This invention relates to a slidable window which may be used as a rear window in a pick-up truck, heavy truck sleeper applications, or in any other suitable application. In certain example embodiments of this invention, a hydrophilic coating is provided on the interior surface of the slidable window. Certain example embodiments of this invention relate to a substantially flush-mounted slidable window for use as a rear window in a pick-up truck, wherein the window includes a pair of fixed window sheets and a slidable window sheet provided therebetween.
Rear windows for pick-up trucks, which have a slidable window sheet, are known in the art. For example, see U.S. Pat. Nos. 5,542,214, 5,996,284, 5,522,191, 4,124,054, and the like. However, the windows of the aforesaid patents each have their respective problems.
In slider window systems for pick-up trucks (e.g., see patents mentioned above), a center slidable window is typically provided between a pair of fixed windows. Each of the windows is typically made of glass. These windows are susceptible to fogging up in certain environmental conditions, especially the interior surface thereof. Unfortunately, conventional anti-fog systems such as a grid of conductors with a pair of corresponding bus bars cannot be practically located on the center window because of its sliding nature. In particular, the sliding movement of the center window prohibits the provision of electrical connectors on that window, from a practical point of view, since such connectors will tend to be damaged during sliding movement of the slidable window.
In view of the above, it will be apparent that there exists a need in the art for a slider window system for use in a pick-up truck or the like, where the window is resistant to fogging up on the inside thereof. Certain example embodiments of this invention relate to an improved slidable window for use in a pick-up truck or the like, with an interior surface that is resistant to fogging up. In certain example embodiments, the instant invention relates to a window structure that includes a pair of fixed window sheets and a slidable window sheet provided therebetween.
Certain example embodiments of this invention relate to a window structure for use as a rear window in a pick-up truck or the like. In certain instances, the window structure may include a slidable window panel or sheet located between a pair of fixed window panels or sheets. The slidable window panel may be approximately flush with the fixed panels when in the closed position. However, when the slidable window panel is opened, it may be moved toward the vehicle interior slightly and then slid laterally to an open position(s) via one or more track(s). Thus, it will be appreciated that the movable window panel or sheet is not flush with the fixed panels when in an opened position.
In certain example embodiments of this invention, the interior surface of the slidable window is provided with a hydrophilic coating. The hydrophilic coating functions to prevent or reduce the tendency of the slidable window to fog up during certain environmental conditions.
In certain example embodiments of this invention, there is provided a method of making a window assembly, the method comprising forming a slidable window panel by using flame pyrolysis to (a) deposit a layer comprising silicon oxide on a glass substrate (directly or indirectly with other layer(s) therebetween) and/or (b) treat a layer comprising diamond-like carbon (DLC) to reduce its contact angle θ, thereby forming a hydrophilic layer having a contact angle θ of less than about 25 degrees; and locating the slidable window panel in operative relation with first and second fixed window panels, so that the slidable window panel is slidable relative to the first and second fixed window panels.
In other example embodiments, there is provided window assembly for a vehicle, the window assembly comprising first and second fixed window panels; a sliding window panel that is provided at least partially between the first and second fixed window panels when the sliding window panel is in a closed position; and wherein a hydrophilic coating is provided on an interior surface of the sliding window panel, wherein the hydrophilic coating has a contact angle θ of less than about 35 degrees.
In other example embodiments of this invention, there is provided a flush-closing multi-panel window assembly for a vehicle, the flush-closing multi-panel window assembly comprising first and second fixed window panels, a sliding window panel that is provided at least partially between the first and second fixed window panels when the sliding window panel is in a closed position, the sliding window being substantially flush with the first and second fixed window panels when in the closed position, and wherein a hydrophilic coating is provided on an interior surface of the sliding window panel, wherein the hydrophilic coating has a contact angle θ of less than about 35 degrees.
FIGS. 8(a)-8(b) are plan views of an example finger grip portion which may be used in the window structure of
FIGS. 9(a)-9(b) are plan views of an example selectively actuatable pin which may be used in the window structure of
FIGS. 13(a)-13(c) are cross sectional views illustrating example steps for manufacturing the bulb seal of
Referring now more particularly to the accompanying drawings in which like reference numerals indicate like parts throughout the several views.
Hydrophilic performance of coating 14b is a function of contact angle θ, surface energy Υ, and/or wettability or adhesion energy W. The surface energy Υ of layer 14b may be calculated by measuring its contact angle θ. Exemplary contact angles θ are illustrated in
Hydrophilic layer 14b may be made of materials such as silicon oxide (e.g., SiO2) and/or diamond-like carbon (DLC) in different embodiments of this invention. In certain example embodiments, the hydrophilic nature (i.e., low contact angle) of the layer 14b is due to the flame pyrolysis treatment, ion beam treatment and/or hot water treatment of a DLC inclusive layer 14b that is on the substrate 1, and/or may be due to a flame pyrolysis deposition of a silicon oxide layer as a layer of coating 14b.
