Fluorosurfactants in pesticides

Information

  • Patent Grant
  • 9695117
  • Patent Number
    9,695,117
  • Date Filed
    Tuesday, May 20, 2014
    10 years ago
  • Date Issued
    Tuesday, July 4, 2017
    7 years ago
Abstract
The present invention relates to the use of fluorinated surfactants of formula (I) in pesticides.
Description

The present invention relates to the use of fluorosurfactants of the formula (I) in pesticides.


For the preparation of pesticides, in particular in crop protection, so-called adjuvants are employed besides the regular active compounds. Adjuvants here are in accordance with ASTM E 1519 substances which are added to the pesticide active compounds in order to improve the action of pesticides and/or their physical properties. Adjuvants are divided into two main functional classes:


A. Adjuvants which maintain or improve the efficacy of the pesticide. These include, in particular, substances which result in the following effects: improved wetting properties (for example superspreading), more efficient adsorption and uptake of the active compound (penetration), moistening action, droplet size as a function of spray pressure, etc.


B. Adjuvants which influence the practical use. Mention should be made here primarily of the following: emulsifiers, pH modifiers, foam formers, antifoams, substances for reducing the spray excess (drift).


Surfactants are one of the most important classes within the adjuvants and are used in both areas of application. They primarily fulfil the functions for improved wetting of the surface and thus ensure more efficient penetration of the active compound. Furthermore, they function as solubility promoters in the form of emulsifiers and dispersion additives in order to homogenise the active compounds, which are usually non-polar, in aqueous solutions. As emulsifiers, they are employed in various formulations: wettable powders (WP), oil-in-water or water-in-oil emulsions (EW or EO), suspensions (SC), suspoemulsions (SE), emulsifiable concentrates (EC) or also granules or water-dispersible granules.


Since plant surfaces are frequently characterised by an epicuticular hydrophobic wax layer and various leaf morphologies (for example hairs, wax crystals) are evident, they are only wetted poorly by aqueous active-compound solutions. This greatly restricts the uptake of the active compound by the plants due to two essential issues: firstly, “dripping-off” of the aqueous active-compound solution occurs during the spraying process, so that there is insufficient contact time with the leaf surface in order to take up the active compound. Secondly, the adhering droplets of the spray solution form only very small contact areas on the leaf surface, which restricts the uptake kinetics of the active compound. The addition of surfactants enables the wetting properties to be modified and the efficiency thus to be greatly improved. In the optimum case, the surfactant causes a great reduction in the surface tension in order to wet the plant surface covered with wax and in addition exhibits superspreading wetting behaviour. Adjuvants, their classification, properties and modes of action area described in Winnacker-Küchler, “Chemische Technologie” [Chemical Technology], Volume 7, C. Hanser-Verlag Munich, 4th Edition 1986.


To date, two main material classes of surfactants or surfactant mixtures have been employed as adjuvants: surfactants based on hydrocarbons and siloxanes. Thus, patent CA 2230769 describes the use of non-ionic siloxane surfactants, which results in a larger wetting area of the spray solution and thus in more efficient efficacy of the pesticide employed. Furthermore, WO 2010/003889 discusses the increased efficiency of active compounds based on the addition of ethoxylated sorbitol surfactants. Further uses of surfactants as adjuvants are described, inter alia, in Conference Proceedings 9th International Symposium on Adjuvants for Agrochemicals, ISAA 2010.


Previous surfactants as adjuvants, in particular non-ionic silicone, and hydrocarbon surfactants, exhibit only inadequate wetting properties on surfaces relevant for the use of pesticides, since their potential for reducing the surface tension in water is restricted to >20 mN/m. In addition, only few of these surfactants exhibit superspreading properties and tend towards increased foam formation in pesticide formulations, which is undesired owing to the poorer processing. In addition, classical fluorosurfactants are based on long-chain perfluorinated chains, which have proven highly bioaccumulative and toxic and have an inhalation-toxic action on spraying, meaning that extensive protective measures for the operating personnel become necessary.


Fluorosurfactants which are used as adjuvants in pesticides have only been described with little detail in the literature. M. Pisante et al. (J. Pestic. Sci., 32(1), 2007, 16-23) discuss evident advantages with respect to wetting and the associated more efficient uptake of active compound.


Specific applications of sulfosuccinates and/or sulfotricarballylates having various fluorinated side chains are described in U.S. Pat. No. 4,968,599 and U.S. Pat. No. 4,988,610 and U.S. Pat. No. 6,890,608 and in A. R. Pitt et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114, 321-335; A. R. Pitt, Progr. Colloid Polym. Sci, 1997, 103, 307-317 and Z.-T. Liu et al., Ind. Eng. Chem. Res. 2007, 46, 22-28. Further fluorosurfactants, in particular succinates and tricarballylates containing fluorinated alkyl groups, are described in WO 2009/149807, WO 2010/003567, WO 2010/149262, WO 2011/082770 and WO 2012/084118.


It has now been found that the use of certain fluorosurfactants as adjuvants in pesticides avoids the disadvantages of the prior art. Pesticides here include both pest-control agents in general and also crop-protection agents. The use of the compounds according to the invention is particularly advantageous in crop-protection agents. The terms pesticides or crop-protection agents and pest-control agents in the present invention are applied to formulations which comprise the corresponding active compounds for pest control or for crop protection and additives and/or solvents.


