The present disclosure generally relates to catheters. More particularly, the present disclosure relates to flushable catheters.
Intermittent catheters are commonly used by those who suffer from various abnormalities of the urinary system, such as urinary incontinence. With the advent of intermittent catheters, individuals with urinary system abnormalities can self-insert and self-remove intermittent catheters several times a day. Intermittent catheterization involves inserting the elongated shaft of a catheter through the urethra and into the bladder. Urine is drained from the bladder through the catheter and into a waste receptacle, such as a toilet or collection bag.
After the bladder has been drained, the catheter is disposed of in a waste container, such as a garbage can. Sometimes, especially in a public restroom having multiple stalls in which there is no garbage can present in the individual stalls, it may be difficult to find a suitable waste container to dispose of the catheter and, if the individual has to carry the catheter some distance to a waste container, there may be some risk of leakage or spillage of bodily fluids. Additionally, the individual, especially in a public restroom, may be uncomfortable or embarrassed with carrying a used catheter to the waste container. In such situations, the individual may attempt to dispose of the catheter by flushing it down the toilet, which can cause significant plumbing problems, such as clogging. This is especially problematic for male users, as male urinary catheters are typically much longer than female urinary catheters, due to anatomical considerations. Such catheters are typically made from non-biodegradable polymeric materials, such as non-biodegradable thermoplastics, in which case flushing the catheter down the toilet also raises environmental concerns.
Accordingly, there has been increasing interest in producing flushable catheters which are made from materials that structurally degrade when contacted with water, e.g., materials that are soluble in water and/or undergo hydrolysis. Such catheters are intended to be flushed down the toilet after use and degrade or breakdown while passing through the sanitary system. Because flushable catheters are required to substantially maintain structural integrity during use (i.e., during insertion into the urethra, drainage of urine, and removal from the urethra), the degradable materials typically chosen are those with a slower degradation rate, in which case the catheter does not substantially degrade until after being disposed of in the sanitary system for some time. Thus, when a flushable catheter is placed within the toilet for disposal, the structure of the catheter usually is still substantially intact and will remain substantially intact during flushing of the catheter for disposal thereof.
When a catheter is disposed of by flushing down a toilet, the force of the turbulent water current which occurs during flushing oftentimes does not carry or move the catheter down the toilet and into the pipes of the sanitary system and the catheter remains in the toilet bowl after flushing. The catheter may not flush down the toilet for any number of reasons. For example, if the catheter is too buoyant, it may float to the top of the toilet water, which may make it difficult for the flushing water to carry the catheter down the toilet. Conversely, if the catheter is not buoyant enough, it may sink to the bottom of the toilet, which may also make it difficult for flushing water to carry the catheter down the toilet. Additionally, because of the geometry of a typical urinary catheter, the force or energy of the flushing water may not sufficiently impinge on the catheter to propel it down the toilet. This may be especially problematic with water-conserving low-flush or low-flow toilets. Regardless of the reason, a catheter that resists being fully flushed down the toilet may require the user to flush the toilet multiple times or leave the catheter in the toilet, which may be embarrassing, especially when using a public restroom.
There are several aspects of the present subject matter which may be embodied separately or together in the devices and systems described and claimed below. These aspects may be employed alone or in combination with other aspects of the subject matter described herein, and the description of these aspects together is not intended to preclude the use of these aspects separately or the claiming of such aspects separately or in different combinations as set forth in the claims appended hereto.
In one aspect, a flushable catheter assembly includes a catheter shaft having proximal and distal end portions, with a funnel assembly associated with the distal end portion of the catheter shaft. A drainage portion is defined through the funnel assembly, with the funnel assembly also including a groove along at least a portion of its outer perimeter and/or a shaft channel defined through the funnel assembly. The groove and/or shaft channel is configured to receive at least a portion of the catheter shaft for securing the catheter shaft to the funnel assembly for disposal.
In another aspect, a flushable catheter assembly includes a catheter shaft having proximal and distal end portions, with an introducer tip associated with the proximal end portion of the catheter shaft and an introducer cap assembly removably connected to the introducer tip. The introducer cap assembly defines a groove along at least a portion of its outer perimeter, with the groove being configured to receive at least a portion of the catheter shaft for wrapping the catheter shaft around the outer perimeter of the introducer cap assembly.
In yet another aspect, a method is provided for disposing of a catheter assembly of the type having a catheter shaft and a funnel assembly associated with a distal end portion of the catheter shaft. The method includes securing at least a portion of the catheter shaft to the funnel assembly, which may be achieved by wrapping at least a portion of the catheter shaft around the outer perimeter of the funnel assembly, with at least part of the catheter shaft positioned within a groove defined along at least a portion of the outer perimeter, and/or passing at least part of the catheter shaft through a shaft channel defined through the funnel assembly. With the catheter shaft so secured, the catheter assembly is then placed in a waste container.
In another aspect, a method is provided for disposing of a catheter assembly of the type having a catheter shaft and an introducer cap assembly associated with a proximal end portion of the catheter shaft. The method includes wrapping at least a portion of the catheter shaft around an outer perimeter of the introducer cap assembly, with the catheter shaft positioned within a groove defined along at least a portion of the outer perimeter. The catheter assembly is then placed in a waste container, with the catheter shaft positioned within the groove.
The embodiments disclosed herein are for the purpose of providing a description of the present subject matter, and it is understood that the subject matter may be embodied in various other forms and combinations not shown in detail. Therefore, specific embodiments and features disclosed herein are not to be interpreted as limiting the subject matter as defined in the accompanying claims.
Fluid entering the catheter shaft 12 via the eye 18 flows from the proximal end portion 14 to the distal end portion 16. The distal end portion 16 may include an associated drainage member or funnel assembly 20 for fluidly connecting the flow path defined by the catheter shaft 12 to a collection container, such as a collection bag, or for directing urine into a waste container, such as a toilet.