Generally, the surface energy Υc of a layer 14b or any other article/layer can be determined by the addition of a polar and a dispersive component, as follows: Υc=ΥCP+ΥCD, where ΥCP is the layer's/coating's polar component and ΥCD the layer's/coating's dispersive component. The polar component of the surface energy represents the interactions of the surface mainly based on dipoles, while the dispersive component represents, for example, van der Waals forces, based upon electronic interactions. Generally speaking, the higher the surface energy Υc of layer 3, the more hydrophilic the layer (and coated article) and the lower the contact angle. Adhesion energy (or wettability) W can be understood as an interaction between polar with polar, and dispersive with dispersive forces, between the exterior surface 9 of the coated article and a liquid thereon such as water. For a detailed explanation, see U.S. Pat. No. 6,713,179 (incorporated herein by reference). In certain example embodiments of this invention, the surface energy ΥC of hydrophilic layer 14b may be at least about 20 mN/m, more preferably at least about 24 mN/m, and most preferably at least about 26 mN/m.
Moreover, a hydrophilic coating 14b according to any embodiment herein may be characterized by a low contact angle (θ). In certain example embodiments of this invention, hydrophilic layer or coating 14b has a contact angle θ less than about 35 degrees, more preferably less than about 25 degrees, more preferably less than about 20 degrees, even more preferably less than about 15 degrees, and sometimes even less than about 10 degrees. This low contact angle may be an initial contact angle when the layer is formed, and/or may occur after formation of the layer. Moreover, the low contact angle θ may be permanent or temporary.
An example hydrophilic coating 14b includes an outer layer (which may be the only layer of the coating, or alternatively may be the outermost layer of a multilayer coating) of silicon oxide (e.g., SiO2) deposited by flame pyrolysis. Such a layer may be deposited for example, by introducing a gas such as a silane (e.g., TEOS) into at least one burner in order to cause a layer of silicon oxide to be deposited via combustion CVD on the substrate (e.g., glass or plastic substrate). Examples of flame pyrolysis are disclosed in, for example and without limitation, U.S. Pat. Nos. 3,883,336, 4,600,390, 4,620,988, 5,652,021, 5,958,361, and 6,387,346, the disclosures of all of which are hereby incorporated herein by reference.
Alternatively, the hydrophilic coating may be of or include diamond-like carbon (DLC) in certain example embodiments of this invention. For instances, any of the hydrophilic coatings of any of U.S. Patent Document Nos. 2004/0224161, 2004/0067363, 2004/0067368, 2004/0067362, U.S. Pat. Nos. 6,793,979, 6,713,179, 6,592,992, 6,303,225, or Ser. No. 10/967,342 (all of which are hereby incorporated herein by reference) may be used as hydrophilic layer 14b in certain example embodiments of this invention. In certain example instances, the hydrophilic layer 14b may comprise hydrogenated amorphous DLC, and may be highly tetrahedral in certain example embodiments.
In certain example embodiments, the contact angle θ in a coating 14b of a layer of or including DLC can be decreased by one or more of: (a) subjecting the DLC inclusive layer to flame pyrolysis treatment after it has been deposited by ion beam deposition or the like; (b) ion beam treating the DLC layer after it has been deposited, and/or (b) hot liquid/vapor treating the DLC layer after it has been deposited. In the flame pyrolysis treatment, one or more burners may be used. It has been found that the flame pyrolysis treatment and the ion beam treatment each increase the polar component of the DLC inclusive layer's surface energy, which in turn increases the layer's total surface energy. The higher the surface energy, the more hydrophilic the layer and the lower the contact angle θ. Thus, by increasing the surface energy via the flame pyrolysis treatment and/or ion beam treatment, the hydrophilicity of DLC can be improved and thus the contact angle θ lowered. In certain example embodiments, it has been found that subjecting the DLC inclusive layer to flame pyrolysis treatment and/or ion beam treating a DLC inclusive layer (e.g., using oxygen and nitrogen gases, and/or water vapor gas, for example, in the ion source(s)) causes the surface of the DLC inclusive layer to at least partially oxidize thereby causing its contact angle θ to quickly drop in a short period of time. In certain example embodiments, the flame pyrolysis treatment of the DLC inclusive layer causes the contact angle θ of the DLC inclusive layer to drop (decrease) at least about 5%, more preferably at least about 10%, still more preferably at least about 20%, even more preferably at least about 40%, still more preferably at least about 50%, and sometimes even at least about 60%. In other example embodiments, flame pyrolysis may be used to deposit a thin silicon oxide layer on a DLC layer to make up hydrophilic coating 14b.