The present invention relates firstly to the use of compounds of the formula (I) in pesticides:




embedded image



where


X is a hydrophilic group,


R is linear or branched alkylene, where one or more non-adjacent C atoms may be replaced by O, S, and/or N,


r is 0 or 1,


B is a single bond, O, NH, NR′, CH2, C(O)—O, S, CH2—O, O—C(O), O—C(O)—O, N—C(O), C(O)—N, O—C(O)—N, N—C(O)—N, SiR′2—, SiR′2—O, O—SO2 or SO2—O, where R′ is linear or branched alkyl,


R1 and R2, independently of one another, are hydrogen or —CH2—COY3-L3-(A3)n3,


Y1, Y2 and Y3, independently of one another, are O, S or N,


L1, L2 and L3, independently of one another, are linear or branched alkylene, where one or more non-adjacent C atoms may be replaced by O, S, and/or N,


A1, A2 and A3, independently of one another, are hydrogen or a group of the structure —Zi(CR3R4)miRfi, where i=1, 2 or 3,


Zi is O, S or N and is bonded to a C atom of Li or is a single bond,


R3 and R4, independently of one another, are hydrogen or an alkyl group,


Rfi is a fluorine-containing radical,


n1, n2 and n3, independently of one another, are 1-6,


m1, m2 and m3, independently of one another, are 0-5


and the compounds of the formula (I) contain at least one Rfi group.


The fluorosurfactants of the formula (I) used are preferably built up from a plurality of short-chain perfluoroalkyl groups with anionic, cationic, non-ionic and amphoteric groups. The compounds according to the invention are distinguished by improved properties on use as adjuvants.


In particular, branched fluorosurfactants containing short-chain perfluoroalkyl chains can lead to an improved ecotoxicological profile, since such compounds are non-toxic and do not exhibit bioaccumulation or inhalative toxicity. Personal protective measures during processing which are attributable to the toxicity of the surfactants are thus superfluous.


On use in pesticides, in particular in crop-protection agents, the compounds of the formula (I) can improve both the efficacy of the active compounds and/or also act, for example, as dispersant, emulsion stabiliser and/or foam inhibitor.


The use of the fluorosufactants according to the invention enables, in particular, the wetting properties of pesticides, in particular of crop-protection agents, to be significantly improved. By means of the fluorosurfactants of the formula (I), the surface tension in water can be reduced to below 20 mN/m, which results in a significant improvement in the wetting properties on the leaf surface compared with the siloxane- and hydrocarbon-based surfactants employed to date.


In addition, some of the branched fluorosurfactants exhibit superspreading wetting properties. This results in higher efficiency of the active compounds used in the pesticides, since both drift is reduced and also the contact area for the uptake of the active compound is increased. Due to the enlarged surface, a spray film of the pesticide also dries more rapidly, the active compound is consequently concentrated homogeneously on the leaf and cannot drip off the leaf so quickly.


The fluorosurfactants described here also improve numerous other properties. Thus, reduced foam formation in water can be demonstrated in the Ross-Miles test and in the Tego foam test. This is advantageous, in particular, in the preparation of spray solutions.


Fluorosurfactants of the formula (I) can be employed in all pesticides, both for crop protection and also generally for pest control. These compounds can advantageously be employed, in particular, in crop-protection agents, for example in herbicides, insecticides, fungicides, algicides, aphicides, nematicides, acaricides, molluscicides, bactericides, virucides, rodenticides or plant-growth regulators. The compounds of the formula (I) are also suitable for use in further crop-protection agents, such as, for example, in agents for the grafting of woody plants, agents for preventing damage by wildlife, agents for soil decontamination and dressings for the treatment of seed and plant material.


Compounds of the formula (I) are usually added to liquid pesticide formulations which are applied by means of spray methods. However, use in other pesticide formulations, such as wettable powders (WP), oil-in-water or water-in-oil emulsions (EW or EO), suspensions (SC), suspoemulsions (SE), emulsifiable concentrates (EC) or also granules or water-dispersible granules, is also possible. Use of the compounds of the formula (I) in formulations of crop-protection agents which are applied by spray methods in the cultivation of crop or ornamental plants is particularly advantageous.


Preferred compounds of the formula (I) are those in which two or three Rfi groups are present. However, compounds containing at least four Rfi groups are also possible, preferably containing four, six or nine Rfi groups.


The fluorinated groups Rfi used are preferably branched or unbranched, fluorine-containing alkyl radicals, in particular perfluorinated alkyl radicals.


Particular preference is given to fluorine-containing alkyl radicals having 1 to 10, preferably 1 to 6, in particular 1 to 4, C atoms. Especial preference is given to the use of perfluorinated Rfi groups having 1 to 6, in particular 1 to 4, C atoms. Rf1, Rf2 and Rf3 preferably have the same meaning.


R1 and R2 are preferably not simultaneously —CH2—COY3-L3-(A3)n3.


Preferred compounds of the formula (I) are in addition those in which Y1, Y2 and Y3 preferably denote O or N, in particular O. Y1 and Y2 or Y1, Y2 and Y3 have the same meaning.


The groups Rfi are bonded to a group L1, L2 or L3 via a —Zi(CR3R4)mi group. Zi here preferably stands for O or N, in particular for O. Preference is given to compounds in which all Zi are identical.


Preferred compounds of the formula (I) are those in which n1, n2 and n3 preferably, independently of one another, 0-4, in particular 1 or 2.


Preferred compounds of the formula (I) are also those in which m1, m2 and m3 are preferably, independently of one another, 0-4, in particular 1-4.