The catheter assembly 10 and all of the other catheter assemblies described herein are preferably, but not necessarily, of the type that structurally break down when contacted by water for convenient disclosure down the toilet and through the sewer system. The catheter assemblies described herein may be made from one or more materials that are affected by a fluid (for example, water, urine, or fluids utilized in toilet and plumbing systems). Such materials may be water disintegratable or disintegrable materials. As used herein, the terms “water disintegratable” and “water disintegrable” refer to materials that are water soluble, water degradable, or water hydrolysable, and which dissolve, degrade, or otherwise break down when in contact with water over a selected period of time. In other embodiments, the material may be enzymatically hydrolysable. The water disintegrable and enzymatically hydrolysable materials are preferably flushable materials which are suitable for disposal in a toilet or sanitary system and, even more preferably, biodegradable flushable materials which may be chemically broken down by living organisms or other biological means.
Such water disintegrable or enzymatically hydrolysable materials may include, for example, polyvinyl alcohol, including but not limited to an extrudable polyvinyl alcohol, polyacrylic acids, polyactic acid, polyesters, polyglycolide, polyglycolic acid, poly lactic-co-glycolic acid, polylactide, amines, polyacrylamides, poly(N-(2-Hydroxypropyl) methacrylamide), starch, modified starches or derivatives, amylopectin, pectin, xanthan, scleroglucan, dextrin, chitosans, chitins, agar, alginate, carrageenans, laminarin, saccharides, polysaccharides, sucrose, polyethylene oxide, polypropylene oxide, acrylics, polyacrylic acid blends, poly(methacrylic acid), polystyrene sulfonate, polyethylene sulfonate, lignin sulfonate, polymethacrylamides, copolymers of aminoalkyl-acrylamides and methacrylamides, melamine-formaldehyde copolymers, vinyl alcohol copolymers, cellulose ethers, poly-ethers, polyethylene oxide, blends of polyethylene-polypropylene glycol, carboxymethyl cellulose, guar gum, locust bean gum, hydroxyproply cellulose, vinylpyrrolidone polymers and copolymers, polyvinyl pyrrolidone-ethylene-vinyl acetate, polyvinyl pyrrolidone-carboxymethyl cellulose, carboxymethyl cellulose shellac, copolymers of vinylpyrrolidone with vinyl acetate, hydroxyethyl cellulose, gelatin, poly-caprolactone, poly(p-dioxanone), or combinations, blends, or co-polymers of any of the above materials. The water disintegrable materials may also be any of those that are included in certified flushable products that meet the National Sanitation Foundation standards for flushability or materials and products that meet INDA/EDANA Flushability Guidelines or the UK Water Industry Research test protocols set forth in “Test Protocol to Determine the Flushability of Disposable Products, Review of the Manufactures 3rd Ed. Guidance Document,” 2013, by Drinkwater et al. While catheters made from water disintegrable materials may be disposed of in a toilet, it is not necessary to dispose of such catheters in a toilet and such catheters may also be disposed in normal municipal waste systems or garbage collection systems.
The funnel assembly 20 (which may be formed of one or more of the materials listed above) may include a hollow, generally frusto-conical drainage portion 22, which may be shaped according to conventional design (see, e.g., the funnel 24 of
The funnel assembly 20 may include one or more wrapping and/or holding features to aid in compacting the catheter assembly 10 for placement into a waste container, such as a toilet. For example, in the illustrated embodiment, at least a portion of the outer perimeter 30 of the funnel assembly 20 defines a groove 32 (
The depth of the groove 32 (i.e., the dimension in the radial direction) may be either substantially uniform or vary along the outer perimeter 30 of the funnel assembly 20. In one embodiment, at least a portion of the groove 32 may have a depth greater than or equal to the diameter of the catheter shaft 12, such that the corresponding portion of the catheter shaft 12 may be fully received within the groove 32 when the catheter shaft 12 is wrapped around the funnel assembly 20. However, it is also within the scope of the present disclosure for all or a portion of the groove 32 to have a depth less than the diameter of the catheter shaft 12, such that the catheter shaft 12 is only partially received within the groove 32 when wrapped around the funnel assembly 20.
In the illustrated embodiment, the faces 34 and 36 of the lateral portions 26 and 28 combine to define a groove 32 (best seen in
The diameter of the faces 34 and 36 of the lateral portions 26 and 28 is increased at the locations of the extensions 38, which may be advantageous in allowing for the incorporation of additional features. For example, in an alternative embodiment shown in
As shown in the embodiments of
Turning now to an exemplary method of using the catheter assembly 10 for draining the bladder of a male, it is first removed from a package, if provided. When free of its package, the proximal end portion 14 may be advanced into the urethra. If the catheter shaft 12 is not formed of an inherently lubricious material or provided with a lubricious coating, it may be preferred to apply a lubricant to the outer surface of the catheter shaft 12 for improved comfort as the user advances the catheter shaft 12 through the urethra to the bladder. The catheter shaft 12 may be housed within a protective sleeve 44, as in the embodiment of
The catheter assembly 10 may include an introducer tip 46 (
When the catheter shaft 12 has been advanced into the urethra to the point that the eyes 18 are positioned within the bladder, urine from the bladder will flow into the eyes 18, through the catheter shaft 12 and to the distal end portion 16 of the catheter shaft 12. The urine exits the catheter assembly 10 via the drainage portion 22 of the funnel assembly 20, into a collection container (e.g., a urine collection bag that may be formed of a flushable, fluid-disintegrable material) or a disposal device (e.g., a toilet). Thereafter, the user may grip the funnel assembly 20 (e.g., by placing a digit through or partially into the opening 42) and move the funnel assembly 20 distally away from the body to withdraw the catheter shaft 12 and introducer tip 46 (if provided) from the urethra.
Following use, the catheter shaft 12 may be wrapped around the funnel assembly 20 to provide a more compact configuration for disposal (
With the catheter assembly 10 in a compact configuration, it may be disposed of by any suitable means. Most notably, the catheter assembly 10 may be flushed down a toilet, with the compact configuration aiding passage of the catheter assembly 10 through the sewage system. As described above, the catheter shaft 12 and other components of the catheter assembly 10 may be formed of a water disintegrable material to cause the catheter assembly 10 to break down as it passes through the sewage system. The funnel assembly 20 is preferably formed of a water disintegrable material and/or an activation agent material configured to aid in the breakdown of the catheter assembly 10 in water. By way of example, the combination of sodium bicarbonate (incorporated into the catheter shaft 12 or the funnel assembly 20) and acetic acid (incorporated into the other one of the catheter shaft 12 or the funnel assembly 20) in water creates a bubbling effect which increases the speed at which the catheter assembly 10 will break down after being placed into a toilet.