Referring especially to
In certain embodiments of this invention, the movable panel 14 is smaller in height than the fixed panels 10, 12. Thus, in order to cover up voids arising from the smaller size of the movable panel 14, one or both frames may include filler or cover portions 16e, 18e (which may be referred to as appliqués in certain instances) which cover such voids. Appliques 16e and/or 18e may or may not be integrally formed with the frames 16, 18 in different embodiments of this invention. For example, appliqués 16e and 18e may be bonded to tracks or frames 16 and 18, respectively, in certain example embodiments of this invention so that the frames/tracks support the appliqués. Frames 16 and 18 may be formed of injection molded plastic, metal or any other suitable material in different embodiments of this invention. Appliques 16e, 18e are preferably of polymer based plastic material in certain example embodiments of this invention.
It can be seen best in
Dual pull latch assembly 22 is mounted on and/or supported by seal carrier 20. The latch assembly 22 includes first and second finger grip portions 22a, 22b which are adapted to be selectively squeezed together by a user, first and second spring loaded pin structures 30a, 30b operatively associated with the finger grip portions, biasing springs 32 which surround elongated portions of the pin structures as best shown in
When a user squeezes the finger grip portions 22a and 22b toward one another with his/her fingers, this causes the respective cables 34 to also move toward one another thereby pulling the pin structures 30a and 30b toward one another and out of apertures/cut-outs 16d and 18d, respectively, against the biasing force of springs 32. In certain other embodiments of this invention, cable(s) 34 may be replaced with elongated rods or other similar type component(s). When the spring loaded pin structures have been pulled from apertures/cut-outs 16d and 18d, respectively, then the panel 14 may be kicked or will pop inwardly toward the vehicle interior and then slid laterally in order to open the window as will be more fully described below.
In other example embodiments of this invention, the user need not actually touch members 22a, 22b in order to actuate the latch assembly 22. For example, another selectively actuatable mechanism (mechanical and/or electric) could be provided for causing members 22a, 22b or similar members to be moved toward one another in order to move the pins 30a, 30b from the locked position to the unlocked position. For example, a single flip or T-shaped handle lever cold be used to simultaneously move spring loaded pins 30a, 30b toward one another in order to move the pins from the locked position to the unlocked position to that the panel 14 could be opened.
As shown in
As example process for opening and closing with window will now be described with reference to
In the closed position, the biasing force of springs 32 presses pins 30 into respective apertures/cut-outs 16d, 18d defined in the frames 16, 18 thereby holding the panel 14 in place between the fixed panels 10, 12. When a user desires to open the window (i.e., move panel 14 into an opened position), the user from the vehicle interior squeezes finger grip portions 22a and 22b toward one another against the biasing force of springs 32. When finger grip portions 22a and 22b are moved toward one another, this in turn causes respective cables 34 and pins 30 to be moved toward one another, thereby causing ends of the pins 30 to be removed from apertures/cut-outs 16d, 18d defined in the frames 16, 18.
Once the ends of the pins 30 have been removed from the apertures/cut-outs 16d, 18d defined in the frames 16, 18, the movable panel 14 is shifted (or kicked-in) toward the vehicle interior. The force which causes at least one side of the panel 14 to be shifted toward the vehicle interior may be caused by biasing force generated by seals 24 against the frames 16, 18 and/or by pulling force on the latch assembly 22 generated by the user. In any event, when the panel 14 is shifted or kicked-in toward the vehicle interior, fixed pins 35 at one side of the panel substantially remain in place; but actuatable pins 30 at the latch side of the panel slide in guide channels 16f, 18f defined in the respective frames 16, 18 from apertures/cut-outs 16d, 18d toward the vehicle interior. Guide channels 16f, 18f are in communication with tracks 16c, 18c, respectively, and are generally oriented in a direction from about 45 to 90 degrees angled relative to tracks 16c, 18c. The upper and lower pins 30 slide in guide channels 16f, 18f, respectively, away from apertures/cut-outs 16d, 18d and into main tracks 16c, 18c defined in the frames.