Preferred compounds of the formula (I) are also those in which R3 and R4 independently of one another, hydrogen or an alkyl group having 1 to 6 atoms, in particular 1-4 C atoms. R3 and R4 preferably stand, independently of one another, for hydrogen or an unbranched C1-C3-alkyl group. Preference is given to compounds in which R3 or R4 is equal to hydrogen, m1, m2 and m3 preferably stand, independently of one another, for 1-3. Preference is given to compounds in which all Zi, R3, R4 and mi in each case have the same meaning.


L1, L2 and L3 can preferably, independently of one another, be linear or branched alkylene having 1 to 10 C atoms. In particular, L1, L2 and L3 are, independently of one another, linear or branched alkylene having 3 to 8 C atoms. One or more non-adjacent C atoms of the groups L1, L2 and L3 may preferably be replaced by O or N, preferably by O. In a preferred variant of the invention, L1 and L2 are identical. If L3 is also present, L1 and L2 or L1 and L3 or L2 and L3 may preferably be identical. In a particularly preferred variant of the invention, all groups L1, L2 and L3 are identical.


Particular preference is given to compounds of the formula (I) in which at least one group Li=—(CR5R6)ci(CR7R8)c′i)di—, where the respective indices ci and c′i are, independently of one another, 0-10 and di is 0-5, R5 to R8 are, independently of one another, hydrogen or a branched or unbranched alkyl group and ci and c′i are not simultaneously 0.


Especial preference is given to compounds of the formula (I) in which, in at least one group Li, the group R5 is an alkyl group having 1 to 6 C atoms, in particular 1-4 C atoms, and the groups R6 and R7 and R8 are hydrogen.


Preference is furthermore also given to compounds of the formula (I) in which R7 is an alkyl group having 1 to 6 C atoms, in particular 1-4 C atoms, and the groups R5 and R6 and R8 are hydrogen.


In the compounds of the formula (I), the group R preferably stands for linear or branched alkylene having 1 to 12 carbon atoms, in particular having 1 to 4 carbon atoms. One or more non-adjacent C atoms may preferably be replaced by O or S, preferably O.


In the compounds of the formula (I) according to the invention, r can preferably be equal to 0.


Preference is furthermore given to compounds of the formula (I) in which B is a single bond, O, S, C(O)—O or O—C(O), in particular a single bond.


Particularly advantageous compounds of the formula (I) are those in which one or more of the variables Rfi, Y1, Z1, U, R1 to R8, ci, c′i, di, ni, mi, R, r and B have the preferred meanings, in particular compounds in which the said variables have the particularly preferred meanings. Particularly advantageous compounds of the formula (I) are those in which all said variables have the preferred meanings, in particular the particularly preferred meanings.


In the compounds of the formula (I) according to the invention, X is a hydrophilic group, preferably an anionic, cationic, nonionic or amphoteric group.


A preferred anionic group X can be selected from —COO, —SO3, —OSO3, —PO32−, —OPO32−, —(OCH2CH2)s—O—(CH2)t—COO, —(OCH2CH2)s—O—(CH2)t—SO3, —(OCH2CH2)s—O—(CH2)t—OSO3, —(OCH2CH2)s—O—(CH2)t—PO32−, —(OCH2CH2)s—O—(CH2)t—OPO32− or from the formulae A to C,




embedded image



where s stands for an integer from the range from 1 to 1000, t stands for an integer selected from 1, 2, 3 or 4 and w stands for an integer selected from 1, 2 or 3.


The preferred anionic groups here include, in particular, —COO, —SO3, —OSO3, —PO32−, —OPO32−, the sub-formula A, and —(OCH2CH2)s—O—(CH2)t—COO, —(OCH2CH2)s—O—(CH2)t—SO3 and —(OCH2CH2)s—O—(CH2)t—OSO3, where each individual one of these groups may be preferred per se.


The very particularly preferred anionic groups here include —SO3, —OSO3, —PO32− or OPO32−. Especial preference is given to a sulfonate group —SO3.


The preferred counterion for anionic groups X is a monovalent cation, in particular H+, an alkali metal cation or NR4+, where R is H or C1-C6-alkyl and all R may be identical or different. Particular preference is given to Na, K+ and NH4+ especially preferably Na+.


A preferred cationic group X can be selected from —NR1R2R3+Z, —PR1R2R3+Z,




embedded image




    • where R stands for H or C1-4-alkyl in any desired position,

    • Z stands for Cl, Br, I, CH3SO3, CF3SO3, CH3PhSO3, PhSO3

    • R1, R2 and R3 each stand, independently of one another, for H, C1-30-alkyl, Ar or —CH2Ar and

    • Ar stands for an unsubstituted or mono- or polysubstituted aromatic ring or condensed ring systems having 6 to 18 C atoms in which, in addition, one or two CH groups may be replaced by N.





The preferred cationic groups here include, in particular, —NR1R2R3+Z and




embedded image



where each individual one of these groups may be preferred per se.


A preferred nonionic group can be selected from linear or branched alkyl, where one or more non-adjacent C atoms may be replaced by O, S, and/or N, —OH, —SH, —O-(glycoside)o, —S-(glycoside)o, —OCH2—CHOH—CH2—OH, —OCH2Ar(—NCO)p, —OAr(—NCO)p, —CR═CH2, —OCOCR═CH2, amine oxide




embedded image



u stands for an integer from the range from 1 to 6, preferably 1 to 4,


stands for an integer from the range from 1 to 10,


p stands for 1 or 2,


R1, R2 and R3 each stand, independently of one another, for C1-30-alkyl, Ar or —CH2Ar, preferably C1-20-alkyl, and


Ar stands for an unsubstituted, mono- or polysubstituted aromatic ring or condensed ring systems having 6 to 18 C atoms in which, in addition, one or two CH groups may be replaced by C═O, and,


glycoside stands for an etherified carbohydrate, preferably for a mono- di-, tri- or oligoglucoside,


and R stands for H or methyl.