In the embodiment of
As described above in greater detail with respect to the catheter shaft 12, the catheter shaft 102 is preferably, but not necessarily, made from one or more water disintegrable materials which break down when in contact with water.
The catheter assembly 100 further includes an introducer cap assembly 110. The introducer cap assembly 110 may include a hollow cap portion 112, which is configured to receive at least a proximal end or portion of the introducer tip 108. The illustrated cap portion 112 is generally bell-shaped, which may be advantageous when used in combination with a conventional introducer tip, but the shape of the cap portion 112 may vary without departing from the scope of the present disclosure. Preferably, the cap portion 112 is configured to be detachably connected to the introducer tip 108, such that the introducer cap assembly 110 may be removed from introducer tip 108 during use and then reconnected following use, as will be described in greater detail.
The cap portion 112 may be positioned between a pair of lateral portions 114 and 116, which define an outer perimeter 118 of the introducer cap assembly 110. In the illustrated embodiment, the lateral portions 114 and 116 are differently shaped, with one lateral portion 116 also being larger than the other lateral portion 114, but it is also within the scope of the present disclosure for the lateral portions 114 and 116 to be substantially the same size and/or shape. Additionally, while the illustrated embodiment includes one generally semi-circular lateral portion 116 and one generally circular or annular lateral portion 116, the lateral portions may be differently shaped without departing from the scope of the present disclosure. Similarly, while the illustrated lateral portions 114 and 116 of the introducer cap assembly 110 combine to define a generally triangular perimeter 118, it is within the scope of the present disclosure for the lateral portions 114 and 116 to combine to define a differently shaped perimeter. Further, it is within the scope of the present disclosure for there to be only one lateral portion associated with the cap portion 112.
The introducer cap assembly 110 may include one or more wrapping and/or holding features to aid in compacting the catheter assembly 100 for placement into a waste container, such as a toilet. For example, in the illustrated embodiment, at least a portion of the outer perimeter 118 of the introducer cap assembly 110 defines a groove 120 (
The depth of the groove 120 (i.e., the dimension in the radial direction) may be either substantially uniform or vary along the outer perimeter 118 of the introducer cap assembly 110. In one embodiment, at least a portion of the groove 120 may have a depth greater than or equal to the diameter of the catheter shaft 102, such that the corresponding portion of the catheter shaft 102 may be fully received within the groove 120 when the catheter shaft 102 is wrapped around the introducer cap assembly 110. However, it is also within the scope of the present disclosure for all or a portion of the groove 120 to have a depth less than the diameter of the catheter shaft 102, such that the catheter shaft 102 is only partially received within the groove 120 when wrapped around the introducer cap assembly 110.
In the illustrated embodiment, the faces 122 and 124 of the lateral portions 114 and 116 combine to define a groove 120 having a substantially uniform depth, except at selected locations. In the embodiment of
In addition to extensions 126, one or both of the lateral portions 114 and 116 may additionally or alternatively include one or more holes 128, as shown in the embodiment of
Similar to the funnel assemblies of
Turning now to an exemplary method of using the catheter assembly 100 for draining the bladder of a male, it is first removed from a package, if provided. If the catheter shaft 102 is not formed of an inherently lubricious material or provided with a lubricious coating, it may be preferred to apply a lubricant to the outer surface of the catheter shaft 102 for improved comfort as the user advances the catheter shaft 102 through the urethra to the bladder. The catheter shaft 102 may be housed within a protective sleeve 132, as in the embodiment of
When free of the package, the introducer cap assembly 110 is removed from the introducer tip 108, and then a proximal portion of the introducer tip 108 is advanced into the urethra. With the introducer tip 108 partially positioned within the urethra, the catheter shaft 102 may be moved proximally with respect to the introducer tip 108 to advance the proximal end portion 104 of the catheter shaft 102 out of the introducer tip 108 and into the urethra without exposing the end of the catheter shaft 102 to the outside environment.
When the catheter shaft 102 has been advanced into the urethra to the point that the eyes of the proximal end portion 104 are positioned within the bladder, urine from the bladder will flow into the eyes, through the catheter shaft 102 and to the distal end portion 106 of the catheter shaft 102. The urine exits the catheter assembly 100 via the funnel 24, into a collection container or a disposal device (e.g., a toilet). Thereafter, the user may grip the funnel 24 and move the funnel 24 distally away from the body to withdraw the catheter shaft 102 and introducer tip 108 from the urethra.
Following use, the introducer cap assembly 110 is placed back onto the introducer tip 108 and the catheter shaft 102 may be wrapped around the introducer cap assembly 110 to provide a more compact configuration for disposal (
With the catheter assembly 100 in a compact configuration, it may be disposed of by any suitable means, preferably by being flushed down a toilet, with the compact configuration aiding passage of the catheter assembly 100 through the sewage system. As described above, the catheter shaft 102 may be formed of a water disintegrable material to cause it to break down as it passes through the sewage system. The introducer cap assembly 110 is preferably formed of a water disintegrable material and/or an activation agent material configured to aid in the breakdown of the catheter assembly 100 in water. By way of example, the combination of sodium bicarbonate (incorporated into the catheter shaft 102 or the introducer cap assembly 110) and acetic acid (incorporated into the other one of the catheter shaft 102 or the introducer cap assembly 110) in water creates a bubbling effect which increases the speed at which the catheter assembly 100 will break down after being placed into a toilet and flushed.
