Information
-
Patent Grant
-
6805330
-
Patent Number
6,805,330
-
Date Filed
Thursday, January 3, 200223 years ago
-
Date Issued
Tuesday, October 19, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Look; Edward K.
- Fristoe, Jr.; John K.
Agents
- Webb Ziesenheim Logsdon Orkin & Hanson P.C.
-
CPC
-
US Classifications
Field of Search
US
- 251 12901
- 251 12904
- 004 406
- 004 410
- 004 668
- 004 675
- 004 676
- 004 677
- 236 1211
- 236 1212
-
International Classifications
-
Abstract
The present invention is a fluid control switch which includes an adapter element for engagement with a switch housing assembly in a fluid control system. The switch housing assembly has a switch orifice surrounded by a switch orifice rim. The adapter element also includes an activation portion in communication with a signal switch, which creates a analog/digital data signal when the activation portion is activated. When the adapter element is engaged with the switch housing assembly, the activation portion of the adapter element extends at least flush with the switch orifice rim of the switch housing assembly.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to fluid control switches, and, in particular, to fluid control switches for use in connection with electronically-triggered flow valves and fluid control systems.
2. Brief Description of the Prior Art
In most fluid control systems, and more particularly, water conduit systems, control valves are utilized to control the flow of water through the piping system. Further, in prison lavatory and water closet systems, these control valves are typically used in connection with electronic control centers, which contain sensor inputs to register a user's request for operation of the flow valve. It is these valves, typically solenoid-operated valves, that control the flow of water to the user.
In the area of prison lavatory and water closet systems, conventional manually-operated prison lavatory flow valves, in particular, piston valves, are typically converted to allow for electronic control. Typically, the piston valve is triggered by a user depressing an external button or switch located on the switch housing assembly. Further, the switch is connected to a rod and the rod is connected to a lever on the mechanical valve. It is this mechanical flow valve that controls the flow of fluid, typically water, through the valve, and further through the remaining piping system. When used in connection with a sink, when a user depresses the switch, the rod activates the valve, such that water is allowed to flow through the valve and out of the faucet into the sink. Due to the impurities in potable water, the tiny metering hole associated with the mechanical valve will often clog or be altered in size causing the length of time of fluid flow to be insufficient or the length of time to be further extended, wasting water. In addition, such a mechanical piston flow valve, and control valves associated with these types of flow valves, have numerous and separately functioning pieces. The assembly, maintenance and repair of such a valve having many pieces is difficult, expensive and time consuming.
In order to overcome the deficiencies of using a mechanical flow valve, electronically-controlled flow valves have been developed. In these systems, the external button or switch remains connected to a rod, with the rod activating a switch which is in communication with a communication line which, in turn, is in communication with an external control unit. It is this external control unit that controls a control valve, which controls the flow valve, thereby controlling fluid flow through the flow valve. Such systems, however, still require mechanical operation to activate. Specifically, the user must “push” the button to activate the switch to create the appropriate data signal, which is transmitted to the external control unit. As with the above-described mechanical flow valve, this electronically-controlled flow valve, in particular, the push button-operated switch housing assembly, is subject to mechanical failure and tampering. Additionally, after repeated activation, such a push button assembly begins to “wear” and lose effectiveness, eventually becoming completely inoperable.
SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to provide a fluid control switch having a minimum number of “pieces,” thereby reducing expense and maintenance costs. It is another object of the present invention to provide a fluid control switch that uses no movable parts, which are subject to wear and tampering. It is a further object of the present invention to provide a fluid control switch that does not require any significant plumbing alterations prior to its installation. It is a further object of the present invention to provide a fluid control switch that is particularly adapted for retrofitting a typical switch housing assembly in a fluid control system.
Accordingly, the present invention is directed to a fluid control switch that includes an adapter element, adapted to be engaged with a switch housing assembly in a fluid control system. The switch housing assembly has a switch orifice surrounded by a switch orifice rim. The adapter element also includes an activation portion, which is in communication with a signal switch. The signal switch creates a data signal when the activation portion is activated. When the adapter element is engaged with the switch housing assembly, the activation portion of the adapter element extends at least flush with the switch orifice rim of the switch housing assembly.
The present invention also includes a method for retrofitting a fluid control switch to a switch housing assembly. The switch housing assembly includes a switch orifice with inner walls having threads disposes thereon and surrounded by a rim. The method includes providing an adapter element having an activation portion in communication with a signal switch, and mating the adapter element with the switch orifice such that the activation portion of the adapter element extends at least flush with the rim of the switch housing assembly. The adapter element may include an outer surface with threads disposed thereon for threaded engagement with the threads on the inner walls of the switch orifice. Alternatively, the adapter element may be mated with a fitting which has a threaded outer surface. In such an embodiment, mating of the adapter element with the switch orifice is accomplished by threading the threads of the fitting with the threads of the switch orifice, such that the activation portion extends at least flush with the rim.