The preferred nonionic groups here include, in particular, linear or branched alkyl, where one or more non-adjacent C atoms may be replaced by O, S and/or N, —OH, —OCOCR═CH2 and —O-(glycoside)o.


If X=alkyl, where one or more non-adjacent C atoms have been replaced by O, S and/or N, it is then preferably equal to R-(B-A)m-, where


R═H or C1-4-alkyl, in particular H or CH3, A=linear or branched alkylene, preferably having 1 to 10 carbon atoms, in particular having 1 to 4 carbon atoms, B=O or S, preferably O, and m=an integer preferably from the range from 1 to 100, particularly preferably 1 to 30.


The nonionic group X is particularly preferably the R—(O—CH2CHR)m— group, where m=an integer from the range from 1 to 100, preferably 1 to 30, in particular 1-15, and R═H or C1-4-alkyl, in particular H or CH3. R-(B-A)m- is particularly preferably a polyethylene or polypropylene glycol unit.


A preferred amphoteric group can be selected from the functional groups of the acetyldiamines, the N-alkylamino acids, the betaines or corresponding derivatives, in particular selected from:




embedded image


Particularly preferred compounds according to the invention are those which contain one of the preferred anionic groups X, the preferred nonionic groups or the preferred zwitterionic groups as hydrophilic group X.


Especial preference is given to compounds which contain the groups —SO3, —OSO3, —PO32− or OPO32−, polyethylene glycol or polypropylene glycol, betaines, or sulfobetaines, in particular —SO3. Preferred counterions here are Na+, K+ and NH4 in particular Na+.


Compounds of the formula (I) in which X is an anionic group, in particular —SO3, and one or more of the variables Rfi, Yi, Zi, Li, R1 to R8, ci, c′i, di, ni, mi, R, r and B have the preferred meanings described, in particular compounds in which the said variables have the particularly preferred meanings, are particularly advantageously employed in pesticides. Preferred compounds here are, in particular, compounds in which all variables have the preferred meanings, especially the particularly preferred meanings.


In an embodiment of the invention, the compounds of the formula (I) can be in the form of mixtures in which the individual compounds have different meanings for the variables, in particular for Ai, Rfi, Yi, Zi, Li, R1 to R8, ci, c′i, di and mi.


In a particularly preferred group of compounds of the formula (I), R1 and R2 for hydrogen and A1 and A2 stand for a —Zi(CR3R4)miRfi group. These compounds are represented by formula (II). Particular preference is given to compounds of the formula (II) where Y1, Y2, Z1 and Z2 are equal to O.




embedded image


In another preferred group of compounds of the formula (I), R1 stands for H, R2 stands for —CH2—COY3-L3-(A3)n3 and A1, A2 and A3 stand for a —Zi(CR3R4)miRfi group. These compounds are represented by formula (III). Particular preference is given to compounds of the formula (III) where Y1, Y2, Z1 and Z2 are equal to O.




embedded image


In a further preferred group of compounds of the formula (I), R1 stands for —CH2—COY3-L3-(A3)n3, R2 stands for hydrogen and A1, A2 and A3 stand for a —Zi(CR3R4)miRfi group. These compounds are represented by formula (IV). Particular preference is given to compounds of the formula (IV) where Y1, Y2, Y3, Z1, Z2 and Z3 are equal to O.




embedded image


Particularly preferred compounds according to the invention are compounds of the formulae (II), (III) and (IV) in which X is an anionic group. Especial preference is given to compounds of the formulae (II), (III) and (IV) which contain the groups —SO3, —OSO3, —PO32− or OPO32−, in particular —SO3. Preferred counterions here are Na+, K+ and NH4+, in particular Na+.


In the formulae (II), (III) and (IV), L1, L2 and L3 have the general and preferred meanings given for the formula (I). L1, L2 and L3 are preferably, independently of one another, equal to linear or branched C1-C10-alkylene, in particular linear or branched C3-C8-alkylene, preferably equal to linear or branched C3-C6-alkylene. Especial preference is given to compounds of the formulae (II), (III) and (IV) in which all L are identical.


In addition, preference is given to compounds of the formulae (II), (III) and (IV) containing perfluorinated groups Rfi having 1 to 4 C atoms. Rf1, Rf2 and Rf3 preferably have the same meaning.


In the formulae (II), (III) and (IV), n1, n2 and n3 are preferably, independently of one another, 1 or 2. m1, m2 and m3 are preferably, independently of one another, 1-4.


Preferred compounds of the formulae (II), (III) and (IV) are also those in which R3 and R4 are, independently of one another, hydrogen or an alkyl group having 1 to 3 C atoms.


In a preferred variant, R3 and R4 are identical. Preference is furthermore given to compounds in which R3 or R4 are equal to hydrogen and m1, m2 m3 are equal to 1-3.


Preference is given to compounds in which all Rfi, R3, R4, ni and mi in each case have the same meaning.


Particular preference is given to compounds of the formulae (II), (III) and (IV) in which all variables have the preferred meanings, in particular the particularly preferred meanings.


