug 2003 B1
6610788 Takakura et al. Aug 2003 B1
6613941 Felix et al. Sep 2003 B1
6624268 Maekawa et al. Sep 2003 B1
6632508 Pellerite et al. Oct 2003 B1
6642307 Sogabe et al. Nov 2003 B1
6642415 Fuhrer et al. Nov 2003 B1
6660798 Marchese et al. Dec 2003 B1
6677414 Hintzer et al. Jan 2004 B2
6689854 Fan et al. Feb 2004 B2
6693152 Kaspar et al. Feb 2004 B2
6703520 Hintzer et al. Mar 2004 B2
6706193 Burkard et al. Mar 2004 B1
6710123 Amin-Sanayei et al. Mar 2004 B1
6737489 Linert et al. May 2004 B2
6750304 Kaspar et al. Jun 2004 B2
6761964 Tannenbaum Jul 2004 B2
6774164 Lyons et al. Aug 2004 B2
6794550 Hintzer et al. Sep 2004 B2
6815040 Pellerite et al. Nov 2004 B2
6822059 Buckanin et al. Nov 2004 B2
6825250 Epsch et al. Nov 2004 B2
6833403 Bladel et al. Dec 2004 B1
6846570 Leech et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6861490 Kaspar et al. Mar 2005 B2
6869997 Wille et al. Mar 2005 B2
6878772 Visca et al. Apr 2005 B2
6956078 Cavanaugh et al. Oct 2005 B2
6972094 Ichida et al. Dec 2005 B2
7026036 Leech et al. Apr 2006 B2
7041728 Zipplies et al. May 2006 B2
7045571 Tan et al. May 2006 B2
7064170 Kaspar et al. Jun 2006 B2
7074862 Kaspar et al. Jul 2006 B2
7122608 Brinati et al. Oct 2006 B1
7125941 Kaulbach et al. Oct 2006 B2
7126016 Fu et al. Oct 2006 B2
7141620 Hoshikawa et al. Nov 2006 B2
20020040119 Tang Apr 2002 A1
20020198345 Grootaert et al. Dec 2002 A1
20030125421 Bladel et al. Jul 2003 A1
20030220442 Epsch et al. Nov 2003 A1
20040010156 Kondo et al. Jan 2004 A1
20040087703 Kaspar et al. May 2004 A1
20040116742 Guerra Jun 2004 A1
20040143052 Epsch et al. Jul 2004 A1
20040186219 Dadalas et al. Sep 2004 A1
20040242755 Araki et al. Dec 2004 A1
20050043471 Epsch et al. Feb 2005 A1
20050070633 Epsch et al. Mar 2005 A1
20050090601 Dadalas et al. Apr 2005 A1
20050090613 Maruya et al. Apr 2005 A1
20050107506 Kapeliouchko et al. May 2005 A1
20050113519 Buckanin et al. May 2005 A1
20050154104 Malvasi et al. Jul 2005 A1
20050228127 Tatemoto et al. Oct 2005 A1
20060003168 Dadalas et al. Jan 2006 A1
20060041051 Nakatani et al. Feb 2006 A1
20060160947 Tan et al. Jul 2006 A1
20060281946 Morita et al. Dec 2006 A1
20070004848 Hintzer et al. Jan 2007 A1
20070015864 Hintzer et al. Jan 2007 A1
20070025902 Hintzer et al. Feb 2007 A1
20070082993 Amin-Sanayei et al. Apr 2007 A1
20070117915 Funaki et al. May 2007 A1
20070135558 Nobuhiko et al. Jun 2007 A1
20070149733 Otsuka et al. Jun 2007 A1
20070155891 Nobuhiko et al. Jul 2007 A1
Foreign Referenced Citations (91)
Number Date Country
2 354 138 Jun 2000 CA
3 828 063 Feb 1990 DE
199 32 771 Jan 2001 DE
199 33 696 Jan 2001 DE
100 18 853 Oct 2001 DE
0 014 431 Aug 1980 EP
0 015 481 Sep 1980 EP
0 022 257 Jan 1981 EP
0 222 945 Nov 1984 EP
0 219 065 Apr 1987 EP
0 524 585 Jan 1993 EP
0 525 660 Feb 1993 EP
0 612 770 Aug 1994 EP
0 625 526 Nov 1994 EP
0 632 009 Jan 1995 EP
0 649 863 Apr 1995 EP
0 712 882 May 1996 EP
0718364 Jun 1996 EP
0739960 Oct 1996 EP
0 752 432 Jan 1997 EP
0 816 397 Jan 1998 EP
0 818 506 Jan 1998 EP
0 890 592 Jan 1999 EP
0 894 541 Feb 1999 EP
0 964 009 Dec 1999 EP
0 969 927 Jan 2000 EP
1 059 342 Dec 2000 EP
1059333 Dec 2000 EP
1 083 441 Mar 2001 EP
1160258 Dec 2001 EP
1245596 Oct 2002 EP
1245596 Oct 2002 EP
1 323 677 Jul 2003 EP
1 334 996 Aug 2003 EP
1 364 972 Nov 2003 EP
1 462 461 Sep 2004 EP
1 514 848 Apr 2006 EP
642025 Aug 1950 GB
821353 Oct 1959 GB
966814 Aug 1964 GB
1069364 May 1967 GB
1073392 Jun 1967 GB
1349764 Apr 1974 GB
46011031 Aug 1966 JP
2000-128934 May 2000 JP
2002-179870 Jun 2002 JP
2002-308914 Oct 2002 JP
2002-317003 Oct 2002 JP
2003-043625 Feb 2003 JP
2003-119204 Apr 2003 JP
2003-212919 Jul 2003 JP
2004-358397 Dec 2004 JP
2004-359870 Dec 2004 JP
2005-008775 Jan 2005 JP
2005-105045 Apr 2005 JP
2158274 Oct 2000 RU
