This invention generally pertains to vacuum waste systems and, more particularly, to flush valves for vacuum waste receptacles such as vacuum toilets.
Vacuum waste systems are generally known in the art for use in transportation vehicles such as aircraft. Vacuum waste systems typically comprise a toilet bowl connected by vacuum piping to a waste tank. A flush valve is disposed between the toilet and the vacuum piping. When the flush valve opens, the contents of the toilet bowl are removed by differential pressure to the waste tank because the air pressure in the line under vacuum is lower than ambient air pressure in a toilet bowl. The flush valve maintains the pressure boundary between ambient air in the toilet bowl and the lower pressure of the piping and the waste tank. In an aircraft, the piping may be placed under vacuum pressure at altitudes under about 16,000 feet by a vacuum source. At altitudes about 16,000 feet and above, the vacuum pressure in the piping may be supplied by the atmospheric pressure differential between the cabin and the exterior of the airplane.
Conventional flush valves and methods for controlling the removal of waste from the toilet bowl to a waste tank are generally known. Such prior flush valves may use a large, rotating disk having an aperture to admit waste past the aperture. The use of such a large disk is undesirable because it makes the overall flush valve large, heavy and unwieldy for use in confined places such as aircraft lavatories.
Furthermore, the use of a disk having an aperture requires precise positioning of the aperture over the waste inlet so that waste moving from the toilet bowl to the piping leading to the waste tank does not catch or accumulate on the perimeter of the aperture or on the solid portion of the disk causing the disk to stick or not seal properly. Also, over time and due to normal wear, the accuracy of the positioning of such disk apertures tend to slip, aggravating the aforementioned problems.
Another problem with conventional flush valves using a disk with an aperture to admit waste past the disk is that users are not able to open them manually. This can result in unsanitary back-up of waste in the toilet bowl and overflow of waste from the toilet bowl into the lavatory area if the flush valve becomes stuck in the closed position.
A need exists for a smaller, easily installed and more efficient flush valve, which does not rely on a disk having an aperture, for controlling the removal of waste from toilet bowls in a vacuum toilet systems.
This invention is generally directed to providing improved power usage, efficiency and reliability in evacuation of waste from a toilet bowl in a vacuum waste system and for providing a more streamlined and compact flush valve design that takes up less space than prior flush valves used in the confined area of aircraft lavatory compartments. The apparatus and method of the invention achieve this by way of a flush valve utilizing a uniquely shaped discharge disk. Such discharge disk does not include an aperture and is just large enough to seal the flush valve outlet. The discharge disk is smaller and lighter than any discharge disk used in prior flush valves. Because the disk is smaller and uniquely shaped, the operation of the disk requires little space and has a relatively small current draw as compared to conventional flush valves. Furthermore, in a preferred embodiment the flush valve is an integral component of a unique lightweight latticed toilet stand. This unconventional integrated design further minimizes the weight and space requirements for the valve. These are important advantages because minimization of weight, space and power usage are top design considerations in the aircraft industry.
Additionally, the present valve includes a manual override function for increased reliability. In yet another aspect, the vacuum source used is a centrifugal, single impeller, vacuum generator powered by a brushless DC motor. Because this vacuum generator design generates less heat than prior vacuum generator designs, the impeller and housings of the generator can be made of engineered polymer thereby drastically reducing the generator weight over conventional vacuum generator assemblies used with aircraft flush valves. Also, the smaller and lighter impeller is mounted directly on the motor shaft thereby decreasing the moment of inertia and allowing the vacuum generator to reach and maintain target vacuum pressure while using less power than conventional vacuum generators. These and other advantages of the invention will be apparent from the description of the invention provided herein.
The above-noted and other advantages of the invention will be apparent from the description of the invention provided herein with reference to the attached drawings in which:
The embodiment of the invention described below is not intended to be exhaustive or to limit the invention to the precise structure and operation disclosed. Rather, the embodiment described in detail below has been chosen and described to explain the principles of the invention and its application, operation and use in order to best enable others skilled in the art to follow its teachings.
This invention is generally directed to a flush valve and method for controlling the evacuation of waste from a toilet in a vacuum waste system, including particularly an aircraft vacuum waste system. The following examples further illustrate the invention but, should not be construed as in any way limiting its scope.
Turning now to
Sides 42 and 44 have a series of interlocking dovetails 28 (
Stand side 44 includes an integral annular flange 30 positioned above the discharge disk with an outlet port 31 (as best seen in
An appropriate conventional flush valve actuator 46 (as shown diagrammatically in
Discharge disk 16 is disposed between the inlet port 27 and the outlet port 31. The discharge disk 16 includes a rotary section 23 and a covering section 29. The rotary section 23 of the discharge disk 16 is the portion of the discharge disk 16 that is attached to the follower shaft 24. The covering section 29 is the portion of the discharge disk 16 that is of a size and shape corresponding to the size and shape of the outlet port 31. The covering section 29 is continuous insofar as it does not include any apertures or holes. The rotary section 23 is mounted on the side panel 44 by the follower shaft 24. The rotary section 23 rotates back and forth between a closed position (
In a preferred embodiment, discharge disk 16 is tear-shaped as shown in
As best seen in
Any appropriate vacuum generator may be used to provide a pressure differential in the piping attached to the flush valve outlet port 31 by drawing air out of the waste tank connected to the piping when the valve is open. However a preferred vacuum generator is a single stage centrifugal vacuum generator with a brushless DC motor. This vacuum generator is preferred because it is smaller, lighter weight and uses less power than other types of vacuum generators yet is capable of rapidly achieving target vacuum. This vacuum generator has a single impeller and preferably is powered by a high-speed brushless DC motor.
A preferred centrifugal vacuum generator 50 shown in
When a user actuates a switch to flush the toilet, the switch triggers an electrical signal to the integrated system controller 34 which activates the flush valve actuator 46. In response, the flush valve actuator causes rotation of the actuator shaft 22 and the attached driver gear 18 having drive gear teeth 19 (
When the discharge disk is in the open position, the difference in pressure between the ambient air present in the toilet bowl and the lower air pressure in the piping between the toilet bowl (not shown) and the waste tank produces a suction force to evacuate the waste from the toilet bowl to the waste tank through the piping. The lower air pressure in the piping is generated by a vacuum generator (preferably generator 50 described above) at altitudes under about 16,000 feet and by atmospheric pressure outside of the plane at altitudes of about 16,000 feet and above.
After about one second following the opening of the flush valve, the system controller 34 signals the flush valve actuator to rotate the actuator shaft 22 and driver gear 18 substantially 90 degrees counterclockwise. This rotates follower shaft 24 and discharge disk 16 substantially 90 degrees clockwise so that the fluid connection between the inlet port 27 and the outlet port 31 is closed by the disk 16 and seal 33 is sealed from receiving more waste from the toilet bowl.
In case of a power failure to the flush valve actuator, the flush valve can be operated manually. To operate the flush valve manually, extension arm 32 will be rotated by the user substantially 90 degrees to open the flush valve and then back substantially 90 degrees in the opposite direction to close the flush valve. Thus, in the event that the flush valve sticks or becomes stuck in the closed position, the extension arm 32 may be rotated by the user to open the flush valve. This novel feature prevents the unsanitary back-up of waste in the toilet bowl and the potential overflow of waste from the toilet bowl into the lavatory area because the flush valve is closed.
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the invention.
This patent application claims the benefit of U.S. Provisional Patent Application No. 61/102,674, filed Oct. 3, 2008.
Number | Date | Country | |
---|---|---|---|
61102674 | Oct 2008 | US |