Examples of compounds of the formula (I) whose use in pesticides is particularly advantageous are compounds of the formulae (I-1) and (III-2):




embedded image


The compounds of the formula (I) according to the invention may also be in the form of isomer mixtures (constitutional and/or configurational isomer mixtures). In particular, diastereomer and/or enantiomer mixtures are possible.


The compounds of the formula (I) according to the invention can preferably be prepared by esterification of maleic acid and aconitic acid or anhydrides or acid chlorides thereof using one or more alcohols of the formula (IV)




embedded image



and subsequent addition onto the double bond in order to introduce the X—(R)r-B group. The compounds according to the invention can also preferably be prepared by esterification of hydroxysuccinic acid and citric acid using one or more alcohols of the formula (V) and subsequent functionalisation of the hydroxyl groups in order to introduce the X—(R)r-B group.


L and A in the formula (V) have the meaning described for L1, L2 and L3 and A1, A2 and A3 respectively in formula (I), in particular also the preferred meanings. The alcohols of the formula (V) may contain one or more Rf groups.


The alcohols used are commercially available and/or their preparation is familiar to the person skilled in the art (for example DE 10 2009 030 846 A1; Heilmann et al. J. Fluorine Chem. 1992, 59, 387; Janulis et al. U.S. Pat. No. 5,157,159 (1992); Carbohydrate Research 1991, 219, 33).


The synthesis of succinates or tricarballylates according to the invention is preferably carried out in a two-step synthesis via the corresponding maleates or hydroxysuccinates or the corresponding aconitic or citric acid esters. These syntheses are described in WO 2010/149262, WO 2011/082770 and WO 2012/084118. The disclosures in the references cited hereby expressly also belong to the disclosure content of the present application.


The invention furthermore relates to pesticides comprising at least one compound of the formula (I). In particular, the preferred compounds described hereinabove, especially the compounds of the formulae (II) to (IV), can be used here. The pesticides according to the invention may comprise one or more of the said fluorosurfactants.


The pesticides can be both pest-control agents in general and also crop-protection agents, such as, for example, herbicides, insecticides, fungicides, algicides, aphicides, nematicides, acaricides, molluscicides, bactericides, virucides, rodenticides, plant-growth regulators, agents for grafting woody plants, agents for preventing damage by wildlife, agents for soil decontamination and dressings for the treatment of seed and plant material.


The pesticides may be present in various formulations, for example as wettable powders (WP), oil-in-water or water-in-oil emulsions (EW or EO), suspensions (SC), suspoemulsions (SE), emulsifiable concentrates (EC) or also granules or water-dispersible granules. In particular, crop-protection agents which are applied by spraying methods in the cultivation of crop or ornamental plants are suitable.


Besides the fluorosurfactants of the formula (I), pesticides according to the invention may furthermore also comprise surfactants, such as, for example, silicone surfactants based on polydimethylsiloxanes, functional trisiloxanes, gemini hydrocarbon surfactants and other hydrocarbon surfactants. The compounds of the formula (I) can preferably be used in mixtures with one or more of the compounds of the formulae (VI) to (X).


The pesticides preferably comprise at least one compound of the formula (VI)

(RF-(spacer)m)nM  (VI)

where


RF is a fluorine-containing group,


spacer is a single bond or an organic functional carbon chain,


n is ≧1,


m=0-1 and


M is an anionic, cationic, amphoteric or non-ionic group.


Preferred compounds of the formula (VI) are those in which RF is a perfluorinated alkyl group having at least two C atoms, preferably three C atoms, in particular four C atoms. Especial preference is given to substances which contain a perfluorinated C6 chain connected to an ethyl radical.


The spacer group can preferably be an organic functional hydrocarbon chain, for example a linear or branched alkylene, where one or more non-adjacent C atoms may be replaced by O, S and/or N.


Preference is furthermore given to compounds of the formula (VI) in which the (RF-(spacer)m)n- group is equal to Cn′F2n′+1—, Cn′F2n′+1—CH2CH2—, Cn′F2n′+1—OCF2CF2—, Cn′F2n′+1—OC6H4—, Cn′F2n′+1—C(O)NH(CH2)3N═, Cn′F2n′+1—SO2NH(CH2)3N═, CF3CCl2(CF2CFCl)n-1—CF2— or C8F17CH2CH2Si(CH3)2—, where n′=4-12. Particular preference is given to the Cn′F2n′+1—CH2CH2— group where n′=4-8.


Preferred anionic groups M


are —OPOO, —COO, —SO3, —OSO3, —OP(O)(O)O— and —OP(O)O22−. The counterions used here are preferably H+, Na+, K+, Li+ or NH4+.


Particular preference is given to compounds of the formula (VI-a)




embedded image



where RF═CF3—(CF2)n-spacer-, where n=0-12, and cation=Na, K, Li, NH4. Spacer has the meaning indicated above.


Preferred cationic groups M are —NR3+ groups where R═C1-C4 alkyl.


Preferred amphoteric groups M are —NR2+—(CH2)y—COO groups where R═C1-C4 alkyl and y=1-3, preferably y=1.


Preferred nonionic groups M are (OCH2CH2)n—OR and —(OCH2(CH3)CH2)n—OR where n=4-40 and R═H or C1-C4 alkyl.