After the upper and lower pins 30 have moved into main tracks 16c, 18c, the user slides the panel 14 laterally in order to open the same. As the panel 14 slides laterally, actuatable pins 30 slide in main tracks 16c, 18c and fixed pins 35 slide in tracks 16b, 18b. Eventually, tracks 16b and 18b may merge into main tracks 16c and 18c, respectively, as shown in
When it is desired to close the window, the user slides panel 14 back toward the opening defined between the fixed panels. As the panel is slid laterally toward the closed position, pins 35 will eventually make their way into tracks 16b, 18b, whereas pins 30 slide in tracks 16c, 18c. After the panel 14 has been slid to a position immediately adjacent the opening defined between the fixed panels, the panel 14 is pushed by the user away from the vehicle interior toward the truck bed so that pins 30 slide out of tracks 16c, 18c and through guide channels 16e, 18e against the biasing force of seals 24. When the panel 14 is pushed/pressed far enough in this direction, the ends of pins 30 finally are located over apertures/cut-outs 16d, 18d and the biasing force of springs 32 causes the ends of pins 30 to move into the apertures/cut-outs 16d, 18d thereby locking the panel 14 in the closed position.
FIGS. 8(a)-8(b) illustrate an example finger grip portion 22a (or 22b) which may be used in certain example embodiments of this invention. As can be seen, each grip portion 22a (or 22b) includes an approximately L-shaped portion. The finger grip portions includes an area 22c adapted to be pressed by a finger(s) of the use, a connection aperture 22d used for allowing the cable 34 to be connected to the finger grip portion, and an elongated structure or retaining shaft 22e adapted to be received in a corresponding aperture(s) defined in the seal carrier 20. In other example embodiments of this invention, finger grip portions 22a, 22b may be replaced with finger rings or any other suitable structure attached to cable(s) 34. Also, other shaped finger grip portions may be used in certain embodiments of this invention.
FIGS. 9(a)-9(b) illustrate an example pin structure 30 according to an example embodiment of this invention. The pin or pin structure 30 includes an end 30c adapted to slide in guide channels 16e, 18e and tracks 16c, 18c, and be received in apertures/cut-outs 16d, 18d. The pin or pin structure 30 also includes a first flange portion 30d, a shaft 30e with spring 32 provided around the same, and a connection aperture 30f defined proximate an end of shaft 30e. Such a pin shape is provided for example only, and is not intended to be limiting unless expressly claimed as with all other detailed disclosed herein.
Seal 24 is supported by the seal carrier 20 so as to provide a weather seal between the movable seal carrier 20 and the fixed frames 16, 18 and top and bottom portions of the movable panel 14. However, in certain example embodiments of this invention, seal 24 may be four-sided so as to be located around the entire periphery of movable panel 14. For example,
While the seal 24 (or 24″) may be formed by any suitable technique, in certain example preferred embodiments of this invention the seal is formed by injection molding as a hollow flexible seal member (i.e., bulb seal) to extend proximate the entire periphery of movable panel 14 and to be supported by seal carrier 20. Moreover, in certain example embodiments of this invention, this injection molded bulb seal 24 (or 24″) is located so as to fill or cover the gap(s) between the movable panel 14 and the adjacent panel (10 and/or 12) as shown in
This injection molded one-piece bulb seal 24″ (e.g., supported by the seal carrier 20) is advantageous with respect to other seal types. For example, by filling or covering the gaps between the fixed and movable panels, the seal can prevent water from making its way into the vehicle interior through such gaps. Moreover, by forming this seal by injection molding into a one-piece type bulb seal, a better seal can be provided. Since injection molding is used to form the seal 24″ in a one-piece manner, weld corners that can be present with other manufacturing techniques can be eliminated (weld corners are a weak point and can lead to leakage). Moreover, the use of injection molding to form a one-piece seal 24″ allows the cross section of the seal 24″ to be varied. For example, as shown in
FIGS. 13(a)-13(c) illustrate an example technique for making bulb seal 24″ according to an example embodiment of this invention. As previously discussed, this bulb seal 24″ may be used in the manner shown in
The bottom surface of the base 70 is attached to the seal carrier 20 via double-sided adhesive tape or any other suitable adhesive 80 as shown in
The abutting portion 52 of softer material may be formed around the entire periphery of the appliqué in certain example embodiments of this invention, or alternatively may be located on one, two or three sides thereof in other embodiments. For example, in certain example embodiments, the abutting portion 52 of softer material may be located only at first and second opposite edges of the appliqué, in a spaced apart manner, so as to abut respective edges of first and second fixed window panels 10 and 12.
In certain example embodiments of this invention, the harder main body portion 50 of the appliqué may be made of a relatively hard polymer based material such as ASA, whereas the softer edge portion 52 of the appliqué may be made of a softer polymer based material such as EPDM. The material of portion 52 is much more compressible and flexible than the material of portion 50, so as to allow for improved sealing and manufacturing variation/tolerance.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application is related to U.S. patent application Ser. Nos. 10/653,412, filed Sep. 3, 2003, Ser. No. 10/804,202, filed Mar. 19, 2004, and Ser. No. 10/967,342, filed Oct. 19, 2004, the entire disclosures of which are hereby incorporated herein by reference.