Fluid entering the catheter shaft 202 via the eye 208 flows from the proximal end portion 204 to the distal end portion 206. The distal end portion 206 may include an associated drainage member or funnel assembly 210 for fluidly connecting the flow path defined by the catheter shaft 202 to a collection container, such as a collection bag, or for directing urine into a waste container, such as a toilet. As described above with respect to the catheter assemblies of
The funnel assembly 210 includes a generally tubular drainage portion 212, which communicates with and is configured to drain fluid from the catheter shaft 202. On account of having a generally tubular, rather than a generally conical drainage portion 212, the funnel assembly 210 of
The drainage portion 212 may be positioned between a pair of front and rear faces 214 and 216, which may be wider than the drainage portion 212 in a leteral direction to define an outer perimeter 218 of the funnel assembly 210. The relatively wide front and rear faces 214 and 216 define therebetween a groove 220 on each lateral side of the drainage portion 212. In the illustrated embodiment, the front and rear faces 214 and 216 are substantially parallel at least in the vicinity of the grooves 220, such that the grooves 220 are defined between substantially parallel surfaces. The grooves 220 are preferably configured to receive at least a portion of the catheter shaft 202 when the catheter shaft 202 is wrapped around the funnel assembly 210 (
The depth of each groove 220 (i.e., the dimension in the lateral direction) may be either substantially uniform or vary along the outer perimeter 218 of the funnel assembly 210. In the illustrated embodiment, the front and rear faces 214 and 216 are substantially identical, with each having a generally convex deltoid shape (similar to a kite or an arrowhead or a shield or a strawberry), which results in grooves 220 having a varying depth along the length of the funnel assembly 210. The illustrated faces 214 and 216 are wider in a proximal section 222 than in a distal section 224, resulting in grooves 220 having a varying depth that decreases in the distal direction. Such a configuration provides sufficient depth at selected (i.e., more proximal) locations to retain the catheter shaft 202, while decreasing the total amount of material required to form the funnel assembly 210. The illustrated faces 214 and 216 also have tapered thicknesses, resulting in a funnel assembly 210 having a thickness (i.e., the dimension in the vertical direction in the orientation of
Following use (as described above in greater detail with respect to the embodiments of
With the catheter assembly 200 in a compact configuration, it may be disposed of by any suitable means. Most notably, the catheter assembly 200 may be flushed down a toilet, with the compact configuration aiding passage of the catheter assembly 200 through the sewage system. The tapered, “arrowhead” or pyramidal configuration of the funnel assembly 210 may help to orient the catheter assembly 200 as it traverses the sewage system, with the aerodynamic funnel assembly 210 leading the loop 226 of the catheter shaft 202 as the catheter assembly 200 moves through the sewage system. As described above, the catheter shaft 202 and other components of the catheter assembly 200 may be formed of a water disintegrable material to cause the catheter assembly 200 to break down as it passes through the sewage system.
Fluid entering the catheter shaft 302 via the eye 308 flows from the proximal end portion 304 to the distal end portion 306. The distal end portion 306 may include an associated drainage member or funnel assembly 310 for fluidly connecting the flow path defined by the catheter shaft 302 to a collection container, such as a collection bag, or for directing urine into a waste container, such as a toilet. As described above with respect to the catheter assemblies of
The funnel assembly 310 (which may be formed of one or more of the materials listed above) includes a generally tubular drainage portion 312, which communicates with and is configured to drain fluid from the catheter shaft 302. In addition to defining a first hollow passage (i.e., the drainage portion 312), the body of the funnel assembly 310 defines two additional hollow passages, which are referred to herein as shaft channels 314 and 316. In the illustrated embodiment, the body of the funnel assembly 310 is generally cylindrical, with the shaft channels 314 and 316 being positioned on opposite sides of the drainage portion 312, but the funnel assembly 310 may be differently shaped and/or the shaft channels 314 and 316 may be differently positioned (e.g., spaced apart at a non-180° angle) without departing from the scope of the present disclosure. The outer surface of the body of the funnel assembly 310 surrounding the drainage portion 312 and the shaft channels 314 and 316 may be contoured for improved grip and handling, such as in the illustrated embodiment, which is generally spool-shaped, with enlarged proximal and distal ends 318 and 320 separated by a concave midsection 322 that may be gripped by a user.
The shaft channels 314 and 316 are configured to receive the catheter shaft 302 for disposal of the catheter assembly 300 after use.
With the catheter assembly 300 in a compact configuration, it may be disposed of by any suitable means. Most notably, the catheter assembly 300 may be flushed down a toilet, with the compact configuration aiding passage of the catheter assembly 300 through the sewage system. The denser, heavier funnel assembly 310 may help to orient the catheter assembly 300 as it traverses the sewage system, with the funnel assembly 310 leading the loop 324 of the catheter shaft 302 as the catheter assembly 300 moves through the sewage system. As described above, the catheter shaft 302 and other components of the catheter assembly 300 may be formed of a water disintegrable material to cause the catheter assembly 300 to break down as it passes through the sewage system.
The shaft channels 314 and 316 may be variously configured without departing from the scope of the present disclosure. Between the access openings at the proximal and distal ends 318 and 320 of the funnel assembly 310, the shaft channels 314 and 316 may be generally linear (e.g., parallel to the drainage portion 312) or curved (e.g., with a curvature that matches the curvature of the outer surface of the funnel assembly 310 or a different curvature). The two shaft channels 314 and 316 may be identical or differently configured. It may be advantageous for the shaft channels 314 and 316 to be configured to assist in threading the catheter shaft 302 through the funnel assembly 310. For example, the opening of the first shaft channel 314 at the distal end 320 of the funnel assembly 310 may be angled toward the opening of the second shaft channel 316 at the distal end 320 of the funnel assembly 310 to direct the proximal end portion 304 of the catheter shaft 302 toward the second shaft channel 316 as it exits the first shaft channel 314, to be passed back through the second shaft channel 316. Similarly, the opening of the second shaft channel 316 at the proximal end 318 of the funnel assembly 310 may be angled toward the opening of the first shaft channel 314 at the proximal end 318 of the funnel assembly 310 to direct the proximal end portion 304 of the catheter shaft 302 through the loop 324 of the catheter shaft 302 as it exits the second shaft channel 316. Additionally, it may be advantageous for one or more of the openings of the shaft channels 314 and 316 to have a larger diameter than the portions of the shaft channels 314 and 316 defined within the midsection 322 of the funnel assembly 310 to facilitate alignment of the proximal end portion 304 of the catheter shaft 302 and the opening.