Preferred compounds of the formula (VI) are, in particular, compounds in which all variables have the preferred meanings. Preference is given to anionic fluorosurfactants, for example based on phosphoric acid, carboxyl and sulfonic acid groups. Especial preference is given to compounds of the formula (VI) in which M is an anionic group and the (RF-(spacer)m)n- group is equal to Cn′F2n′+1—CH2CH2—, where n=4-8. Particularly preferred compounds here are phosphoric acid esters of the formula (VI-a), especially those with NH4+ as counterion.


The compounds of the formula (II) employed in the pesticides according to the invention are known to the person skilled in the art. They can be prepared analogously to known synthetic processes or are commercially available. The phosphoric acid esters which are particularly preferably used are available, for example, from Chemguard under the trade name Chemguard®, for example Chemguard® S760-P.


Preferred pesticides of the invention comprise the preferred compounds of the formula (I) described above and the preferred compounds of the formula (VI) described above.


Especial preference is given to pesticides comprising fluorosurfactants of the formulae (II), (III) and (IV), in particular of the formulae (III-1) and (III-2), in combination with the said preferred phosphoric acid esters.


Besides the compounds of the formula (I), the pesticides according to the invention may also comprise at least one sulfosuccinate, preferably of the formula (VII),




embedded image


The pesticides may also comprise at least one functional polymer based on polymethylsiloxane, preferably of the formula (VIII),




embedded image



where x=1-500, y=1-500 and R=phenyl, methyl or —(O—C2H3R′)n″—OR″, where n″=1-1000, R′=linear and branched alkyl radical and R″=linear and branched alkyl radicals.


The pesticides may also comprise at least one trisiloxane derivative, preferably of the formula (IX),

M2D′(En′″P)  (IX)

where M=(CH3)3SiO—, D′=Si(R′″), E=—OCH2CH2, n′″=5-40 and P═—OH, —OMe, or —OAc, where R′″=linear and/or branched alkyl chain.


Especial preference is given to the following compound




embedded image


The pesticides according to the invention may also comprise at least one gemini surfactant, where two identical or different amphiphilic groups built up from structures of conventional surfactants are connected by a spacer. Especial preference is given, for example, to diacetylene derivatives of the formula (X)




embedded image



where n=1-100.


If mixtures of the compounds of the formula (I) with other surfactants are used, these mixtures comprise one or more of the compounds of the formula (I) and one or more of the compounds of the formulae (II) to (X) preferably in the ratio of 70/30 to 90/10, in particular in the ratio of 80/20 to 85/15 ratio).


The content of the compounds of the formula (I) or the content of mixtures thereof, also with the said surfactants of the formulae (VI)-(X), is usually 0.01-1.0% by weight, preferably 0.05-0.5, in particular 0.05-0.2% by weight, based on the entire pesticide formulation. 0.1% by weight formulations can particularly preferably be used.


Pesticides which comprise the compounds according to the invention may comprise the water-soluble and/or water-insoluble active compounds known to the person skilled in the art, such as, for example, glyphosate, glufosinate, paraquat, hentazon, fomesafen, nicosulfuron, chlorsulfuron, butroxydim, thifensulfuron, aclonifen, permethrin, pyrethrin, disulfoton, armitraz, diazinon, metalazyl, inter alia.


Besides the compounds (I) or mixtures of these compounds with compounds of the formula (VI) and/or compounds of the formulae (VII) to (X), the crop-protection agents according to the invention may also comprise conventional solvents and/or additives, such as, for example, dyes, humectants, rheology modifiers, frost-protection agents, etc.


The complete disclosure content of all applications and publications mentioned above is incorporated into this application by way of reference. In the description and examples, percentages are percent by weight, unless indicated otherwise. The following examples explain the invention in greater detail without restricting the scope of protection.







EXAMPLES
Example 1: Synthesis of the Compound of the Formula (III-1)

The chain-extended alcohol is prepared from the starting materials 2,2,3,3,3-pentafluoropropan-1-ol (ABCR) and butylene carbonate (TCI) in accordance with patent application DE 10 2009 030 846 A1. This intermediate is esterified using aconitic acid (Alfa Aesar) by the synthetic procedure described and then sulfonated in the final reaction step by means of an aqueous sodium hydrogensulfite solution (Merck KGaA). The dynamic surface tension is determined by the method indicated and is 28.2 mN/m (100 ms, 0.1% by weight).


Example 2: Synthesis of the Compound of the Formula (III-2)

The chain-extended alcohol is prepared from the starting materials 2,2,3,3,4,4,4-heptafluorobutan-1-ol (ABCR) and propylene carbonate (Merck KGaA) in accordance with patent application DE 10 2009 030 846. This intermediate is esterified using aconitic acid by the synthetic procedure described and then sulfonated in the final reaction step by means of an aqueous sodium hydrogensulfite solution. The dynamic surface tension is determined by the method indicated and is 66.6 mN/m (100 ms, 0.1% by weight).


Example 3: Investigations into the Wetting on PTFE Film in Accordance with ASTM E2044 8 (Standard Test Method for Spreading of Liquid Agricultural Spray Mixtures)

Instrument: Krüss contact angle measuring instrument (DSA 100) Substrate: PTFE film from Goodfellow GmbH; measurement on the outside; (average roughness RM=20-30 nm)


Measurement Method Employed:


In accordance with ASTM E2044, the droplet base diameter (d) of an aqueous surfactant solution (0.1% by weight surfactant concentration) on a PTFE film is determined after various times. In this method, a 20 μl droplet of the liquid is applied to the corresponding surface using a syringe through a PTFE capillary (type N44; d=0.776 mm) (separation of the capillary from the surface=5 mm). With the aid of a contact angle measuring instrument, the droplet base diameter is determined after 0 s; 10 s, 30 s and 60 s. The droplet base diameter is measured using a digital ruler (length in pixels) after a video recording of the wetting operation and can be converted to a length (in mm) by magnifying the capillary (the diameter of the capillary corresponds to a corresponding number of pixels at a certain magnification).