The method may further include receiving an analog data signal from the activation portion of the adapter element, converting the analog data signal to a digital data signal by an analog/digital signal converter and transmitting the digital data signal to an external control unit via a communication line, such as a phone line or a local area network line. The method may further include steps of receiving the digital data signal by the external control unit, transmitting a data signal to a control valve instructing the control valve to allow fluid to flow through a flow valve, and allowing fluid to flow through the flow valve and further through a faucet. The data signal may further be terminated, thereby disallowing further fluid flow.
The present invention is further directed to a kit for a fluid control system including a flow valve in fluid communication with a faucet and a control valve, an external control unit in communication with a control valve, and a fluid control switch having an adapter element configured to be engaged with a switch housing assembly as described herein.
The present invention, both as to its construction and its method of operation, together with the additional objects and advantages thereof will best be understood from the following description of specific embodiments when read in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a top view of a typical prior art fluid control system using mechanical flow valves;
FIG. 2
is a top view of a typical prior art fluid control system using electronically-controlled flow valves;
FIG. 3
is a top view of a fluid control system using the fluid control switch according to the present invention;
FIG. 4
is a side view of a fluid control switch according to the present invention;
FIG. 5
is a top view of the fluid control switch of
FIG. 4
;
FIG. 6
is a side sectional view of a preferred embodiment of a fluid control switch according to the present invention;
FIG. 7
is a side view of a fluid control switch in an alternate embodiment of the present invention; and
FIG. 8
is a side sectional view of the fluid control switch of
FIG. 7
shown assembled with a fitting and housing assembly.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
With reference to the attached Figures in which like reference numerals refer to like elements throughout the several views thereof,
FIG. 1
illustrates a typical prior art fluid control system
10
, such as for operation and fluid flow in connection with a lavatory sink
11
, using mechanical flow valves
12
a
and
12
b
for controlling the flow of hot and cold running water, respectively. In this prior art system, the lavatory sink
11
and the mechanical flow valves
12
a
and
12
b
are typically separated from each other through a wall
13
. Mechanical push buttons
14
a
and
14
b
are attached to the lavatory sink
11
through switch housing assemblies
26
a
and
26
b
by way of fittings
19
a
and
19
b
, which are typically brass fittings threaded within switch housing assemblies
26
a
and
26
b
, respectively. Mechanical push buttons
14
a
and
14
b
are in operable communication with rods
16
a
and
16
b
which extend through wall
13
and which, in turn, are in operable communication with the mechanical flow valves
12
a
and
12
b
. When the user “pushes” one of the mechanical push buttons
14
a
and/or
14
b
, the respective rod
16
a
and/or
16
b
activates the mechanical flow valve
12
a
and/or
12
b
, thereby allowing fluid, typically water, to flow through the mechanical flow valve
12
a
and/or
12
b
and out a faucet
18
. When the user releases the mechanical push button
14
a
and/or
14
b
, the mechanical flow valve
12
a
and/or
12
b
halts fluid flow through the valve, thereby disallowing any fluid to flow out of the faucet
18
.
In an effort to update and remove the mechanical flow valves
12
a
and
12
b
from the fluid control system
10
, electronically-operated flow valves
20
a
and
20
b
have been developed, as seen in FIG.
2
. These electronically-operated flow valves
20
a
and
20
b
are controlled by control valves
22
a
and
22
b
, respectively, which are in communication with an external control unit (not shown) via communication lines
24
a
and
24
b
. As seen in
FIG. 2
, this prior art fluid control system
10
still utilizes mechanical push buttons
14
a
and
14
b
attached to a respective rod
16
a
and
16
b
to produce an appropriate signal for communication to the external control unit. As with the above prior art installation, when the mechanical push button
14
a
and/or
14
b
is depressed, the attached rod
16
a
and/or
16
b
activates a switch
17
a
and/or
17
b
, and a signal is communicated to the external control unit, which then transmits a signal to the control valves
22
a
and/or
22
b
via the communication line
24
a
and/or
24
b
. As discussed above, the repeated use of these mechanical push buttons
14
a
and
14
b
and attached rods
16
a
and
16
b
“wears” the assembly, eventually rendering them inoperable. Further, since the mechanical push buttons
14
a
and
14
b
extend beyond switch housing assemblies
26
a
and
26
b
, they are subject to tampering and abuse. Moreover, since the rods
16
a
and
16
b
activate the switches
17
a
and
17
b
, respectively, repair of the assembly requires substantial time to access the switches
17
a
and/or
17
b.