As in the embodiments of
After use of the catheter assembly 400 (in accordance with the foregoing description of the method of using the other catheter assemblies), the catheter shaft 402 may be curled toward the funnel assembly 408 to press the introducer tip 406 against one of the openings of the shaft channel 412. The proximal end portion 420 of the catheter shaft 402 may then be advanced out of the introducer tip 406 and into the shaft channel 412. The proximal end portion 420 of the catheter shaft 402 is then advanced through the entire shaft channel 412 until it exits the other opening of the shaft channel 412, with a more distal portion of the catheter shaft 402 remaining in the shaft channel 412. The proximal end portion 420 of the catheter shaft 402 may then be advanced through a loop 422 defined by the portion of the catheter shaft 402 extending between the drainage portion 410 of the funnel assembly 410 (i.e., the distal end portion 424 of the catheter shaft 402) and the introducer tip 406 to effectively tie the catheter shaft 402 in a simple knot to retain the catheter shaft 402 in a compact, wrapped or looped or coiled orientation within the funnel assembly 408.
With the catheter assembly 400 in a compact configuration, it may be disposed of by any suitable means. Most notably, the catheter assembly 400 may be flushed down a toilet, with the compact configuration aiding passage of the catheter assembly 400 through the sewage system. The denser, heavier funnel assembly 408 may help to orient the catheter assembly 400 as it traverses the sewage system, with the funnel assembly 408 leading the loop 422 of the catheter shaft 402 as the catheter assembly 400 moves through the sewage system. As described above, the catheter assembly 400 and/or its component parts may be formed of a water disintegrable material to cause the catheter assembly 400 to break down as it passes through the sewage system.
It may be advantageous for the one or more of the various components of the catheter assemblies described herein (namely, the catheter shaft, funnel, and/or introducer cap assembly) to have a selected density for improving the flow of the catheter assembly through the pipes of a sewage system. For example, it may be preferred for the catheter assembly and/or its individual components (including the catheter shaft, funnel, and introducer cap assembly) to have a density in the range of approximately 0.40 g/cm3 to approximately 1.20 g/cm3, although it is also within the scope of the present disclosure for the catheter assembly or one or more of its individual components to have a density that is outside of this range. More preferably, the catheter shaft, funnel, and/or introducer cap assembly may have a density in the range of approximately 0.68 g/cm3 to approximately 0.89 g/cm3. Such densities may be advantageous in causing the catheter assembly in the compact configuration to assume a particular orientation and/or to rest at a particular depth in water or to otherwise self-orient in an advantageous direction to facilitate flushing and disposal, but it is within the scope of the present disclosure for the catheter shaft, funnel, and/or introducer cap assembly to have a different density and/or for different portions of the catheter shaft, funnel, and/or introducer cap assembly to have different densities and/or buoyancies.
It should be understood that the methods described herein are merely exemplary, and that the steps described above may be carried out in a different order. Further, other steps may be included when using the devices described herein. Additionally, one or more of the steps described herein in connection with the methods may be omitted or modified without departing from the scope of the present disclosure. Similarly, the devices described herein are merely exemplary, and they may be differently configured (e.g., by combining one or more components of one described embodiment with one or more components of another described embodiment) without departing from the scope of the present disclosure. For example, the funnel assemblies 310 and 408 may be provided with one or more openings to receive the digit of a user or a portion of a catheter shaft and/or one or more holes to trap water, or a single funnel assembly may include both a perimeter groove and a shaft channel to receive separate portions of a catheter shaft.
Aspects of the present subject matter described above may be beneficial alone or in combination with one or more other aspects. Without limiting the foregoing description, in accordance with one aspect of the subject matter herein, there is provided a catheter assembly, which includes a catheter shaft having proximal and distal end portions. A funnel assembly is associated with the distal end portion of the catheter shaft, with a drainage portion being defined through the funnel assembly. The funnel assembly includes a groove along at least a portion of its outer perimeter or a shaft channel defined through the funnel assembly. The groove and/or shaft channel is configured to receive at least a portion of the catheter shaft for securing the catheter shaft to the funnel assembly for disposal.
In accordance with another aspect which may be used or combined with the first aspect, the shaft channel extends between a proximal shaft channel opening associated with a proximal end of the funnel assembly and a distal shaft channel opening associated with a distal end of the funnel assembly.
In accordance with another aspect which may be used or combined with the preceding aspect, a second shaft channel is defined through the funnel assembly and extends between a proximal second shaft channel opening associated with the proximal end of the funnel assembly and a distal second shaft channel opening associated with the distal end of the funnel assembly.
In accordance with another aspect which may be used or combined with the first aspect, the shaft channel extends between first and second proximal shaft channel openings associated with a proximal end of the funnel assembly.
In accordance with another aspect which may be used or combined with any of the preceding aspects, the funnel assembly defines an opening, which is configured to receive at least one digit of a user or a portion of the catheter shaft.
In accordance with another aspect which may be used or combined with any of the preceding aspects, the funnel assembly defines at least one hole configured to trap water and improve movement of the catheter assembly through a drainage pipe.
In accordance with another aspect which may be used or combined with any of the preceding aspects, the catheter shaft and/or the funnel assembly is at least partially comprised of a water disintegrable material.
In accordance with another aspect which may be used or combined with any of the preceding aspects, the funnel assembly is at least partially comprised of an activation agent material configured to aid in the breakdown of the catheter shaft and/or the funnel assembly in water.
In accordance with another aspect which may be used or combined with any of the preceding aspects, at least a portion of the catheter shaft is formed of a material including sodium bicarbonate and at least a portion of the funnel assembly is formed of a material including acetic acid.
In accordance with another aspect which may be used or combined with any of the first through eighth aspects, at least a portion of the funnel assembly is formed of a material including sodium bicarbonate and at least a portion of the catheter shaft is formed of a material including acetic acid.