WO 9414904 Jul 1994 WO
WO 9624622 Aug 1996 WO
WO 9717381 May 1997 WO
WO 9850603 Nov 1998 WO
WO 0022002 Apr 2000 WO
WO 0035971 Jun 2000 WO
WO 0052060 Sep 2000 WO
WO 0071590 Nov 2000 WO
WO 0146116 Jun 2001 WO
WO 0179332 Oct 2001 WO
WO 0214223 Feb 2002 WO
WO 0220676 Mar 2002 WO
0244226 Jun 2002 WO
WO-0244226 Jun 2002 WO
WO 02078862 Oct 2002 WO
02095121 Nov 2002 WO
WO 02088203 Nov 2002 WO
WO 02088206 Nov 2002 WO
WO 02088207 Nov 2002 WO
WO 03020836 Mar 2003 WO
WO 03051988 Jun 2003 WO
WO 03087176 Oct 2003 WO
WO 03087179 Oct 2003 WO
WO 2004031141 Apr 2004 WO
2004067588 Aug 2004 WO
WO 2005003075 Jan 2005 WO
WO 2005042593 May 2005 WO
WO 2005056614 Jun 2005 WO
WO 2005063827 Jul 2005 WO
WO 2005065800 Jul 2005 WO
WO 2005082785 Sep 2005 WO
WO 2005121290 Dec 2005 WO
WO 2006011533 Feb 2006 WO
WO 2006020721 Feb 2006 WO
2007120348 Oct 2007 WO
Non-Patent Literature Citations (21)
Entry
Drobny, Technology of Fluoropolymers, CRC Press LLC, 2001, p. 35.
Kokelenberg, H. and Pollet, R., “A New type fluortensides, based on the addition of nucleophiles to chlorotrifluoroethylene and hexafluoropropylene.” Tenside Detergents, 1985, 22(1), pp. 22-27.
Apostolo et al., “Microemulsion Polymerization for Producing Fluorinated Structured Materials”, Macromol. Symp. 2004, 206, pp. 347-360.
Ivanova et al., “Synthesis of Alcohols from Perfluorvinyl Esters”, Zh. Vses. Khim Obsh 1999, (24), pp. 656-657.
W.C. Griffin “Calculation of HLB Values of Non-Ionic Surfactants”, Journal of Society of Cosmetic Chemists, vol. 5, (1954) p. 259.
England, “Catalytic Conversion of Fluoroalkyl Alkyl Ethers to Carbonyl Compounds”, J. Org. Chem., 1984, vol. 49, pp. 4007-4008.
Sudol et al., “Miniemulsion Polymerization”, Emulsion Polymerization and Emulsion Polymers, John Wiley & Sons, 1997, Chapter. 20.
Candau, “Inverse Emulsion and Microemulsion Polymerization”, Emulsion Polymerization and Emulusion Polymers, John Wiley & Sons, 1997, Chapter 21.
Chi et al., “A Facile Synthesis of Partly-fluorinated Ethers Using Perfluroporpoxyethylene and Aliphatic Alcohols”, Bull. Korean Chem. Soc., 1999, vol. 20, No. 2, pp. 220-222.
Ebnesajjad, “Fluoroplastics, vol. 1, Non-Melt Processible Fluoroplastics”, Plastics Design Library, NY, 2000, pp. 285-295.
Ebnesajjad, “Fluoroplastics, vol. 2, Melt Processible Fluoropolymers”, Plastics Design Library, NY, 2003, pp. 1-21.
ASTM D 4895-04, “Standard Specification for Polytetrafluoroethylene (PTFE) Resin Produced From Dispersion”, 2004, pp . 1-1 4.
“Guide to Protein Purification, Methods in Enzymology,” Deutscher, M. vol. 182, 24. 1990. (pp. 309-317).
“High Performance Polymers for Diverse Applications,” Modern Fluoropolymers. Edited by John Scheirs. John Wiley & Sons, 1997.
“Hydrogen-Ion Activity to Laminated Materials, Glass,” Encyclopedia of Chemical Technology. John Wiley & Sons, vol. 13, 3rd Ed. 1981. (p. 687).
“Immobilized Biocatalysts to Isoprene,” Ullmann's Encyclopedia of Industrial Chemistry. vol A14. 1985. (p. 439-459).
“Identification to Lignin,” Encyclopedia of Polymer Science and Engineering. John Wiley & Sons, vol. 8. 1987 (p. 347).
“Nonionic Surfactants.” Edited by Martin J. Schick. 1967.
“Synthesis of Perfluoroalkyl Vinyl Ether Acids and Derivatives,” Perfluoroalkyl Vinyl Ether Acids. Raymond Sullivan, vol. 34, No. 6, Jun. 1969, p. 1841-1844.
Storsberg, Joachim and Ritter, Helmut, “Cyclodextrins in Polymer Synthesis: A ‘Green’ Route to Fluorinated Polymers via Cyclodextrin Complexes in Aqueous Solution”, Macromol. Chem Phys., 2002, pp. 812-818.
Search Report for International Application No. PCT/US2002/25114, dated Dec. 12, 2002, 3 pages.
Related Publications (1)
Number Date Country
20080287599 A1 Nov 2008 US
Divisions (1)
Number Date Country
Parent 10486860 Feb 2004 US
Child 11851431 US