In order to overcome these deficiencies, the fluid control switch
28
of the present invention is provided for use in connection with a switch housing assembly, such as switch housing assemblies
26
a
and
26
b
. As seen in
FIG. 3
, the fluid control switch
28
does not employ a mechanical push button
14
a
or
14
b
, or a rod
16
a
or
16
b
for operation of the control valves
22
a
or
22
b
. It is noted that
FIG. 3
depicts only one fluid control switch
28
assembled with switch housing assembly
26
for illustration purposes. It is noted that lavatory sink
11
, such as is depicted in
FIG. 3
, would typically employ separate fluid control switches for hot and cold running water, as described above in connection with the mechanical assemblies of
FIGS. 1 and 2
. Also, it is contemplated that a single fluid control switch may be integrated with two separate control valves, such as
22
a
and
22
b
of
FIGS. 1 and 2
, such that hot and cold water can be supplied to the faucet
18
through activation of a single fluid control switch.
The fluid control switch
28
includes an adapter element
30
for engagement with the switch housing assembly
26
. As seen in
FIG. 3
, the switch housing assembly
26
has a switch orifice
32
surrounded by a switch orifice rim
34
. The switch orifice
32
is defined by switch orifice inner walls
36
having threads disposed thereon. It is contemplated that switch housing assembly
26
can be constructed of one or more pieces to provide the appropriate design configuration.
As illustrated in
FIGS. 4 and 5
, the adapter element
30
has an activation portion
38
integrally formed therewith and an adapter element outer surface
40
with threads disposed thereon. While both the switch orifice
32
of the switch housing assembly
26
and the adapter element outer surface
40
have threads, it is envisioned that any method of mating the fluid control switch
28
to the switch housing assembly
26
in a non-permanent manner is contemplated. For example, the adapter element
30
may be connected to the switch housing assembly
26
via a friction fit. When the adapter element
30
is engaged with the switch housing assembly
26
, the activation portion
38
of the adapter element
30
extends at least flush with the switch orifice rim
34
of the switch housing assembly
26
. In this manner, the activation portion
38
can be activated by a user's wrist, since the activation portion
38
extends at least flush and possibly beyond the switch housing assembly
26
.
As illustrated in
FIG. 6
, the activation portion
38
is in communication with, or integrated with, a signal switch
42
. The signal switch
42
produces a data signal based on some activity surrounding the activation portion
38
of the adapter element
30
. This data signal is then transmitted through the adapter element communication line
44
to an external control unit
45
(See FIG.
3
). It is envisioned that the signal switch
42
may also include an analog/digital signal converter
46
for converting an analog signal received from the activation portion
38
to a digital signal. For example, when the operation signal is created through a user's pressure on the activation portion
38
of the adapter element
30
, when the user “touches” the activation portion
38
, the analog data signal received by the signal switch
42
is a pressure signal. Next, the analog signal is converted to a digital signal by the analog/digital signal converter
46
and transmitted through the adapter element communication line
44
to an external control unit
45
. Similarly, if the activation signal is heat, when a user touches the activation portion
38
, the analog data signal of heat is converted by the analog/digital signal converter
46
to a digital signal and, as above, passed to the external control unit
45
through the communication line
44
.
As the typical prior art switch housing assembly
26
uses a tubular switch orifice
32
, it is envisioned that the adapter element
30
, as well as the activation portion
38
of the adapter element
30
, are tubular in shape and particularly adapted to engage the switch orifice
32
. Further, the data signal which emanates from the signal switch
42
and, if present, the analog/digital signal converter
46
, may be passed through the adapter element communication line
44
, which may be a phone line or a local area network line, whichever is suitable in operating the system and in communicating with the external control unit
45
.
In order to protect the signal switch
42
, the adapter element
30
may also include an adapter element chamber
48
adapted to house a signal switch medium
50
. The signal switch medium
50
may be used to secure the signal switch
42
adjacent the activation portion
38
of the adapter element
30
. Further, the signal switch medium
50
may also be manufactured from a conductive material, such that any data signal emanating from the signal switch
42
travels through the signal switch medium
50
and into the adapter element communication line
44
. Still further, this signal switch medium
50
may be used to isolate the signal switch
42
and protect it from moisture and other outside forces.