FIG. 1 shows the droplets of various aqueous surfactant solutions compared with pure water after 0 s and after 60 s. Significant advantages are evident in relation to the wetting behaviour, in particular for the compound of the formula (III-2). The solution of the compound of the formula (III-2) has the largest droplet base diameter after 60 s and exhibits superspreading behaviour on Teflon.



FIG. 2 shows the droplet base diameter as a function of the various residence times (t) on the PTFE film. Solutions comprising the compound of the formula (III-2) and the compound of the formula (III-1) exhibit a significantly greater droplet base diameter than all other surfactant solutions both after 0 and also after 10 s. This can probably be explained by very rapid wetting of the PTFE film.


Example 4: Investigations into the Wetting on Leaves of the Müller-Thurgau Grapevine (Vitis vinifera)

Instrument: Krüss contact angle measuring instrument (DSA 100) Substrate: leaves of the Müller-Thurgau grapevine; leaf section having a relatively homogeneous surface (top, leaf size˜7×8 cm)


Measurement Method Employed:


The wetting behaviour of aqueous surfactant solutions (0.1% surfactant concentration) is investigated qualitatively on the surface of grape plant leaves using a contact angle measuring instrument. For this purpose, a homogeneous leaf section is fixed to a watch glass (d=12 cm) having convex curvature. This enables liquid droplets to be investigated irrespective of the other curvatures of the leaf surface. In order to investigate the wetting behaviour, a 5 μl droplet of liquid is applied to the leaf surface using a syringe through a PTFE capillary (type N44; d=0.776 mm). Since accurate contact angle measurements cannot be carried out on the very rough surface of the grape plants, the wetting behaviour is assessed qualitatively after 0 s and 10 s.



FIG. 3 shows the droplets of various aqueous surfactant solutions compared with pure water after 0 s and after 10 s on the grape leaf surfaces. The use of the branched fluorosurfactants of the formula (III-2) and of the formula (III-1) reduces the contact angle of the droplets significantly compared with water (H2O). In addition, the compound of the formula (III-2) exhibits better wetting properties than all other surfactant solutions after 10 s in the qualitative investigation.


FIGURES


FIG. 1 shows the wetting of a PTFE film by various aqueous surfactant solutions compared with pure water after 0 s and after 60 s. The droplet base diameter d is indicated in each case.



FIG. 1a: H2O; t=0 s: d=3.8 mm



FIG. 1b: H2O; t=60 s: d=3.8 mm



FIG. 1
c: 0.1% of the compound of the formula (III-2); t=0 s: d=5.5 mm



FIG. 1
d: 0.1% of the compound of the formula (III-2); t=60 s: d=12.3 mm



FIG. 1
e: 0.1% of the compound of the formula (III-1); t=0 s: d=5.6 mm



FIG. 1
f: 0.1% of the compound of the formula (III-1); t=60 s: d=6.4 mm



FIG. 1
g: 0.1% of fluorosurfactant (linear C6); t=0 s: d=3.4 mm



FIG. 1
h: 0.1% of fluorosurfactant (linear C6); t=60 s: d=6.5 mm



FIG. 1
i: 0.1% of gemini surfactant; t=0 s: d=5.0 mm



FIG. 1
j: 0.1% of gemini surfactant; t=60 s: d=5.1 mm



FIG. 2 shows the droplet base diameter (V=20 μl; 0.1% surfactant concentration) on PTFE film after various residence times



FIG. 3 shows the wetting of grape leaf surfaces by various aqueous surfactant solutions