In accordance with another aspect, there is provided a catheter assembly, which includes a catheter shaft having proximal and distal end portions. An introducer tip is associated with the proximal end portion of the catheter shaft, with an introducer cap assembly removably connected to the introducer tip. A groove is defined along at least a portion of the outer perimeter of the introducer cap assembly, with the groove being configured to receive at least a portion of the catheter shaft for wrapping the catheter shaft around the outer perimeter of the introducer cap assembly.
In accordance with another aspect which may be used or combined with the preceding aspect, the introducer cap assembly defines an opening configured to receive at least one digit of a user or a portion of the catheter shaft.
In accordance with another aspect which may be used or combined with any of the preceding two aspects, the catheter shaft and/or the introducer cap assembly is at least partially comprised of a water disintegrable material.
In accordance with another aspect which may be used or combined with any of the preceding three aspects, the introducer cap assembly is at least partially comprised of an activation agent material configured to aid in the breakdown of the catheter shaft and/or the introducer cap assembly in water.
In accordance with another aspect which may be used or combined with any of the preceding four aspects, at least a portion of the catheter shaft is formed of a material including sodium bicarbonate and at least a portion of the introducer cap assembly is formed of a material including acetic acid.
In accordance with another aspect which may be used or combined with any of the eleventh through fourteenth aspects, at least a portion of the introducer cap assembly is formed of a material including sodium bicarbonate and at least a portion of the catheter shaft is formed of a material including acetic acid.
In accordance with another aspect which may be used or combined with any of the preceding six aspects, the introducer cap assembly defines at least one hole configured to trap water and improve movement of the catheter assembly through a drainage pipe.
In accordance with another aspect, there is provided a method of disposing of a catheter assembly of the type having a catheter shaft and a funnel assembly associated with a distal end portion of the catheter shaft. The method includes securing at least a portion of the catheter shaft to the funnel assembly by wrapping the catheter shaft around an outer perimeter of the funnel assembly so as to position at least a portion of the catheter shaft within a groove defined along at least a portion of the perimeter. Alternatively (or additionally) at least a portion of the catheter shaft may be passed through a shaft channel defined through the funnel assembly to secure the catheter shaft to the funnel assembly prior to placing the catheter assembly in a waste container.
In accordance with another aspect which may be used or combined with the preceding aspect, a proximal end portion of the catheter shaft is inserted into the shaft channel at a proximal end of the funnel assembly and advanced through the shaft channel until the proximal end portion of the catheter shaft exits the shaft channel at a distal end of the funnel assembly.
In accordance with another aspect which may be used or combined with the eighteenth aspect, a proximal end portion of the catheter shaft is inserted into the shaft channel at a proximal end of the funnel assembly and advanced through the shaft channel until the proximal end portion of the catheter shaft exits the shaft channel at a distal end of the funnel assembly. The proximal end portion of the catheter shaft may then be passed through the funnel assembly from the distal end of the funnel assembly to the proximal end of the funnel assembly via a second shaft channel defined through the funnel assembly.
In accordance with another aspect which may be used or combined with the eighteenth aspect, a proximal end portion of the catheter shaft is inserted into the shaft channel at a proximal end of the funnel assembly and advanced through the shaft channel until the proximal end portion of the catheter shaft exits the shaft channel at a different portion of the proximal end of the funnel assembly.
In accordance with another aspect which may be used or combined with any of the preceding four aspects, a proximal end portion of the catheter shaft is inserted through an opening defined in the funnel assembly after securing at least a portion of the catheter shaft to the funnel assembly and before placing the catheter assembly in a waste container.
In accordance with another aspect which may be used or combined with any of the preceding five aspects, the catheter assembly is placed in a toilet and flushed the catheter assembly down the toilet.
In accordance with another aspect, there is provided a method of disposing of a catheter assembly of the type having a catheter shaft and an introducer cap assembly associated with a proximal end portion of the catheter shaft. The method includes wrapping the catheter shaft around an outer perimeter of the introducer cap assembly so as to position at least a portion of the catheter shaft within a groove defined along at least a portion of the perimeter prior to placing the catheter assembly in a waste container.
In accordance with another aspect which may be used or combined with the preceding aspect, a loop with the catheter shaft is formed and a distal end portion of the catheter shaft is passed through the loop to secure the catheter shaft around the introducer cap assembly.
In accordance with another aspect which may be used or combined with any of the preceding two aspects, the catheter assembly is placed in a toilet and flushed the catheter assembly down the toilet.
It will be understood that the embodiments described above are illustrative of some of the applications of the principles of the present subject matter. Numerous modifications may be made by those skilled in the art without departing from the spirit and scope of the claimed subject matter, including those combinations of features that are individually disclosed or claimed herein. For these reasons, the scope hereof is not limited to the above description but is as set forth in the following claims, and it is understood that claims may be directed to the features hereof, including as combinations of features that are individually disclosed or claimed herein.