As the signal switch
42
and the activation portion
38
are integrated with the adapter element
30
, the overall structure of the adapter element
30
is unitary. This allows for easy installation and maintenance of the fluid control switch
28
, and allows for simple retro-fitting of fluid control switch
28
with existing fluid control systems. Also, it is envisioned that the adapter element
30
may be manufactured from stainless steel, carbon steel, or any other material that is suitable both aesthetically and operably with the switch housing assembly
26
, typically already present in the fluid control system
10
.
In operation, when the fluid control switch
28
is engaged with the switch housing assembly
26
, a user need only touch the activation portion
38
of the adapter element
30
, which allows the signal switch
42
to produce a data signal. The data signal is transmitted to an external control unit
45
which then activates a control valve
22
, thereby allowing fluid to flow through the electronically-operated flow valve
20
, and further through the faucet
18
associated with the switch housing assembly
26
. Since the fluid control switch
28
is engaged such that the activation portion
38
is flush with or extends slightly beyond the switch orifice rim
34
, the activation portion
38
can be easily accessed by a finger or wrist of a user. Further, since the activation portion
38
is not a mechanical push button
14
, it has no moving parts, and is not subject to wear-and-tear.
The present invention also includes a method for retrofitting a fluid control switch
28
to a switch housing assembly
26
. In such a retrofitting operation, both the fluid control switch
28
and the switch housing assembly
26
are conventional parts as described above. The method includes threading the adapter element
30
with the switch orifice
32
via the switch orifice threads and the adapter element threads, such that the activation portion
38
of the adapter element
30
extends at least flush with the switch orifice rim
34
of the switch housing assembly
26
.
In a further embodiment as shown in
FIGS. 7 and 8
, the fluid control switch
28
′ includes adapter element
30
′ for use in fluid control system
10
. Adapter element
30
′ is particularly useful in retrofitting existing fluid control systems having a conventional mechanical push button and rod assembly attached to a switch housing assembly
26
through a conventional brass fitting, as described herein with respect to
FIGS. 1 and 2
. Adapter element
30
′ includes an adapter element outer surface
40
′. Adapter element outer surface
40
′ in the present embodiment, however, does not include any threads disposed thereon for threaded engagement with switch housing assembly
26
as discussed above. Instead, in the embodiment of
FIGS. 7 and 8
, adapter element
30
′ is meant for use with a fitting, such as a conventional brass fitting
19
′. As such, the adapter element outer surface
40
′ of adapter element
30
′ does not include any structure for direct interfitting engagement with switch housing assembly
26
, but is instead provided for frictional engagement between the switch housing assembly
26
and fitting
19
′.
More particularly, as depicted in
FIG. 8
, adapter element
30
′ is adapted to mate with fitting
19
′ such as by sitting within fitting
19
′, with adapter element communication line
44
extending from adapter element
30
′ through an opening in the fitting
19
′ which would normally be present for rod
16
in prior art assemblies as discussed above. During assembly, the fluid control switch
28
′ including adapter element
30
′ as described is provided within fitting
19
′. Fitting
19
′ is then threaded within switch housing assembly
26
. Such threading causes the fluid control switch
28
′ to contact with switch housing assembly
26
adjacent switch orifice rim
34
, with the activation portion
38
extending at least flush with the switch housing assembly
26
. In this manner, fluid control switch
28
′ can be used in a retrofit installation with a conventional brass fitting to replace an existing mechanical valve.
The present invention is simple in its use and easy in its manufacture. Further, the lack of moving parts and components in the fluid control switch
28
eliminates the possibility of excessive use resulting in wear and damage. Since the activation portion
38
is integrally formed with the adapter element
30
, the present invention fluid control switch
28
cannot be easily tampered with by the user. Also, since the activation portion
38
is designed to extend through the wall of the switch housing assembly
26
to be at least flush with the switch orifice rim
34
, the activation portion
38
can be easily activated by a user's wrist, thereby meeting federal guidelines for accessibility. While the present invention is equally useful in new installations, it is particularly useful in retrofit situations. Moreover, since the control valves
22
are operated electronically and do not require any extension for activation by a push rod
16
, the control valve
22
can also be retrofitted with an electronically-controlled valve designed for use in such retrofit applications.
This invention has been described with reference to the preferred embodiments. Obvious modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations.
Claims
- 1. A fluid control switch, comprising:an adapter element configured to be engaged with a switch housing assembly in a fluid control system, the switch housing assembly having a switch orifice surrounded by a switch orifice rim; and the adapter element further comprising an activation portion in communication with a signal switch, the signal switch creating a data signal when the activation portion is activated, the activation portion and the signal switch arranged within the switch housing assembly such that the activation portion of the adapter element extends at least flush with the switch orifice rim of the switch housing assembly, when engaged therewith, wherein the signal switch further comprises an analog/digital signal converter configured to convert an analog signal, which is at least one of heat and pressure, received from the activation portion of the adapter element, to a digital signal; and wherein the activation portion creates the data signal through contact without the use of moving parts, such that the activation portion is a non-mechanical activation portion.