FIG. 3a: H2O; droplet at t˜0 s



FIG. 3b: H2O; droplet at t˜10 s



FIG. 3
c: 0.1% of the compound of the formula (III-1); droplet at t˜0 s



FIG. 3
d: 0.1% of the compound of the formula (III-1); droplet at t˜10 s



FIG. 3
e: 0.1% of the compound of the formula (III-2); droplet at t˜0 s



FIG. 3
f: 0.1% of the compound of the formula (III-2); droplet at t˜10 s



FIG. 3
g: 0.1% of fluorosurfactant (linear C6); droplet at t˜0 s



FIG. 3
h: 0.1% of fluorosurfactant (linear C6); droplet at t˜10 s



FIG. 3
i: 0.1% of gemini surfactant; droplet at t˜0 s



FIG. 3
j: 0.1% of gemini surfactant; droplet at t˜10 s

Claims
  • 1. A pesticide and/or crop-protection agent formulation comprising a pesticide and/or crop-protection agent and at least one compound of the formula (I)
  • 2. A formulation according to claim 1, wherein the compound of the formula (I) is a compound of the formulae (II), (III) and/or (IV):
  • 3. A formulation according to claim 1, characterised in that the compounds of the formula (I) are compounds of the formulae (III-1) and/or (III-2):
  • 4. A formulation according to claim 1, which further comprises at least one compound of the formula (VI) (RF-(spacer)m)nM  (VI)whereRF is a fluorine-containing group,spacer is a single bond or an organic functional carbon chain,n is ≧1,m=0-1 andM is an anionic, cationic, amphoteric or non-ionic group.
  • 5. A formulation according to claim 4, characterised in that the group (RF-(spacer)m)n- in the compounds of the formula (VI) is equal to Cn′F2n′+1—, Cn′F2n′+1—CH2CH2—, Cn′F2n′+1—OCF2CF2—, Cn′F2n′+1—OC6H4—, Cn′F2n′+1—C(O)NH(CH2)3N═, Cn′F2n′+1—SO2NH(CH2)3N═, CF3CCl2(CF2CFCl)n′−1—CF2— or C8F17CH2CH2Si(CH3)2—, where n′=4-12, and M is equal to —OPOO−, —COO−, —SO3−, —OSO3−, —OP(O)(O−)O— or —OP(O)O22−, and the compound of formula (VI) has H+, Na+, K+, Li+ or NH4+ as counterion.
  • 6. A formulation according to claim 2, which comprises at least one compound of the formula (III) and at least one compound of the formula (VI) (RF-(spacer)m)nM  (VI)whereRF is a fluorine-containing group,spacer is a single bond or an organic functional carbon chain,n is ≧1,m=0-1 andM is an anionic, cationic, amphoteric or non-ionic group.
  • 7. A formulation according to claim 1, which further comprises at least one compound of the formulae (VII) to (X)
  • 8. A formulation according to claim 4, which further comprises at least one compound of the formulae (VII) to (X)
  • 9. A formulation according to claim 1, characterised in that it is in the form of a liquid pesticide formulation which can be applied by means of spraying methods.
  • 10. A formulation according to claim 1, which comprises one or more crop-protection agents.
  • 11. A pesticide and/or crop-protection method which comprises applying a pesticide and/or crop protection agent formulation according to claim 1 to a crop or plant.
  • 12. A method according to claim 11, which comprises applying the formulation by spraying in the cultivation of a crop or ornamental plant.
  • 13. A method according to claim 11, wherein the compound of the formula (I) improves the efficacy of the pesticide and/or crop-protection agent and/or acts as dispersant, emulsion stabiliser and/or foam inhibitor.
  • 14. A pesticide and/or crop-protection method which comprises applying a pesticide and/or crop protection agent formulation according to claim 2 to a crop or plant.
  • 15. A pesticide and/or crop-protection method which comprises applying a pesticide and/or crop protection agent formulation according to claim 3 to a crop or plant.
  • 16. A formulation according to claim 1, wherein, in formula (I), X is: an anionic group X selected from —COO—, —S03, —OSO3, —PO32-, —OPO32, —(OCH2CH2)s-O—(CH2)—COO—, —(OCH2CH2)s-O—(CH2)t-SO3, —(OCH2CH2)s-O—(CH2)t-OSO3, —(OCH2CH2)s-O—(CH2)t-PO32-, —(OCH2CH2)s-O—(CH2)t-OPO32— or from the formulae A to C,
Priority Claims (1)
Number Date Country Kind
13002875 Jun 2013 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2014/001354 5/20/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2014/194984 12/11/2014 WO A
US Referenced Citations (13)
Number Name Date Kind
4968599 Pitt et al. Nov 1990 A
4988610 Pitt et al. Jan 1991 A
5198467 Milks Mar 1993 A
6221811 Policello et al. Apr 2001 B1
6890608 Morishima et al. May 2005 B2
8120833 Chan et al. Feb 2012 B2
8673819 Sun Mar 2014 B2
9115062 Hierse et al. Aug 2015 B2
20110088594 Claus et al. Apr 2011 A1
20110111961 Sun May 2011 A1
20120008186 Chan et al. Jan 2012 A1
20120111233 Hierse et al. May 2012 A1
20130269568 Claus et al. Oct 2013 A1
Foreign Referenced Citations (8)
Number Date Country
2230769 Sep 1998 CA
102009030846 Dec 2010 DE
2009149807 Dec 2009 WO
2010003889 Jan 2010 WO
2012003567 Jan 2010 WO
2010149262 Dec 2010 WO
2011082770 Jul 2011 WO
2012084118 Jun 2012 WO
Non-Patent Literature Citations (7)
Entry
International Search Report dated Jul. 29, 2014 issued in corresponding PCT/EP2014/001354 application (pp. 1-6).
N. Takafumi, et al., “Perfluoropolyether-containing amphiphilic compounds and their uses”, Database Caplus [Online] XP002714401 Database accession No. 2004-52783, (2004) pp. 1.
J. Alexander, et al., Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain 1 (Question N o EFSA-Q-2004-163), The EFSA Journal, (2008) pp. 1-131.
F. Stagnari, et al., “Influence of fluorinated surfactants on the efficacy of some post-emergence sulfonylurea herbicides”, J. Pestic. Sci. , vol. 32, No. 1 (2007) pp. 16-23.
A.R. Pitt, et al., “The relationship between surfactant structure and limiting values of surface tension, in aqueous gelatin solution, with particular regard to multilayer coating”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 114 (1996) pp. 321-335.
A.R. Pitt, “The efficiency of dynamic surface tension reductions within homologous series of surfactants in aqueous gelatin solution”, Progr Colloid Polym Sci, vol. 103 (1997) pp. 307-317.
Z. Liu, et al., “Phase Behaviors of Aerosol-OT Analogue Fluorinated Surfactants in 1, 1, 1, 2-Tetrafluoroethane and Supercritical CO2”, Ind. Eng. Chem. Res., vol. 46, No. 1 (2007) pp. 22-28.
Related Publications (1)
Number Date Country
20160122297 A1 May 2016 US