This application is a divisional of U.S. patent application Ser. No. 15/021,767, filed Mar. 14, 2016, which is a U.S. national stage application of PCT Patent Application Serial No. PCT/US2014/069508, filed Dec. 10, 2014, which claims the benefit of and priority of U.S. Provisional Patent Application Ser. No. 61/915,220, filed Dec. 12, 2013; U.S. Provisional Patent Application Ser. No. 62/011,078, filed Jun. 12, 2014; and U.S. Provisional Patent Application Ser. No. 61/915,396, filed Dec. 12, 2013, the contents of all of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3583391 | Cox et al. | Jun 1971 | A |
3621848 | Magovern | Nov 1971 | A |
3702610 | Sheppard et al. | Nov 1972 | A |
3861396 | Vaillancourt et al. | Jan 1975 | A |
3894540 | Bonner, Jr. | Jul 1975 | A |
4062363 | Bonner, Jr. | Dec 1977 | A |
4100309 | Micklus et al. | Jul 1978 | A |
4227533 | Godfrey | Oct 1980 | A |
4413986 | Jacobs | Nov 1983 | A |
4465481 | Blake | Aug 1984 | A |
4610671 | Luther | Sep 1986 | A |
4668221 | Luther | May 1987 | A |
4762738 | Keyes et al. | Aug 1988 | A |
4769005 | Ginsburg et al. | Sep 1988 | A |
4772279 | Brooks et al. | Sep 1988 | A |
4790817 | Luther | Dec 1988 | A |
4790831 | Skribiski | Dec 1988 | A |
4795439 | Guest | Jan 1989 | A |
4840622 | Hardy | Jun 1989 | A |
4883699 | Aniuk et al. | Nov 1989 | A |
4906238 | Greenfeld et al. | Mar 1990 | A |
4952359 | Wells | Aug 1990 | A |
4954129 | Giuliani et al. | Sep 1990 | A |
4994047 | Walker et al. | Feb 1991 | A |
5002526 | Herring | Mar 1991 | A |
5009648 | Aronoff et al. | Apr 1991 | A |
5089535 | Malwitz et al. | Feb 1992 | A |
5098535 | Nakakoshi et al. | Mar 1992 | A |
5102401 | Lambert et al. | Apr 1992 | A |
5195962 | Martin et al. | Mar 1993 | A |
5270086 | Hamlin | Dec 1993 | A |
5332524 | Kaylor | Jul 1994 | A |
5344011 | DiBernardo et al. | Sep 1994 | A |
5439454 | Lo et al. | Aug 1995 | A |
5468526 | Allen et al. | Nov 1995 | A |
5472417 | Martin et al. | Dec 1995 | A |
5569219 | Hakki et al. | Oct 1996 | A |
5601538 | Deem | Feb 1997 | A |
5616126 | Malekmehr et al. | Apr 1997 | A |
5688459 | Mao et al. | Nov 1997 | A |
5776611 | Elton et al. | Jul 1998 | A |
5792114 | Fiore | Aug 1998 | A |
5800412 | Zhang et al. | Sep 1998 | A |
5804653 | Weng | Sep 1998 | A |
5904703 | Gilson | May 1999 | A |
5985394 | Mao et al. | Nov 1999 | A |
6017334 | Rawls | Jan 2000 | A |
6030369 | Engelson et al. | Feb 2000 | A |
6063063 | Harboe et al. | May 2000 | A |
6066120 | Whiteside | May 2000 | A |
6071618 | Cook, Jr. et al. | Jun 2000 | A |
6090075 | House | Jul 2000 | A |
6213990 | Roempke | Apr 2001 | B1 |
6217569 | Fiore | Apr 2001 | B1 |
6447835 | Wang et al. | Sep 2002 | B1 |
6468245 | Alexandersen | Oct 2002 | B2 |
6471684 | Dulak et al. | Oct 2002 | B2 |
6488659 | Rosenman | Dec 2002 | B1 |
6585721 | Fiore | Jul 2003 | B2 |
6627586 | Brooks et al. | Sep 2003 | B1 |
6656146 | Clayman et al. | Dec 2003 | B1 |
6664333 | Wang et al. | Dec 2003 | B2 |
6713140 | McCormack et al. | Mar 2004 | B2 |
6726654 | Rosenman | Apr 2004 | B2 |
6942635 | Rosenblatt et al. | Sep 2005 | B2 |
6960224 | Marino et al. | Nov 2005 | B2 |
6976973 | Ruddell et al. | Dec 2005 | B1 |
7037295 | Tiernan et al. | May 2006 | B2 |
7128862 | Wang | Oct 2006 | B2 |
7156824 | Rosenman | Jan 2007 | B2 |
7182906 | Chen | Feb 2007 | B2 |
7402620 | McGhee | Jul 2008 | B2 |
7553923 | Williams | Jun 2009 | B2 |
7601158 | House | Oct 2009 | B2 |
7641757 | Kampa et al. | Jan 2010 | B2 |
7662146 | House | Feb 2010 | B2 |
7731740 | LaFont et al. | Jun 2010 | B2 |
7789873 | Kubalak et al. | Sep 2010 | B2 |
7815628 | Devens, Jr. | Oct 2010 | B2 |
7820284 | Terry | Oct 2010 | B2 |
7824517 | Kampa et al. | Nov 2010 | B2 |
7833280 | Stack et al. | Nov 2010 | B2 |
7947031 | DiMatteo et al. | May 2011 | B2 |
8143368 | Domb et al. | Mar 2012 | B2 |
8168249 | Utas et al. | May 2012 | B2 |
8187254 | Hissink | May 2012 | B2 |
8388583 | Stout | Mar 2013 | B2 |
8388585 | Tomes | Mar 2013 | B2 |
8469928 | Stout | Jun 2013 | B2 |
8518019 | Green | Aug 2013 | B2 |
8569402 | Henderson et al. | Oct 2013 | B2 |
20020016574 | Wang et al. | Feb 2002 | A1 |
20030018322 | Tanghoj | Jan 2003 | A1 |
20030165647 | Kaneko et al. | Sep 2003 | A1 |
20030187368 | Sata et al. | Oct 2003 | A1 |
20030228434 | Bailey et al. | Dec 2003 | A1 |
20040122382 | Johnson et al. | Jun 2004 | A1 |
20040210180 | Altman | Oct 2004 | A1 |
20040220550 | Schryver | Nov 2004 | A1 |
20040230177 | DiMatteo et al. | Nov 2004 | A1 |
20040232589 | Kawabata et al. | Nov 2004 | A1 |
20050049577 | Snell et al. | Mar 2005 | A1 |
20050109648 | Kerzman et al. | May 2005 | A1 |
20050131386 | Freeman et al. | Jun 2005 | A1 |
20050163844 | Ashton | Jul 2005 | A1 |