- 2. The fluid control switch of claim 1, further comprising a communication line in communication with the signal switch and configured to transmit a data signal emanating from the signal switch to an external control unit.
- 3. The fluid control switch of claim 2, wherein the communication line is one of a phone line and a local area network line.
- 4. The fluid control switch of claim 1, further comprising a signal switch medium configured to secure the signal switch adjacent the activation portion of the adapter element.
- 5. The fluid control switch of claim 1, wherein the adapter element further comprises an adapter element outer surface having threads disposed thereon, the adapter element threads configured to mate with corresponding threads disposed on switch orifice inner walls.
- 6. The fluid control switch of claim 1, wherein the adapter element is a unitary structure.
- 7. The fluid control switch of claim 1, wherein the adapter element is manufactured from a material selected from stainless steel and carbon steel.
- 8. The fluid control switch of claim 1, wherein the signal switch and the adapter element produces a data signal which, when transmitted to an external control unit, activates a control valve, thereby allowing fluid to flow through a flow valve, and further through a faucet associated with the switch housing assembly.
- 9. A method for retrofitting a fluid control switch to a switch housing assembly having a switch orifice with switch orifice inner walls having threads disposed thereon and surrounded by a switch orifice rim, comprising the steps of:providing an adapter element having an activation portion in communication with a signal switch that creates a data signal when the activation portion is activated, wherein the signal switch further comprises an analog/digital signal converter configured to convert an analog signal, which is at least one of heat and pressure, received from the activation portion of the adapter element, to a digital signal, and wherein the activation portion creates the data signal through contact without the use of moving parts, such that the activation portion is a non-mechanical activation portion; and arranging the activation portion and the signal switch within the switch housing assembly, such that the activation portion extends at least flush with the switch orifice rim of the switch housing assembly.
- 10. The method as in claim 9, wherein the adapter element includes an outer surface with threads disposed thereon, and said mating of said adapter element with the switch orifice comprises threading the threads of the adapter element with the threads on the inner walls of the switch orifice.
- 11. The method as in claim 9, wherein said mating step comprises:mating the adapter element with a fitting having an outer surface with threads disposed thereon; and threading the threads of the fitting with the threads of the switch orifice, such that the activation portion of the adapter element extends at least flush with the switch orifice rim of the switch housing assembly.
- 12. The method of claim 9, further comprising the steps of:receiving an analog data signal from the activation portion of the adapter element; and converting the analog data signal to a digital data signal by the analog/digital signal converter.
- 13. The method of claim 12, further comprising the step of:transmitting the digital data signal to an external control unit via a communication line.
- 14. The method of claim 13, wherein the communication line is one of a phone line and a local area network line.
- 15. The method of claim 13, further comprising the steps of:receiving the digital data signal by the external control unit; transmitting a data signal to a control valve instructing the control valve to allow fluid to flow through a flow valve; and allowing fluid flow through the flow valve and further through a faucet associated with the switch housing assembly.
- 16. The method of claim 15, further comprising the steps of:terminating the data signal to the control valve; and disallowing further fluid through the flow valve and the faucet.
- 17. A kit for a fluid control system, comprising:a flow valve in fluid communication with a faucet and a control valve; an external control unit in communication with the control valve; and a fluid control switch having an adapter element configured to be engaged with a switch housing assembly having a switch orifice surrounded by a switch orifice rim, the adapter element further comprising an activation portion in communication with a signal switch, which creates a data signal when the activation portion is activated, and a communication line in communication with the signal switch and configured to transmit the data signal emanating from the signal switch to the external control unit, wherein the activation portion and the signal switch are arranged within the switch housing assembly, such that the activation portion extends at least flush with the switch orifice rim of the switch housing assembly; wherein the signal switch further comprises an analog/digital signal converter configured to convert an analog signal, which is at least one of heat and pressure, received from the activation portion of the adapter element, to a digital signal; wherein the activation portion creates the data signal through contact without the use of moving parts, such that the activation portion is a non-mechanical activation portion; wherein when the signal switch of the adapter element produces a data signal and the data signal is transmitted to the external control unit via the communication line, a second data signal is transmitted to the control valve, activating the control valve, thereby allowing fluid to flow through the flow valve, and further through the faucet associated with the switch housing assembly.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
6018827 |
Shaw et al. |
Feb 2000 |
A |
RE37888 |
Cretu-Petra |
Oct 2002 |
E |