20050197627 | Huang et al. | Sep 2005 | A1 |
20050218154 | Selsby | Oct 2005 | A1 |
20050277862 | Anand | Dec 2005 | A1 |
20050283111 | Maurice | Dec 2005 | A1 |
20060173422 | Reydel et al. | Aug 2006 | A1 |
20060240064 | Hunter et al. | Oct 2006 | A9 |
20070043333 | Kampa et al. | Feb 2007 | A1 |
20070078412 | McGuckin, Jr. et al. | Apr 2007 | A1 |
20070088330 | House | Apr 2007 | A1 |
20070203502 | Makker et al. | Aug 2007 | A1 |
20070225649 | House | Sep 2007 | A1 |
20080015527 | House | Jan 2008 | A1 |
20080091145 | House | Apr 2008 | A1 |
20080097411 | House | Apr 2008 | A1 |
20080118544 | Wang | May 2008 | A1 |
20080147049 | House et al. | Jun 2008 | A1 |
20080171991 | Kourakis | Jul 2008 | A1 |
20080171998 | House | Jul 2008 | A1 |
20080172042 | House | Jul 2008 | A1 |
20080183262 | Dowling | Jul 2008 | A1 |
20080255510 | Wang | Oct 2008 | A1 |
20080268193 | Cherry et al. | Oct 2008 | A1 |
20080292776 | Dias et al. | Nov 2008 | A1 |
20080312550 | Nishtala | Dec 2008 | A1 |
20090018530 | Nielsen et al. | Jan 2009 | A1 |
20090036874 | Horowitz et al. | Feb 2009 | A1 |
20090234294 | Harvey et al. | Sep 2009 | A1 |
20090250370 | Whitchurch | Oct 2009 | A1 |
20090264869 | Schmid et al. | Oct 2009 | A1 |
20100030197 | House | Feb 2010 | A1 |
20100049146 | Nielsen et al. | Feb 2010 | A1 |
20100098746 | King | Apr 2010 | A1 |
20100100116 | Brister et al. | Apr 2010 | A1 |
20100137743 | Nishtala | Jun 2010 | A1 |
20100145315 | House | Jun 2010 | A1 |
20100198195 | Nishtala | Aug 2010 | A1 |
20100204682 | Tanghoj et al. | Aug 2010 | A1 |
20100209472 | Wang | Aug 2010 | A1 |
20100215708 | Zumbuehl et al. | Aug 2010 | A1 |
20100312255 | Satake et al. | Dec 2010 | A1 |
20100323189 | Illsley et al. | Dec 2010 | A1 |
20110049146 | Illsley et al. | Mar 2011 | A1 |
20110071507 | Svensson | Mar 2011 | A1 |
20110114520 | Matthison-Hansen | May 2011 | A1 |
20110125135 | Ahmed | May 2011 | A1 |
20110160662 | Stout | Jun 2011 | A1 |
20110178425 | Nishtala | Jul 2011 | A1 |
20110212157 | Edelson et al. | Sep 2011 | A1 |
20110230864 | House | Sep 2011 | A1 |
20110238163 | Andrews et al. | Sep 2011 | A1 |
20110268938 | Schuhmann | Nov 2011 | A1 |
20120035530 | Wang | Feb 2012 | A1 |
20120121919 | Nielsen | May 2012 | A1 |
20130006226 | Hong et al. | Jan 2013 | A1 |
20130131646 | Gilman | May 2013 | A1 |
20130345681 | Hong | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
2240371 | Nov 1996 | CN |
101300036 | Nov 2008 | CN |
10 2011 119160 | May 2013 | DE |
0010171 | Apr 1980 | EP |
0166998 | Jan 1986 | EP |
0613672 | Sep 1994 | EP |
0628586 | Dec 1994 | EP |
0692276 | Jan 1996 | EP |
1062920 | Dec 2000 | EP |
1110561 | Jun 2001 | EP |
1415671 | May 2004 | EP |
2026846 | Feb 2009 | EP |
2301595 | Mar 2011 | EP |
2520412 | Nov 2012 | EP |
2609956 | Jul 2013 | EP |
2083762 | Mar 1982 | GB |
2496901 | May 2013 | GB |
S-61209655 | Sep 1986 | JP |
01-136662 | Sep 1989 | JP |
11151293 | Jun 1999 | JP |
2000065291 | Nov 2000 | KR |
100754057 | Aug 2007 | KR |
WO 8905671 | Jun 1989 | WO |
WO 9641653 | Dec 1996 | WO |
WO 1998058989 | Dec 1998 | WO |
WO 0030696 | Jun 2000 | WO |
WO 2006055847 | May 2006 | WO |
WO 2006071813 | Jul 2006 | WO |
WO 2007122269 | Nov 2007 | WO |
WO 2007140320 | Dec 2007 | WO |
WO 2007142579 | Dec 2007 | WO |
WO 2010043565 | Apr 2010 | WO |
WO 2011076211 | Jun 2011 | WO |
WO 2012163413 | Dec 2012 | WO |
WO 2012166967 | Dec 2012 | WO |
WO 2014193402 | Dec 2014 | WO |
WO 2015013251 | Jan 2015 | WO |
Entry |
---|
Extended European Search Report for Application No. EP19198024.2 dated Dec. 19, 2019. |
Rachna N. Dave, Hiren M. Joshi, and Vayalam P. Benugopalan, Novel Biocatalytic Polymer-Based Antimicrobial Coatings as Potential Ureteral Biomaterial, Feb. 1, 2011, 44(2): 845-853. |
Beom Soo Kim, Jeffrey S. Hrkach, Robert Langer, Biodegradable photo-crosslinked poly(ether-ester) networks for lubricious coatings, Biomaterials, vol. 21, Issue 3, Feb. 2000, pp. 259-265. |
A.K. Singla, M. Chawla, Chitosan some pharmaceutical and biological aspects, an update, Journal of Pharmacy and Pharmacology, Aug. 2001, 53: 1047-1067. |
FreeStyle Vie Flushable Colostomy Bag by CliniMed Ltd., retrieved from http://www.clinimed.co.uk/Stoma-Care/Products/Closed-Stoma-Bags/Freestyle-Vie-Flushable/Product-Design.aspx Jan. 1, 2014. |
International Search Report and Written Opinion dated Jun. 10, 2015, for International Application No. PCT/US2014/069508. |
Number | Date | Country | |
---|---|---|---|
20190381276 A1 | Dec 2019 | US |
Number | Date | Country | |
---|---|---|---|
62011078 | Jun 2014 | US | |
61915396 | Dec 2013 | US | |
61915220 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15021767 | US | |
Child | 16554111 | US |